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Landau levels for a Weyl pair in a monolayer medium and thermal quantities
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In this paper, we consider a Weyl pair under the effect of an external uniform magnetic field in a monolayer medium without considering
any charge-charge interaction between the particles. Choosing the interaction of the particles with the magnetic field in the symmetric
gauge we seek for an analytical solution of the corresponding form of a one-time fully-covariant two-body Dirac equation derived from
quantum electrodynamics via the action principle. As it is usual with two-body problems, we separate the relative motion and center of mass
motion coordinates. Assuming the center of mass is at rest, we derive a matrix equation in terms of the relative motion coordinates without
considering any group theoretical method. This equation gives a wave equation in exactly soluble form and accordingly we obtain the spinor
components and complete energy eigen-states (in closed form) for such a spinless composite structure. Our results not only give exact Landau
levels for such a Weyl pair in a monolayer medium but also show the considered system behaves as a two-dimensional harmonic oscillator.
Furthermore, our findings give exactly the excited states of a Weyl particle under the effect of uniform external magnetic field in a monolayer
graphene sheet and there is no imprint to distinguish these modes from each other. This means that the performed experiments based on
Landau levels for a monolayer graphene sheet may actually involve many-body effects. Our results provide a suitable basis to analyze the
associated thermal quantities and accordingly we discuss the thermal properties by determining free energy, total energy, entropy and specific
heat for the composite system in question.
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1. Introduction

In the non-relativistic quantum mechanics frame, the dynam-
ics of two-body systems is investigated through one-time
equations including inter-particle interaction potentials de-
pending on relative radial coordinate and this is the well-
known way to describe the bound states, resonance states
as well as the scattering states. These equations include, of
course, two-body wave functions. Relativistic quantum me-
chanics, phenomenologically establishes two-body equations
to analyse the dynamics of two interacting particles and these
equations consist of free Hamiltonians for each particle be-
sides inter-particle interaction potentials. Even though, one
of the main problems is how to choose the interaction poten-
tials, which are chosen phenomenologically. That is, mesonic
or electrodynamic (one-boson or one-photon exchange) po-
tentials are preferred in general. Also, two-time problem
appears in these phenomenologically constructed two-body
equations because each particle feels its proper time. After
the Dirac equation was written, the first acceptable attempt
to write a two-body Dirac equation was made by Breit [1].
This equation includes two free Dirac Hamiltonians plus an
interaction term established by modifying the Darwin poten-
tial. However, this equation works properly only in the weak
coupling regime due to the retardation effects. That is, it can-
not give precise results if the particles have high velocities or
the interaction is large range. This was a serious problem that
must be overcome. To overcome that another formalism was

introduced by Bethe and Salpeter by starting from the Quan-
tum Field Theory [2]. However, this new formalism could
only provide approximate solutions for bound states due to
the relative time difference between particles. Thus, the re-
quired equation including relativistic kinematics had to be
exactly soluble in 3+1 dimensions and had to be a one-time
fully-covariant two-body equation taking into account the re-
tardation effects and including correct spin algebra. Further-
more, such an equation had to be usable in curved spaces. In
Ref. [3], Barut has shown us how it is possible to derive a
complete and one time fully-covariant two-body Dirac equa-
tion from Quantum Electrodynamics. This equation includes
the correct spin algebra spanned by direct (Kronecker) prod-
uct of Dirac matrices, takes into account the retardation ef-
fects, includes the most general electric and magnetic poten-
tials [3] and moreover it can be usable in curved spaces [4].
In 3+1 dimensions, the solution of the Barut’s equation re-
quires group theoretical methods to separate radial and angu-
lar parts. Briefly, this equation leads to 16 equations and these
equations can be reduced into 8 equations thanks to sym-
metry. However, it results in two second-order differential
equations (coupled) or four first-order equations. This means
that the solution of this equation for Hydrogen-like systems
could be obtained only through a perturbative way [6] and
related precise solutions cannot be obtained. In 3+1 dimen-
sions, Moshinsky and Loyola used the Barut’s equation to
analyze a Dirac pair with Dirac oscillator interaction and ap-
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plied the obtained perturbative results to estimate mass spec-
tra for composite particles such as mesons and baryons [7].

