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Landau levels for a Weyl pair in a monolayer medium and thermal quantities
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In this paper, we consider a Weyl pair under the effect of an external uniform magnetic field in a monolayer medium without considering
any charge-charge interaction between the particles. Choosing the interaction of the particles with the magnetic field in the symmetric
gauge we seek for an analytical solution of the corresponding form of a one-time fully-covariant two-body Dirac equation derived from
guantum electrodynamics via the action principle. As it is usual with two-body problems, we separate the relative motion and center of mass
motion coordinates. Assuming the center of mass is at rest, we derive a matrix equation in terms of the relative motion coordinates without
considering any group theoretical method. This equation gives a wave equation in exactly soluble form and accordingly we obtain the spinor
components and complete energy eigen-states (in closed form) for such a spinless composite structure. Our results not only give exact Landa
levels for such a Weyl pair in a monolayer medium but also show the considered system behaves as a two-dimensional harmonic oscillator
Furthermore, our findings give exactly the excited states of a Wey! particle under the effect of uniform external magnetic field in a monolayer
graphene sheet and there is no imprint to distinguish these modes from each other. This means that the performed experiments based ¢
Landau levels for a monolayer graphene sheet may actually involve many-body effects. Our results provide a suitable basis to analyze the
associated thermal quantities and accordingly we discuss the thermal properties by determining free energy, total energy, entropy and specifi
heat for the composite system in question.

Keywords: Landau levels; graphene; Weyl fermions, charge carriers; many-body system; thermal properties.

DOI: https://doi.org/10.31349/RevMexFis.69.061701

1. Introduction introduced by Bethe and Salpeter by starting from the Quan-

tum Field Theory [2]. However, this new formalism could
In the non-relativistic quantum mechanics frame, the dynamenly provide approximate solutions for bound states due to
ics of two-body systems is investigated through one-timehe relative time difference between particles. Thus, the re-
equations including inter-particle interaction potentials de-quired equation including relativistic kinematics had to be
pending on relative radial coordinate and this is the well-exactly soluble in 3+1 dimensions and had to be a one-time
known way to describe the bound states, resonance stat@sly-covariant two-body equation taking into account the re-
as well as the scattering states. These equations include, tirdation effects and including correct spin algebra. Further-
course, two-body wave functions. Relativistic quantum me-more, such an equation had to be usable in curved spaces. In
chanics, phenomenologically establishes two-body equatiorRef. [3], Barut has shown us how it is possible to derive a
to analyse the dynamics of two interacting particles and theseomplete and one time fully-covariant two-body Dirac equa-
equations consist of free Hamiltonians for each particle betion from Quantum Electrodynamics. This equation includes
sides inter-particle interaction potentials. Even though, onghe correct spin algebra spanned by direct (Kronecker) prod-
of the main problems is how to choose the interaction potenuct of Dirac matrices, takes into account the retardation ef-
tials, which are chosen phenomenologically. Thatis, mesonigects, includes the most general electric and magnetic poten-
or electrodynamic (one-boson or one-photon exchange) patals [3] and moreover it can be usable in curved spaces [4].
tentials are preferred in general. Also, two-time problemin 3+1 dimensions, the solution of the Barut’s equation re-
appears in these phenomenologically constructed two-bodyuires group theoretical methods to separate radial and angu-
equations because each particle feels its proper time. Aftaar parts. Briefly, this equation leads to 16 equations and these
the Dirac equation was written, the first acceptable attempéquations can be reduced into 8 equations thanks to sym-
to write a two-body Dirac equation was made by Breit [1]. metry. However, it results in two second-order differential
This equation includes two free Dirac Hamiltonians plus anequations (coupled) or four first-order equations. This means
interaction term established by modifying the Darwin poten-that the solution of this equation for Hydrogen-like systems
tial. However, this equation works properly only in the weak could be obtained only through a perturbative way [6] and
coupling regime due to the retardation effects. That is, it canrelated precise solutions cannot be obtained. In 3+1 dimen-
not give precise results if the particles have high velocities osions, Moshinsky and Loyola used the Barut's equation to
the interaction is large range. This was a serious problem thainalyze a Dirac pair with Dirac oscillator interaction and ap-
must be overcome. To overcome that another formalism was
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plied the obtained perturbative results to estimate mass spenal uniform magnetic field, by choosing the interaction of the

tra for composite particles such as mesons and baryons [7].particles with the external field in symmetric gauge, so that
In 2+1 dimensions, relativistic quantum theory and grav-we can obtain precise solutions. Then, for the system in ques-

ity have gained interest after the seminal papers in the Refsion, we will derive the corresponding form of the covariant

