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Shannon entropy along hydrogen isoelectronic sequence using numerov method
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Shannon entropy (SE) for hydrogen isoelectronic sequence is calculated through numerical simulation. Fast and accurate Numerov method
is applied for the computation of the wavefunctions used for the evaluation of Shannon entropy. The reliability of this approach is verified
by the excellent comparison with the available literature results. It is observed that Shannon entropy values diminish with an increment in
atomic number (Z). Additionally, previously unexplored Shannon entropy behaviour for a variety of higher excited orbitals is investigated.
It is found that Shannon entropy exhibits an interesting behavior of increasing and decreasing nature with principal quantum numbern and
orbital quantum numberl, respectively. Benchmark values for Shannon information entropy are established for the ground and excited states
as a signature of localization and delocalization of electron density. This will further contribute to the diagnostics of spectroscopic data and
atomic system complexity.
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1. Introduction

Information concepts have been applied to the investigation
of diverse physical phenomena for many years now. The con-
cept of Shannon information entropy is fundamental, being at
the heart of spectroscopic studies. The foundation of mathe-
matical theory of communication or information theory was
established by Shannon in 1948 [1]. Shannon’s work focuses
on the basic notion, that is, entropy of information, which is
widely known as the Shannon entropy (SE). From the per-
spective of classical quantum theory, Shannon entropy is a
primary quantity which measures the average quantity of in-
formation enclosed in a probabilistic message distributed dis-
tinctly. It was originally associated with the complexity of a
transmitted message. Shannon entropy signifies uncertainty,
prior to measurement, and an information quantity, post mea-
surement, in a probability distribution [2]. Besides Shannon
entropy of probability distribution being a vital cornerstone
of the traditional classical communication and computation,
its relevance to new fields such as, atomic, molecular and
nuclear spectroscopy, applied mathematics, medical science,
chemistry, including quantum systems is aggressively under
study [3-9]. In recent years, several interesting applications
of Shannon entropy have been introduced. Shannon entropy
is applied to characterize the high power laser systems, as-
sess and quantify information in spatially structured optical
laser beams and to present the automatic recognition of peak
and baseline regions in large sets of spectra [10-12]. The
relation between the degree of polarization of a speckle pat-

tern and Shannon entropy is theoretically and experimentally
investigated by Roy [13]. Lee and Jung [14] investigated
the influence of plasma shielding on Shannon entropic val-
ues of atomic states and used Shannon entropy as a pow-
erful tool in plasma spectroscopy. The range of applicabil-
ity has been extensively extended to atomic, molecular and
nuclear spectroscopy including study of different properties
like ionization potential, global delocalization, molecular ge-
ometric parameters, reaction paths and highly excited states
of single particle systems [15-19]. Filho [20] used hydrogen
atom as a basis to demonstrate the use of Shannon entropy
in a paraconsistent model for modeling quantum systems.
Entropy minimisation approach is applied to remove spec-
ularities from imaging spectroscopy data [21]. This list just
scratches the surface and is continuously expanding as infor-
mation entropy provides a deeper insight into complexity of
quantum systems [22-26]. The study of hydrogen atom is one
of the main driving forces in the development of quantum
mechanics with the first step by Ernest Rutherford in 1911.
Atomic hydrogen and hydrogen like ions form the most ele-
mentary systems in atomic physics and are found in different
types of plasmas [27-29]. The resonance lines in hydrogen-
like chromium are observed in Tokamak fusion test reactor
plasma [30]. High resolution spectra of hydrogen-like tita-
nium are observed in Tokamak discharges using high resolu-
tion spectrometer. In addition to the1s 2S1/2 - 2p 2P o