In 2+1 dimensions, relativistic quantum theory and grav-
ity have gained interest after the seminal papers in the Refs.
[8,9] and discovery of the Banados-Teitelboim-Zanelli black
hole [10] and Graphene [11, 35]. Prior to the aforemen-
tioned discoveries, it was believed that 2+1 dimensional stud-
ies can be useful only for discussing some conceptual is-
sues. Graphene is a two-dimensional (2D) material exhibit-
ing exceptionally high crystal and very high electronic qual-
ity [11, 35]. This 2D material is formed by carbon atoms in
a honeycomb lattice. Low energy electronic spectrum of the
graphene can be described by massless Dirac particles (elec-
tron and hole) called as Weyl fermions. Graphene and 2D
materials are the premier sources of the latest information on
commercial and practical applications of 2D materials. These
materials are defined as crystalline materials consisting of
single or few-layer atoms, in which the inter-atomic interac-
tions are much stronger than those along the stacking direc-
tion. They have unique physical and chemical properties due
to their reduced dimensionality and quantum confinement ef-
fects [36, 37]. These properties enable particles or quasi-
particles such as electrons, excitons and magnons to exhibit
exotic behaviors differing from their 3D bulk counterparts
stemming from the quantum confinement effect. They have
attracted tremendous research interest in recent years because
of their potential applications in various fields, such as nano-
electronics, optoelectronics, the quantum Hall effect, phase
space representation of Wigner functions, quantum heat en-
gine and excitonic systems (see the following Refs. [38–46]).
Thus, investigations based on the dynamics of a Weyl pair ex-
posed to an external magnetic field in a monolayer medium
can be very useful for clarifying some points. To do this, the
fully-covariant two-body Dirac equation can be very useful
to determine precise solutions.

In this paper, we consider a Weyl pair under the effect of
an external uniform magnetic field in a homogeneous mono-
layer medium and try to determine the dynamics of such a
pair by solving the corresponding form of the fully-covariant
two-body Dirac equation. To do this, we choose the coupling
of each particle with the external field in the symmetric gauge
which allows us to compare the result with the related rela-
tivistic oscillators and arrive at a wave equation for such a
spinless static system. We obtain energy eigen-states besides
the associated spinor components and then we discuss the re-
sults in detail. The form of the obtained non-perturbative en-
ergy spectrum allows us to determine the associated thermal
quantities and we also discuss the thermal properties by de-
termining free energy, total energy, entropy and specific heat
for the system in question.

2. Two-body Dirac equation

In this part, we will introduce the covariant two-body equa-
tion and will be interested in the relative motion of a mutually
non-interacting fermion-antifermion pair exposed to an exter-

nal uniform magnetic field, by choosing the interaction of the
particles with the external field in symmetric gauge, so that
we can obtain precise solutions. Then, for the system in ques-
tion, we will derive the corresponding form of the covariant
two-body Dirac equation and will arrive at a set of coupled
equations in matrix form. Here, it is worth mentioning that
choosing this gauge allows us also to write the equations in
the most symmetric form. The generalized form of this equa-
tion can be written as [3–5]

{
H1 ⊗ γ0f

+ γ0f ⊗H2

}
Ψ(x1, x2) = 0,

H1 =
[
γµf

/Df + iM1I2
]
, H2 =

[
γµf

/Df + iM2I2
]
,

/Df = ∂f
µ + i

efAf
µ

~V − Γf
µ, /Df = ∂f

µ + i
efAf

µ

~V − Γf
µ,

M1 =
mfV
~

, M2 =
mfV
~

, (1)

in which f andf refer to fermion and antifermion, respec-
tively, γµ are the generalized Dirac matrices,I2 are the two-
dimensional identity matrices,Aµ are the 3-vector potentials,
e stands for the elementary electrical charge of the parti-
cles, Γµ are the spinorial affine connections,m represents
the mass of the particle,V is the Fermi velocity,~ is the
reduced Planck constant,Ψ is the bi-spinor depending on
both the spacetime position vectors (xf , xf ) of the particles
and the symbols⊗ are used to indicate the direct product.
Here, we are interested in a fermion-antifermion system in a
globally and locally flat monolayer medium that can be rep-
resented by the line element:ds2 = V2dt2 − dx2 − dy2

for which the spinorial affine connections do not make any
contribution to the dynamics of the particles since they van-
ish [14]. The generalized Dirac matrices are found through
the relationγµ = eµ