[8,9] and discovery of the Banados-Teitelboim-Zanelli blacktwo-body Dirac equation and will arrive at a set of coupled

hole [10] and Graphene [11, 35]. Prior to the aforemen-equations in matrix form. Here, it is worth mentioning that

tioned discoveries, it was believed that 2+1 dimensional studehoosing this gauge allows us also to write the equations in

ies can be useful only for discussing some conceptual isthe most symmetric form. The generalized form of this equa-

sues. Graphene is a two-dimensional (2D) material exhibittion can be written as [3-5]

ing exceptionally high crystal and very high electronic qual- B

ity [11, 35]. This 2D material is formed by carbon atoms in {Hl 27"+ @ H2} U (X1, %) = 0,

a honeycomb lattice. Low energy electronic spectrum of the

graphene can be described by massless Dirac particles (elecy,, — hufwf 4 Z-M1|2} My = {7u7¢?+ Z-M2|2} :

tron and hole) called as Weyl fermions. Graphene and 2D

materials are the premier sources of the latest information on ef AL - efAl
commercial and practical applications of 2D materials. These P = 9] + i hv“ —T), Pr=0 +i ﬁv“ — T/,
materials are defined as crystalline materials consisting of

single or few-layer atoms, in which the inter-atomic interac- My = mgV My = LTV 1)
tions are much stronger than those along the stacking direc- ho’ ho’

tion. They have unique physical and chemical properties due ] _ ] . )
to their reduced dimensionality and quantum confinement efin Which f and f refer to fermion and antifermion, respec-
fects [36, 37]. These properties enable particles or quasfively, 7* are the generalized Dirac matricégare the two-
particles such as electrons, excitons and magnons to exhigimensional identity matricesl,, are the 3-vector potentials,
exotic behaviors differing from their 3D bulk counterparts ¢ Stands for the elementary electrical charge of the parti-
stemming from the quantum confinement effect. They havé&!€s. I', are the spinorial affine connections, represents
attracted tremendous research interest in recent years becali3g mass of the particley is the Fermi velocity: is the
of their potential applications in various fields, such as nanof€duced Planck constant is the bi-spinor depending on
electronics, optoelectronics, the quantum Hall effect, phas@0th the spacetime position vectoss; (x5) of the particles
space representation of Wigner functions, quantum heat ef@"d the symbolso are used to indicate the direct product.
gine and excitonic systems (see the following Refs. [38—46])!"9“9’ we are interested in a fermlon—an_tlfermmn system in a
Thus, investigations based on the dynamics of a Wey! pair ex@!obally and locally flat monolayer medium that can be rep-
posed to an external magnetic field in a monolayer mediurfesented by the line elementis® = V2dt?* — da® — dy’
can be very useful for clarifying some points. To do this, thef0r Which the spinorial affine connections do not make any
fully-covariant two-body Dirac equation can be very useful ontribution to the dynamics of the particles since they van-
to determine precise solutions. ish [14]. The generalized Dirac matrices are found through
In this paper, we consider a Weyl pair under the effect ofth€ relationy# = e’(@ﬁ“” where e(,,, are inverse tetrad
an external uniform magnetic field in a homogeneous monofields andy'®) are flat Dirac matrices that can be chosen
layer medium and try to determine the dynamics of such &y means of Pauli matrices{, o, ) in three dimensions.
pair by solving the corresponding form of the fully-covariant The flat Dirac matrices, which must be selected to provide
two-body Dirac equation. To do this, we choose the couplinghe signature{, —, —) of the given metric, can be chosen
of each particle with the external field in the symmetric gaugeds7° = 0., 7' = io, andy®> = io, wherei = /-1
which allows us to compare the result with the related rela{14]. The tetrad fields can be constructed by using the rela-
tivistic oscillators and arrive at a wave equation for such aion: g, =diag(V?,—1,—1) = eﬁf)eﬁb)n(a)(b) whereg,,, is
spinless static system. We obtain energy eigen-states besidg® contravariant metric tensaf,” are the tetrad fields and
the associated spinor components and then we discuss the iRz (5 is the flat Minkowski tenson ;) =diag(1, -1, —1).
sults in detail. The form of the obtained non-perturbative en-therepy, it is possible to chose these ﬁe|d33§g — 4V,
ergy spectrum allows us to determine the associated thermalr) _ +1 ande?