1/2,3/2

resonance transitions, hydrogen-like ions show a series of di-
electronic satellite spectra [31]. The satellite spectra of these
hydrogen-like ions are important for diagnosis of hot plas-
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mas. Spectral lines of hydrogenic ions are among the most
distinct features in X-ray spectroscopy from a wide range
of astrophysical sources [32]. Bautistaet al. [33] studied
free hydrogen isoelectronic sequence, particularly hydrogen-
like oxygen and neon, which are observed in ASCA spec-
tra of low-mass X ray binaries (LMXBs). Consistent and
systematic research on such quantum systems emphasizes
their importance in the study of atomic processes including
metrology [34-35]. Medium atomic number hydrogen-like
ions are the perfect testing grounds for quantum electrody-
namics (QED) contributions to the energy levels [36]. One
electron systems, hydrogen and hydrogen isoelectronic se-
quence, have the simplest atomic structure enabling transi-
tion frequencies to be computed in terms of Rydberg constant
with accuracy approaching or exceeding the measurement of
uncertainty [37]. Currently, hydrogen is extensively studied
as it can play a pivotal role in global energy solution due to
its characteristic features to provide a clean, safe and reliable
source of energy, low production cost, and most importantly,
hydrogen being most widely available as 93% of the existing
molecules have hydrogen in their composition. It is expected
to gain momentum following post pandemic (Covid-19) en-
ergy policies to accelerate energy transition in different coun-
tries [38].

The idea of isoelectronic sequence plays an important
role in atomic physics, fundamental spectroscopic studies
as well as in various engineering branches, through which
the atomic structure can be studied systematically along with
atomic numberZ under the condition of identical number of
electrons. Shannon entropy was used as a tool to obtain the
ground and excited states in the configuration space of nickel
isoelectronic sequence [39]. With the fusion of information
theory and chemistry, many concepts such as orbital free den-
sity functional theory, electron correlations, de-coherence,
configuration interaction, chemical reactivity, entanglement
in artificial atoms, atomicity, characterization of chemical
processes and localization properties of Rydberg states of
atoms can be elucidated by applying Shannon entropy model
to isoelectronic series [40-42]. Hydrogen-like ions are ide-
ally suited to study the important mechanism of direct ion-
ization further contributing to the understanding of atomic
processes [43]. Information entropies are a hidden treasure
and are effectively employed to explore the atomic proper-
ties along the hydrogen isoelectronic sequence [44]. Gadre
et al. [45] computed Shannon entropy for the ground and
excited states of free hydrogen atom. The role of Shannon
entropy as an indicator of atomic avoided crossings, the most
distinctive atomic spectroscopic feature, is studied based on
the dynamics of some excited states of hydrogen in strong
parallel electric and magnetic fields [46]. Kumar and Kumar
[47] evaluated the information entropy of hydrogen atom us-
ing the isospectral Hamiltonian approach. Further, Heet al.
[48] employed Shannon entropy as a competent parameter for
characterization and prediction of avoided crossings of Ryd-
berg potassium atoms in a static electric field and calculated
Shannon entropy for field-free hydrogen atom. Mukherjee

and Roy [49] presented information entropic measurements
for free and confined hydrogen atom. Astronomical data of
atomic Shannon entropy for the ground and excited states of
hydrogen atom in astrophysical Lorentzian plasmas are ob-
tained and the non-thermal effects on variation in Shannon
entropy is investigated by Lee and Jung [50]. There have
been multiple attempts in literature to portray correlation and
relativistic effects in terms of Shannon information entropy
from the perspective of differences in electron density due
to these effects [51-54]. In this direction, Martı́nez-Śanchez
et al. [55] judged Shannon entropy to be a useful indicator
of localization and delocalization of electron density of the
ground state as well as excited states of hydrogen atom.

The primary objective of this work is to calculate Shan-
non entropy with numerical simulation to obtain the exact
wave functions for free hydrogen atom (FHA) and hydrogen
isoelectronic sequence for atomic numberZ ≤ 30. Shan-
non entropy is presented for all acceptablel’s corresponding
to a givenn (n = 1 − 10), keepingm = 0; wheren, l, m,
are principal, orbital and magnetic quantum numbers, respec-
tively. Global behavior of Shannon entropy is analyzed and
three conjectures are evaluated, (i) the behavioral pattern of
Shannon entropy with respect to atomic numberZ (ii) depen-
dence of Shannon entropy on principal quantum numbern for
a fixed orbital quantum numberl (iii) dependence of Shannon
entropy on orbital quantum numberl for a fixed principal
quantum numbern. In the past few years, appreciable en-
tropy computations have been done for free hydrogen atom.
However, it is worth mentioning here that most of the inves-
tigations performed in the past are restricted to the ground
state and the lower excited states of hydrogen atom while not
much attention has been paid to the entropic measurements
of the excited states of hydrogen isoelectronic sequence for
low to medium atomic numberZ. The present work bridges
this gap in the database and provides benchmark values for
Shannon information entropies.