(a)γ
(a) where eµ

(a) are inverse tetrad

fields andγ(a) are flat Dirac matrices that can be chosen
by means of Pauli matrices (σx, σy, σz) in three dimensions.
The flat Dirac matrices, which must be selected to provide
the signature (+,−,−) of the given metric, can be chosen
as γ0 = σz, γ1 = iσx and γ2 = iσy where i =

√−1
[14]. The tetrad fields can be constructed by using the rela-
tion: gµν =diag(V2,−1,−1) = e

(a)
µ e

(b)
ν η(a)(b) wheregµν is

the contravariant metric tensor,e
(a)
µ are the tetrad fields and

η(a)(b) is the flat Minkowski tensorη(a)(b) =diag(1,−1,−1).
Thereby, it is possible to chose these fields ase

(0)
0 = ±V,

e
(1)
1 = ±1 ande

(2)
2 = ±1. Choosing positive signature, one

can determine the inverse tetrad fields ase0
(0) = 1

V , e1
(1) = 1

ande2
(2) = 1 since the tetrad fields must admit the following

orthogonality and orthonormality conditions:eµ
(a)e

(a)
ν = δµ

ν

ande
(a)
µ eµ

(b) = δ
(a)
(b) wherea, b = 0, 1, 2 andµ, ν = t, x, y

[15]. Here, we consider that the particles interact only with
the external uniform magnetic field (Af,f

t = 0). We can
choose the coupling of each particle with the external field
in symmetric gauge [16] (see also [13]) asAf

x = −B0yf/2,
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Af
y = B0xf/2,Af

x = −B0yf/2,Af
y = B0xf/2 whereB0 is

the amplitude of the external magnetic field. Now, we need
to separate the center of mass and relative motion coordinates
carefully to acquire a set of coupled equations, by means of
relative motion coordinates, for such a pair (ef = −ef = e
andmf = mf = m). This requires to define first the cen-
ter of mass (R) and relative motion (r) coordinates. We can
use the following expressions to acquire a matrix equation in
terms of ther coordinates [17]

rµ = xf
µ − xf

µ, Rµ =
xf

µ

2
+

xf
µ

2
, xf

µ =
rµ

2
+Rµ,

xf
µ = −rµ

2
+Rµ, ∂f

xµ
= ∂rµ

+
∂Rµ

2
,

∂f
xµ

= −∂rµ
+

∂Rµ

2
,

which leads∂f
xµ

+∂f
xµ

= ∂Rµ
. Let the center of mass locates

at (x = 0, y = 0) point of the spatial background and does
not carry momentum. This requires that the particles carry
opposite momenta with respect to each other and any pairing
effect may become important for this static case. The gen-
eralized Dirac matrices in Eq. (1) become asγtf,f

= σz/V,
γxf,f

= iσx andγyf,f

= iσy since they are independent from
the spacetime coordinates even though the temporal parts de-
pend on the velocityV(constant). By assuming the interac-
tion is time-independent we can define the bi-spinor, in terms
of the r coordinates, as followsi Ψ = e−i(E/~)tψ̃(r), where
E is the energy of the system and̃ψ(r) represents the spatial
part of the spinor. At last, we derive the following matrix
equation:M̂ψ̃ = 0 in which