o , : gl 5~ = £1. Choosing positive signature, one
guantities and we also discuss the thermal properties by d%’an determine the inverse tetrad fieldse%§ 1 6% =1
=35, ef) =

termining free energy, total energy, entropy and specific heaégnde2 = 1 since the tetrad fields must admit the following
for the system in question. @ _ - @
orthogonality and orthonormality condnmnsé‘a)el, = of

2. Two-body Dirac equation ande;’c(;, = 5(;) wherea,b = 0.1,2 andp.v = t.z.y
[15]. Here, we consider that the particles interact only with
In this part, we will introduce the covariant two-body equa-the external uniform magnetic fieIdA(’f = 0). We can
tion and will be interested in the relative motion of a mutually choose the coupling of each particle with the external field
non-interacting fermion-antifermion pair exposed to an exterin symmetric gauge [16] (see also [13]).d¢ = —Boy;/2,
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A{; = Boxys/2, AE = —Boyz/2, AZ = Boxy/2whereBy is  of equations
the amplitude of the external magnetic field. Now, we need .
to separate the center of mass and relative motion coordinates £01(r) +203(r) — 2Broa(r) =

carefully to acquire a set of coupled equations, by means of £92(r) =0

relative motion coordinates, for such a paif (= —eF=ce 5

andm; = my = m). This requires to define first the cen- &9s(r) — =0, (r) — le(r) -

ter of mass k) and relative motions() coordinates. We can r

use the following expressions to acquire a matrix equation in E04(r) — 2Brd(r) = 0, (3)

terms of ther coordinates [17] in which the dot means derivative with respect to the

for a static spinless composite system consisting of a Weyl
(m = 0) pair exposed to an external uniform magnetic field
in a spatially flat monolayer medium if

ol = iR, ol =0, + Ry V1(r) = 1(r) + Pa(r),  D2(r) =P1(r) — Pa(r),

I3(r) = Pa(r) — 3(r), Da(r) = a(r) +P3(r),

and only if€ # 0. Thatisds(r) = 0 if one considers the
& # 0 case. This cannot appear when# 0, of course.

which Ieadsﬁf +6f = Og, . Letthe center of mass locates

at(z =0,y = O) pomt of the spatial background and does3. Landau levels for a Weyl pair

not carry momentum. This requires that the particles carry

opposite momenta with respect to each other and any pairifgere, we try to determine exact Landau levels for a static
effect may become important for this static case. The genWeyl pair under the influence of an external uniform mag-

eralized Dirac matrices in Eq1) become as/ = 0./V, netic field in a flat monolayer medium. To acquire this, we
Pyxf,f io, andny 5y — io, since they are independent from look for an analytical solution of the set of equations in Eq.

3). For this purpose, we start by considering a dimension-
the spacetime coordinates even though the temporal parts . h .
pend on the velocity’(constant). By assuming the interac- ess independent variable,~ Br? which leads = /¢/B.

tion is time-independent we can define the bi-spinor, in term&'ere. we should notice thgt~ 0if  ~> 0 andg ~ oo if
of ther coordinates, as follovisl = ¢~ #(€/Mty(r), where 7 7 provided that, 7 0. By means of the variablg,

£ is the energy of the system awdr) represents the spatial Eq. & leads to the following set of equations

part of the spinor. At last, we derive the following matrix £ I3
equation:M = 0 in which £01(6) + 4B 5193(5) —2B Eﬂ‘l(@ -
Z ; . g0 2_ 4By Sy (€)= 0
¢ P -Bx- -P_-Bx- 0 3(5)\/? 1(6) — B 1(§) =0,
M = ?+ + Bx+ & 0 ZDA— + Bx+ , B
A 0 & ~D_ +Bx_ ¢
~ ~ +
0 ¢+ — Bx+ *%4— — Bx+ (z. $ﬁ4(§) - 26\/;191(5) = Ov (4)
one of which is algebraic. In the second and third equation,
we can easily see that thg(¢) andd4(£) components can
- T va £ be expressed in terms ¢f (£). That is the first equation in
¥ = (Y1 2 P39a)”, g &+ ¢ = Ik Eqg. (@) gives a wave equation for the componént¢) and
N ’ . this wave equation can be rewritten by considering an ansatz
Dy =0, £i0y, xx=uz%1y, (2 function, v, (&) = 9(¢)/VE, as
2
and’ B = eBy/4hV. Here, one should notice that each I(€) + <_1 + $> 9(€) = 0. (5)
of the spinor components depends on the coordinate 4 16B¢
pair, as;(z,y),(j = 1,2,3,4). Thus we need, at Solution function of this equation can be expressed in terms