M̂ =




−
/E /̂D− − Bχ− − /̂D− − Bχ− 0

/̂D+ + Bχ+ −/E 0 /̂D− + Bχ+

− /̂D+ + Bχ+ 0 −/E − /̂D− + Bχ−

0 /̂D+ − Bχ+ − /̂D+ − Bχ+

+

/E




,

ψ̃ = (ψ1 ψ2 ψ3 ψ4)
T

,
±
/E = /E ± 2mV

~
, /E =

E
~V ,

/̂D± = ∂x ± i∂y, χ± = x± iy, (2)

andii B = eB0/4~V. Here, one should notice that each
of the spinor components depends on thex, y coordinate
pair, as ψj(x, y), (j = 1, 2, 3, 4). Thus we need, at
least, a symmetry to acquire an analytical solution of this
matrix equation. Let us transform the system into po-
lar coordinates (r, φ), in terms of the transformed spinor
ψ̃ =

(
ψ1(r)ei(s−1)φ ψ2(r)eisφ ψ3(r)eisφ ψ4(r)ei(s+1)φ

)T

[18], through spin (s) raising (+) and spin lowering (−) op-
erators:/̂D± = e±iφ

(± i
r ∂φ + ∂r

)
[17] besidesχ± = x±iy.

After some arrangements, one can arrive at the following set

of equations

/Eϑ1(r) + 2
.

ϑ3(r)− 2Brϑ4(r) = 0,

/Eϑ2(r) = 0,

/Eϑ3(r)− 2
r
ϑ1(r)− 2

.
ϑ1(r) = 0,

/Eϑ4(r)− 2Brϑ1(r) = 0, (3)

in which the dot means derivative with respect to ther,
for a static spinless composite system consisting of a Weyl
(m = 0) pair exposed to an external uniform magnetic field
in a spatially flat monolayer medium if

ϑ1(r) = ψ1(r) + ψ4(r), ϑ2(r) = ψ1(r)− ψ4(r),

ϑ3(r) = ψ2(r)− ψ3(r), ϑ4(r) = ψ2(r) + ψ3(r),

and only ifE 6= 0. That isϑ2(r) = 0 if one considers the
E 6= 0 case. This cannot appear whenm 6= 0, of course.

3. Landau levels for a Weyl pair

Here, we try to determine exact Landau levels for a static
Weyl pair under the influence of an external uniform mag-
netic field in a flat monolayer medium. To acquire this, we
look for an analytical solution of the set of equations in Eq.
(3). For this purpose, we start by considering a dimension-
less independent variable,ξ = Br2 which leadsr =

√
ξ/B.

Here, we should notice thatξ Ã 0 if r Ã 0 andξ Ã ∞ if
r Ã ∞ provided thatB0 6= 0. By means of the variableξ,
Eq. (3) leads to the following set of equations

/Eϑ1(ξ) + 4B
√

ξ

B
.

ϑ3(ξ)− 2B
√

ξ

Bϑ4(ξ) = 0,

/Eϑ3(ξ)− 2√
ξ
B

ϑ1(ξ)− 4B
√

ξ

B
.

ϑ1(ξ) = 0,

/Eϑ4(ξ)− 2B
√

ξ

Bϑ1(ξ) = 0, (4)

one of which is algebraic. In the second and third equation,
we can easily see that theϑ3(ξ) andϑ4(ξ) components can
be expressed in terms ofϑ1(ξ). That is the first equation in
Eq. (4) gives a wave equation for the componentϑ1(ξ) and
this wave equation can be rewritten by considering an ansatz
function,ϑ1(ξ) = ϑ(ξ)/

√
ξ, as

..
ϑ(ξ) +

(
−1

4
+

/E2

16Bξ

)
ϑ(ξ) = 0. (5)

Solution function of this equation can be expressed in terms
of the Kummer Confluent Hypergeometric function [19, 20],

1F1, asϑ(ξ) = C*ξe−ξ/2
1F1

(
[{−/E2 + 16B}/16B], [2], ξ

)

whereC* is a constant. For large values of the argumentξ, a
1F1 ([ε], [δ], ξ) function becomes [21]

1F1 ([ε], [δ], ξ) ≈ Γ(δ)
Γ(ε)

eξξε−δ
[
1 +O(|ξ|−1)

]
.
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This function is divergent whenξ Ã ∞. Here, we seek for
a regular solution of Eq. (5) and hence we need thatε = −n

wheren = 0, 1, 2... In our case−n = (−/E2 + 16B)/16B.
This condition guarantees the solution function becomes
well-behaved whenξ Ã ∞. Through this termination, which
gives the quantization condition, we acquire the following en-
ergy spectrum for the considered system

En = ±2
~V
`B

√
n + 1, n = 0, 1, 2.., (6)

where`B is the magnetic length,̀B =
√
~/eB0 [22]. Fur-

thermore, we can determine the defined spinor components
as follows

θ1n(ξ) = C*
√

ξe−
ξ
2 1F1 ([−n], [2], ξ) ,

θ3n
(ξ) = −C* 2

√
ξe−

ξ
2

/E
√

ξ
B

nξ 1F1 ([−n + 1], [3], ξ)

− C* 2
√

ξe−
ξ
2

/E
√

ξ
B

(ξ − 2) 1F1 ([−n], [2], ξ) ,

θ4n(ξ) = C* 2B
/E

√
ξ

B
√

ξe−
ξ
2 1F1 ([−n], [2], ξ) . (7)

From (6), we see that the energy of such a static pair
depends on the Fermi velocity (V ∼ c/300 [13]), reduced
Planck constant (~), magnetic length (̀B) and overtone quan-
tum numbern. Furthermore, one should notice that the con-
sidered system behaves like two-dimensional relativistic har-
monic oscillator and it does not stop oscillating even when
n = 0 (see Fig. 1). The results show that magnitude of the
energy levels (|En|) is large if `B ¿ 1 and|En| increases as
B0 increases for any quantum state (see Fig. 1).

TABLE I. Fore = 1, ~ = 1 andc = 1.

B0 `B

1 1

5 0.447

10 0.316

15 0.258

20 0.223

25 0.2

30 0.182

FIGURE 1. Dependence of the energy levels on the amplitude of
the external uniform magnetic field (see also [25]).

4. Thermal properties

4.1. Euler-Maclaurin formula

In this section, we calculate the different thermodynamic
variables using the standard definition of the partition func-
tion Z. In order to obtain more accurate quantities, we shall
use the infinite sums ofn-contributions of the energy multi-
plied by the constantβ. Therefore, it is convenient to write
the different thermodynamic variables in terms of these sums
and perform a numerical computation for each variable for a
certain range of the temperatureT . The partition function is
given by

Z =
∑

e−βEn , (8)

hereβ = 1/kT , k is the Boltzmann constant. Here, consid-
ering only positive energies in calculating, the partition func-
tion can be justified as follows: (i) The Dirac equation has
an exact Foldy-Wouthuysen transformation and this means
that positive and negative energy solutions do not mix. (ii)
We assume that the negative energy (antiparticle) as fully oc-
cupied: It is correct because all fermions are ordered by the
Pauli’s principle. Now, to evaluate the partition function, we
use the Euler-Maclaurin formula which gives the difference
between an integral and a closely related sum. It makes the
connection between the sum and the integral explicit for suf-
ficiently smooth functions. In the most general form, it can
be written as [26,27]

b∑
n=a

f (n) =
1
2
{f (a) + f (b)}+

b∫

a

f (n) dn

+
k∑

i=2

bi

i!

{
f (i−1) (b)− f (i−1) (a)

}

−
b∫

a

Bk ({1− t})
k!

f (k) (t) dt, (9)

wherea andb are arbitrary real numbers with differenceb−a
being a positive integer number,Bn andbn are Bernoulli
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FIGURE 2. Thermal properties as a function of1/β for different
values of the magnetic lengthlB : a) Free energyF . b) Total energy
U . c) EntropyS. d) Specific heatCv.

polynomials and numbers, respectively, andk is any posi-
tive integer. The condition we impose on the real functionf
is that it should have continuousk-th derivative. The sym-
bol {x} for a real numberx denotes the fractional part ofx.
Here, the remainder term (error term)

Rk =

b∫

a

Bk ({1− t})
k!

f (k) (t) dt, (10)

is the most essential in the Euler-Maclaurin equation. Iff (x)
and all its derivatives tend to0 asx → ∞, the formula can
be simplified:

∞∑
n=0

f (n) =
f (0)

2
+

∞∫

0

f (n) dn−
k∑

i=2

bif (0)
i!