least, a symmetry to acquire an analytical solution of thisof the Kummer Confluent Hypergeometric function [19, 20],
matrix equation. Let us transform the system into po- LV asv(€) = C e €2 Py [{—$2+166}/161’5’] 2], ¢

lar coordinates( ¢), in terms of the transformed SpanI’ ’ T
,(/) — (,(/}1( ) i(s—1)¢ ,(/}2( ) i8¢ w?)( ) isp w4( ) z(a+1)¢)
[18], through spin £) raising (+) and spin lowering{) op-
erators P, = e'? (£L0, + 9,) [17] besidesyy = z+iy. V1 ([, [6],6) ~ I'(9) €< [1+ 0(gl Y] .
After some arrangements, one can arrive at the following set I'(e)

whereC" is a constant. For large values of the argunggrat
1F1 ([¢], [0], &) function becomes [21]
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This function is divergent whea ~» co. Here, we seek for s~
a regular solution of Eq/5) and hence we need that —n ; 1

wheren = 0,1,2... Inour case-n = (—¢& + 16B)/16B. B S A S e = —= |-
This condition guarantees the solution function becomes o~ —
well-behaved wheg ~~ oc. Through this termination, which of g | ! ‘ !
gives the quantization condition, we acquire the followingen-  S=—>3 10 15 2 % s:b -

ergy spectrum for the considered system -10f - - =7+ e A

B e B e i -

-30C ‘ ‘

gn:ﬂ@\/n 1, n=0,1,2., (6)

5 e=1 h=1, and c= 1

FIGURE 1. Dependence of the energy levels on the amplitude of
the external uniform magnetic field (see also [25]).

where/p is the magnetic lengttls = /h/eBBy [22]. Fur-

thermore, we can determine the defined spinor components

as follows 4. Thermal properties

. ¢ 4.1. Euler-Maclaurin formula
61, (&) =C Ve 2 1P ([-n),[2],€),

In this section, we calculate the different thermodynamic

£
0s (¢) = —C" 2v€e > né 1Py ([=n + 1], 3], €) variables using the standard definition of the partition func-
g\/g tion Z. Ip qrc_ier to obtain more accurate quantities, we s_hall
use the infinite sums of-contributions of the energy multi-
. 2\/5“@*% plied by the constant. Therefore, it is convenient to write
“ 75(5 =2) 151 ([-n],[2],9), the different thermodynamic variables in terms of these sums
5\/; and perform a numerical computation for each variable for a

98 certain range of the temperattife The partition function is

_ & Jee$ 1 F (- iven b
01,(6) =¢C g\/;ﬁe 1 ([l [2,) . () givenby fo ¥ o ©

here = 1/kT, k is the Boltzmann constant. Here, consid-

From [6), we see that the energy of such a static pairering only positive energies in calculating, the partition func-

depends on the Fermi velocity (~ ¢/300 [13]), reduced tion can be justified as follows: (i) The [_)irac equa‘_tion has
Planck constant), magnetic lengthfz) and overtone quan- an exac‘_[ _Foldy-Wouthu_ysen transformz_altlon and this means
tum number. Furthermore, one should notice that the con-that POsitive and negative energy solutions do not mix. (ii)

sidered system behaves like two-dimensional relativistic har/V€ @ssume that the negative energy (antiparticle) as fully oc-

monic oscillator and it does not stop oscillating even whercupied: Itis correct because all fermions are ordered by the

n = 0 (see Fig. 1). The results show that magnitude of théDauIi's principle. Now, to evaluate the partition function, we
energy levels|€, |) is large ifs < 1 and|,| increases as use the Euler-Maclaurin formula which gives the difference

B, increases for any quantum state (see Fig. 1). between an integral and a closely relgted sum. It_makes the

connection between the sum and the integral explicit for suf-
ficiently smooth functions. In the most general form, it can
be written as [26, 27]