−
∞∫

0

Bk ({1− t})
k!

f (k) (t) dt. (11)

The first several Bernoulli numbers are the following:

b0 = 1, b1 = −1
2
, b2 =

1
6
, b4 = − 1

30
. (12)

The odd terms in the sequence are all0 except the first oneb1.
The Bernoulli polynomialsBn can be defined by a generating
function

tetx

et − 1
=

∞∑
n=0

Bn (x)
tn

n!
. (13)

The first few Bernoulli polynomials are:

B0 (x) = 1,

B1 (x) = x− 1
2
,

B2 (x) = x2 − x +
1
6
,

B3 (x) = x3 − 3
2
x2 +

1
2
x. (14)

Also, more general, for a positive integern, we define the
periodic Bernoullian function̄Bn = Bn({x}) where{x} de-
notes the fractional part ofx. We can see that̄Bn = Bn({x})
is periodic with period 1 and continuous on[0, 1]. That means
that the fractional parts of the Bernoulli numbers are dense in
the interval[0, 1] [28]. Following this remark, and as proved
by Elliot [29], the final form of the partition function be-
comes:

∞∑
n=0

f (n) =
f (0)

2
+

∞∫

0

f (n) dn−
k∑

i=2

bif (0)
i!

−
1∫

0

Bk ({1− t})
k!

f (k) (t) dt. (15)

In what follows, all thermodynamic properties of the system
in question, such as the free energy, the entropy, total energy
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and the specific heat, can be obtained through the numerical
partition functionZ. Looking for simplicity, we will prefer
to use the natural units(~ = c = kB = e = 1), so that all
parameters can be considered as dimensionless.

4.2. Numerical results and discussions

Now, we discuss and comment on our numerical results on
the calculation of the thermal quantities obtained via the par-
tition function. We should mention that, in all the figures, we
have used adimensional quantities. According to the above
considerations, we can define the thermodynamic functions
of interest as follows:

F = − log Z√Bβ
, U = − 1√B

d log Z

dβ
, (16)

and

S = log Z − 2β
d log Z

dβ
, Cv = β2 d2 log Z

dβ2
. (17)

The integral appearing in (11) can be calculate as follows:

∞∫

0

e−β
√B√n+1dn =

2eβ(−
√B)

(
β
√B + 1

)

β2B . (18)

After fixed k = 4, the explicit form of the partition function
(Eq. (15)) is given by

Z (β,B) = e−β
√B +

e−
√

2Bβ

46080β2B
×

{
92160

(√
2Bβ + 1

)
+ 23040Bβ2

}

+
e−
√

2Bβ

46080β2B
{
− 6B2β4

+ 957
√

2
√
B3/2

β3 − 2
√

2
√
B5/2

β5

}
.

With the aid of the partition functionZ the thermal prop-
erties of the considered system can be found easily. These
thermodynamic functions are represented according to the in-
verse temperatureβ and for different values of the magnetic
field B. Thus, we have chosenB = 1, 5, 10, 15, 20, 25, 30.
The dimensionless variablēβ = 2V~β/lB = 2V~/lBkBT
can help us to define the characteristic temperatureT0 [30],
in IS(international system), with the following expression:

T0 =
2V~

lBkBT
. (19)

This temperature is similar to the Debye temperature in the
solid state [30–32]. It also depends inversely on the intensity
of the magnet field. Table II provides some values for this
temperature in SI for the case of graphene. One has massless
particles moving through the honeycomb lattice with a veloc-
ity V = 1.1× 106 m/s the so-called Fermi velocity [31,33].

TABLE II. Some values of the characteristic temperatureT0.

B(Tesla) `B(× 10−8 meter) T0(K)

1 2.56 655

5 1.14 1465

10 0.81 2071

15 0.67 2537

20 0.58 2929

25 0.51 3275

30 0.47 3587

The obtained results are illustrated in the Fig. 2. Accord-
ing to this Figure, the following may be observed:

• The effect of the magnetic field is observed in all ther-
mal quantities. This dependency is inversely with the
field.