TABLE |. Fore = 1, h = 1 andc = 1. b . b
S 1= @+ £ )+ [ fm)dn
Bo (5 n=a .
1 1 N7
bi f -1 gy _ fti-1)
: o 23 {£E=0 @) - 40 (@)}
10 0.316 ! b (L)
15 0.258 = [ B i gy g ©)
20 0.223 a/ Al
25 0.2

wherea andb are arbitrary real numbers with difference a

30 0.182 being a positive integer numbes,, andb,, are Bernoulli

Rev. Mex. Fis69061701
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Free energy, F

a)

Total energy, U

b)

Entropy, S

c)

— B=1
B=5
B=10

— B =15

Specific heat, Cv

B=20

B=30

0 5 10 15 20
d) ug

FIGURE 2. Thermal properties as a function bf 3 for different
values of the magnetic lengih: a) Free energy'. b) Total energy
U. c¢) EntropyS. d) Specific hea€,.

polynomials and numbers, respectively, dnds any posi-
tive integer. The condition we impose on the real functfon
is that it should have continuousth derivative. The sym-
bol {«} for a real number: denotes the fractional part af
Here, the remainder term (error term)

b

Ry = /Mf(k) (t) dt,

i (10)

a

is the most essential in the Euler-Maclaurin equatiot. (If)
and all its derivatives tend o asz — oo, the formula can
be simplified:

%S ©0 k
S rm =L -y 0
n=0 0

=2

(11)

. / By, ({]1'7 t}) f(k:) (t) dt.

0
The first several Bernoulli numbers are the following:

1 1 1
57 b2 - 67 b4 — _%
The odd terms in the sequence ardakcept the first ong; .
The Bernoulli polynomial$3,, can be defined by a generating

bo=1, b =-— (12)

function .
tel® - "
e :ZBH(:C)H (13)
n=0
The first few Bernoulli polynomials are:
BO (Z‘) = 17
1
B (z)=x— 3
9 1
By (z) =2 —z+ 6
. 1
Bs (z) = 2% — gaﬂ + 57 (14)

Also, more general, for a positive integer we define the
periodic Bernoullian functio3,, = B, ({x}) where{x} de-
notes the fractional part af We can see thds,, = B,,({z})

is periodic with period 1 and continuous fin1]. That means
that the fractional parts of the Bernoulli numbers are dense in
the interval[0, 1] [28]. Following this remark, and as proved
by Elliot [29], the final form of the partition function be-
comes:

(15)

In what follows, all thermodynamic properties of the system
in question, such as the free energy, the entropy, total energy

Rev. Mex. Fis69061701
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and the specific heat, can be obtained through the numerical
partition functionZ. Looking for simplicity, we will prefer  TasLE Il. Some values of the characteristic temperaffiye
to use the natural unit§i = ¢ = kg = e = 1), so that all

. . . 1078 T,
parameters can be considered as dimensionless. B(Tesla) fs(>x 1077 meten) 0
_ _ _ 1 2.56 655
4.2. Numerical results and discussions 5 114 1465
Now, we discuss and comment on our numerical results on 10 0.81 2071
the calculation of the thermal quantities obtained via the par- 15 0.67 2537
tition function. We should mention that, in all the figures, we 20 0.58 2029
have used adimensional quantities. According to the above 95 0.51 3975
considerations, we can define the thermodynamic functions ’
of interest as follows: 30 0.47 3587
_ _logZ _ 1 dlogZ (16) The obtained results are illustrated in the Fig. 2. Accord-
VBS’ VB dB ing to this Figure, the following may be observed:
and e The effect of the magnetic field is observed in all ther-
mal quantities. This dependency is inversely with the
dlog Z d*log Z .
S =logZ —2 C, = . 17 field.
og = 5 = 7 (17)

. L Entropy and specific heat curves tend to zero at low
The integral appearing ifLl) can be calculate as follows: ¢ by P

temperatures.
7 VBT 2¢7(~VE) (ﬁ\/g + 1) e Comparing with the existing studies, this remark is due
/6 dn = 2 : (18) to the adding the reminder term in the Euler-Mclaurin
0 formula which has been dropped in these studies (see

for example [30, 34]). This term has the role the avoid
the divergence in the partition function and conse-
guently all thermal quantities of our problem.

After fixed k = 4, the explicit form of the partition function
(Eq. (15)) is given by

Z (3, B) — ¢ PVB | e V2P e Now, at very high temperatures, the specific heat
’ 46080328 curves converge t@. This convergence depends in-
— 5 versely on the applied magnetic fiekl The conver-
X {92160 ( 2B + 1) + 2304085 } gence to this point is faster in the lower region of the
o—V2Bs magnetic field3 than in higher values of it.
I _ 682ﬁ4
46080328

5. Summary and results

In this manuscript, we have studied the dynamics of a Weyl
pair (mutually non-interacting) exposed to an external uni-

With the aid of the partition functio& the thermal prop-  form magnetic field in a monolayer medium. To do this, we
erties of the considered system can be found easily. Thesg,e used the fully-covariant two-body Dirac equation de-

thermodynamic functions are represented according to th_e i%ved from Quantum Electrodynamics via the action princi-

verse temperaturg and for different values of the magnetic e First of all, by choosing the interaction of the particles

field B. Thus, we have chosefi = 1,5,10,15,20,25,30.  with the external uniform magnetic field in the symmetric
The dimensionless variable = 2Vh3/ls = 2Vh/IsksT  gauge, we have written the corresponding form of this one-

can help us to define the characteristic temperafbrt80],  time two-body equation for a general fermion-antifermion
in IS(international system), with the following expression: pair. Afterwards, we have separated the center of mass mo-
2Vh tion coordinates and relative motion coordinates as is usual

0= IakpT (19)  with two-body problems. By assuming the center of mass

is at rest at the spatial origin, we have arrived at a matrix

This temperature is similar to the Debye temperature in thequation consisting of four first-order equations (coupled)
solid state [30—32]. It also depends inversely on the intensityn terms of the relative motion coordinates. We have trans-
of the magnet field. Table Il provides some values for thisformed the background into the polar space so that we can
temperature in Sl for the case of graphene. One has masslessploit the angular symmetry. Then, we have reduced the
particles moving through the honeycomb lattice with a veloc-obtained matrix equation resulting in three equations, one of
ity V = 1.1 x 10° m/s the so-called Fermi velocity [31,33]. which is algebraic, for a such a spinless composite system

+o57v2vB 58 - 2\6@5/255}.
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formed by a Weyl pair. These equations allow us to derivespecific heat for the considered composite structure via the
a wave equation in exactly soluble form. Solution functionpartition function through the obtained non-perturbative en-
of this equation can be expressed in terms of the Kummeergy expression and the partition function was derived by a
Confluent Hypergeometric function. Accordingly we have method based on the Euler-Maclaurin formula. As a conse-
obtained the energy spectrum (see E@)) (n closed-form  quence, we observe that

besides the defined spinor components (see [B)). Equa- , .

tion (6) has shown that energy of such a pair depends on the ® The third law of thermodynamics of entropy and spe-
Fermi velocity ), magnitude of the elementary electrical cific heat

charge ¢), amplitude of the external uniform magnetic field
(By) besides the reduced Planck constar®ur results have
shown that such a static pair behaves as two-dimensional har-
monic oscillator (this can be seen by takifg = whic/2e,
where thew is the oscillator frequency [23]) and it does not ¢ These thermal properties depend inversely with the
stop oscillating even when the system reaches the ground  magnetic field.

state ff = 0). The obtained energy() spectrum can be

lim Cy =0, lim S =0,
T—0 T—0

is well fulfilled.

expressed in terms of the magnetic lendih= /%/eB, as e In higher temperatures, all the curves of specific heat
&, = £hV/lz\/4(n+1) and|&,| can be very large when tend towards 2. When the magnetic field increases, this
/s < 1 whethern = 0 or not. Such a system may appear convergence goes towards this limit very slowly.

in a monolayer graphene sheet under the effect of an external

uniform magnetic field. Landau levels for a Weyl particle in Funding

a monolayer medium was obtainedias = +hV/{z\/2|n’|

where|n'| = 0,1,2.. [13](see also [24]). Our results, in There is no funding regarding this research.
principle, seem to be as an excited state of the related one-

body state and, at first look, we cannot see any imprint t@ata Availability Statement

distinguish these modes from each other. Thus, some obser-

vations based on Landau levels for a single-layer graphenl0 Data associated in the manuscript.

may include two-body effects (see [25]), at least similar to

the one studied here. Finally, we have calculated all the thet€onflict of Interest Statement

mal quantities such as free energy, total energy, entropy and ) )
No conflict of interest has been declared by the authors.
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