• Entropy and specific heat curves tend to zero at low
temperatures.

• Comparing with the existing studies, this remark is due
to the adding the reminder term in the Euler-Mclaurin
formula which has been dropped in these studies (see
for example [30, 34]). This term has the role the avoid
the divergence in the partition function and conse-
quently all thermal quantities of our problem.

• Now, at very high temperatures, the specific heat
curves converge to2. This convergence depends in-
versely on the applied magnetic fieldB. The conver-
gence to this point is faster in the lower region of the
magnetic fieldB than in higher values of it.

5. Summary and results

In this manuscript, we have studied the dynamics of a Weyl
pair (mutually non-interacting) exposed to an external uni-
form magnetic field in a monolayer medium. To do this, we
have used the fully-covariant two-body Dirac equation de-
rived from Quantum Electrodynamics via the action princi-
ple. First of all, by choosing the interaction of the particles
with the external uniform magnetic field in the symmetric
gauge, we have written the corresponding form of this one-
time two-body equation for a general fermion-antifermion
pair. Afterwards, we have separated the center of mass mo-
tion coordinates and relative motion coordinates as is usual
with two-body problems. By assuming the center of mass
is at rest at the spatial origin, we have arrived at a matrix
equation consisting of four first-order equations (coupled)
in terms of the relative motion coordinates. We have trans-
formed the background into the polar space so that we can
exploit the angular symmetry. Then, we have reduced the
obtained matrix equation resulting in three equations, one of
which is algebraic, for a such a spinless composite system
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formed by a Weyl pair. These equations allow us to derive
a wave equation in exactly soluble form. Solution function
of this equation can be expressed in terms of the Kummer
Confluent Hypergeometric function. Accordingly we have
obtained the energy spectrum (see Eq. (6)) in closed-form
besides the defined spinor components (see Eq. (7)). Equa-
tion (6) has shown that energy of such a pair depends on the
Fermi velocity (V), magnitude of the elementary electrical
charge (e), amplitude of the external uniform magnetic field
(B0) besides the reduced Planck constant~. Our results have
shown that such a static pair behaves as two-dimensional har-
monic oscillator (this can be seen by takingB0 = ω~c/2e,
where theω is the oscillator frequency [23]) and it does not
stop oscillating even when the system reaches the ground
state (n = 0). The obtained energy (En) spectrum can be
expressed in terms of the magnetic length,`B =

√
~/eB0, as

En = ±~V/`B
√

4(n + 1) and |En| can be very large when
`B ¿ 1 whethern = 0 or not. Such a system may appear
in a monolayer graphene sheet under the effect of an external
uniform magnetic field. Landau levels for a Weyl particle in
a monolayer medium was obtained asEn = ±~V/`B

√
2|n′ |

where |n′ | = 0, 1, 2.. [13](see also [24]). Our results, in
principle, seem to be as an excited state of the related one-
body state and, at first look, we cannot see any imprint to
distinguish these modes from each other. Thus, some obser-
vations based on Landau levels for a single-layer graphene
may include two-body effects (see [25]), at least similar to
the one studied here. Finally, we have calculated all the ther-
mal quantities such as free energy, total energy, entropy and

specific heat for the considered composite structure via the
partition function through the obtained non-perturbative en-
ergy expression and the partition function was derived by a
method based on the Euler-Maclaurin formula. As a conse-
quence, we observe that

• The third law of thermodynamics of entropy and spe-
cific heat

lim
T−→0

CV = 0, lim
T−→0

S = 0,

is well fulfilled.

• These thermal properties depend inversely with the
magnetic field.

• In higher temperatures, all the curves of specific heat
tend towards 2. When the magnetic field increases, this
convergence goes towards this limit very slowly.
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i. Note that the Eq. (1) leads[σz ⊗ σz](∂
f
0 + ∂f

0 ) term. Thus, the
energy of such a static pair is determined according to the∂Rt .

ii. T means transpose of the spinor.
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