2. Method

Starting with the non-relativistic Hamiltonian for the hydro-
genic atom:
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Solution of the time independent Schrödinger equation

HΨ(r, θ, φ) = En,lΨ(r, θ, φ), (5)

are

Ψ(r, θ, φ) = Rn,l(r)Yl,m(θ, φ), (6)

whereYl,m(θ, φ) are the standard spherical harmonics. The
operatorL2 acts only on the angular variables and we get

[
−1

2

[
1
r2
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∂r
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r2 ∂
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− l(l+1)

r2

]

−Z

r

]
Rn,l(r)=En,lRn,l(r). (7)

On substitutingun,l(r) = r Rn,l(r) , the radial equation be-
comes

[
− 1

2
d2

dr2
+

l(l + 1)
2r2

− Z

r

]
un,l(r) = En,l un,l(r). (8)

Solution of Eq. (8) gives the stationary state energies and
wave functions.

For the present calculations, Numerov method is adopted
to solve the radial part of the Schrödinger equation. The
method was developed by Russian astronomer Boris Vasi-
lyevich Numerov [56-57] and is generally applied to solve
ordinary differential equations of second order without the
first order differential term. The radial equation for central
potentials can be converted into such equation by minor sub-
stitutions (as in the present case Eq. (8) is obtained by substi-
tutingun.l(r) = rRn,l(r)) . Therefore, the Numerov method
can be used for the solution of one-dimensional Schrödinger
equation or radial Schrödinger equation in three dimensions
as the first order term gets eliminated from it [58]. In the
present calculations, Numerov method [59] starts with a dif-
ferential equation of the form

d2y

dx2
= P (x) + Q(x)y. (9)

The centered difference technique is applied to get;

yn+1 − 2yn + yn−1

≈ 2
(

h2

2
d2y

dx2
+

h4

4!
d4y

dx4
+ O(h6)

)
, (10)

with yn = y(xn) gives the Numerov expression:

yn+1=
2yn−yn−1 + h2(Pn+1+10Fn−Fn−1)

12

1−Qn+1h2

12

+O(h6), (11)

whereFn = P (xn) + Q(xn)yn andh is the spatial grid step
in Numerov Method. The method results in very accurate
values of energies and wave functions as the error achieved
is of O(h6). The computational effort is also reduced as it

is needed to calculate the functions P and Q only once in ev-
ery step while the traditional Runge Kutta method requires
these functions to be calculated six times in each step. In our
case we can apply Numerov method described above to solve
Eq. (8).

A singularity at r = 0 is encountered while solving
Schr̈odinger’s equation. To solve this issue, one might em-
ploy the variable step grid rather than the constant step grid.
For this purpose a logarithmic grid is employed in the present
work. A new variable,t is introduced, so that the grid is
equally spaced in terms oft. Heret = log(Zr) and

∆t =
∆r

r
= h in Eq. (10), (12)

with tmin = −8 which givesZrmin = 0.0034. As tmin be-
comes more and more negative,rmin becomes smaller and
smaller but does not attain the value zero. The number of
points in the grid is given by:

N =
log(Zrmax)− tmin

∆t
. (13)

The first step in calculating the energy eigenvalue is to take an
initial energy range in which the energy eigenvalue lies. The
energy eigenvalue is assumed to be at the midpoint of this
energy range. The wave function fromr = 0 to the positive
side is integrated, and the nodes are counted. The energy is
too high and the lower half of the energy range is chosen for
the following iteration if the number of nodes is greater than
the principal quantum numbern, otherwise the upper half is
chosen. In each repetition, the energy interval is cut into half
in this way. So, after a few iterations, the energy eigenvalue
is obtained as accurate as desired. The first approximation to
the energy value should be greater than the potential function
value at the first grid point.This algorithm can be visualized
as follows:

After obtaining the energy eigenvalues and wavefunc-
tions using Numerov method, the probability density and
Shannon entropy is calculated as:

Sr = −
∫

ρ(r,Ω) ln(ρ(r,Ω))dr3, (14)
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TABLE I. Shannon entropy for hydrogen atom for orbitals with the principal quantum numbern ranging from 1-10 and orbital quantum
numberl ranging from (n− 1)−0 as compared with Mukherjee and Roy [49]. We also present percent deviation between the current results
and Mukherjee and Roy [49].

n l Mukherjee and Roy [49] Present results Percent Deviation

1 0 4.1447298858 4.14472988 1.40× 10−7

2 1 7.2648971185 7.26489710 2.54× 10−7

2 0 8.110929364 8.11092930 7.90× 10−7

3 2 9.3456342021 9.34563418 2.36× 10−7

3 1 9.805847064 9.80584650 5.75× 10−6

3 0 10.42648123 10.42648180 5.47× 10−6

4 3 10.8608551995 10.86085518 1.80× 10−7

4 2 11.2621041941 11.26210457 3.34× 10−6

4 1 11.533867248 11.53386532 1.67× 10−5

4 0 12.074907679 12.07490903 1.12× 10−5

10 9 15.7888444089 15.78884437 2.46× 10−7

10 8 16.1121461768 16.11215058 2.73× 10−5

10 7 16.3107700381 16.31077913 5.57× 10−5

10 6 16.4572511655 16.45726330 7.37× 10−5

10 5 16.5730314451 16.57305427 1.38× 10−4

10 4 16.6677376254 16.66771446 1.39× 10−4

10 3 16.7475932108 16.74762694 2.01× 10−4

10 2 16.8206447121 16.82066183 1.02× 10−4

10 1 16.914539415 16.91455534 9.41× 10−5

10 0 17.365242257 17.36524825 3.47× 10−5

where

ρ(r,Ω) = |Rnl(r)Ylm(Ω)|2, (15)

whereRnl(r) andYlm(Ω) being the radial and angular parts
of the wavefunctions. Shannon EntropySr can also be writ-
ten as the sum of radial and angular parts given by:

Sr = S(Rnl) + S(Ylm), (16)

where

S(Rnl) = −
∫
|Rnl|2 ln(|Rnl|2)r2dr, (17)

and

S(Ylm) = −
∫
|Ylm)|2 ln(|Ylm)|2)dΩ. (18)

3. Results and discussion

Results are reported for the calculation of Shannon entropy
of the ground state and the excited statesn ≤ 20; l ≤ 9,
m = 0 (n, l, m, are principal, orbital and magnetic quantum
numbers, respectively) of free hydrogen atom and hydrogen
isoelectronic sequence for all elements in the first and sec-
ond row of the periodic table along with three specific ions

with atomic numberZ = 15, 20, 25; namely, hydrogen-like
phosphorus, calcium and manganese. For the present calcu-
lations, the position space is descretized into a logarithmic
grid with ∆t = 0.01, tmin = − 8 andrmax = 100 − 500,
suitably selected to ensure proper convergence of the results
up to minimum eight decimal places.

To test the accuracy of the present method, the computed
Shannon entropy results for field-free hydrogen atom are
compared with a few selected orbitals already available in
literature. In Table I comparison is made with the calculated
values of Mukherjee and Roy [49]. As is evident from the
percentage deviation displayed in Table I, the present results
are in very good agreement with the other calculated val-
ues although the method used in these calculations is quite
different from that used by Mukherjee and Roy. They have
expressed the wave functions in terms of Gegenbauer poly-
nomials, while in the present work we have used the fast and
efficient Numerov method. This excellent comparison gives
credence to the accuracy of the applied method to yield re-
liable results. Further, calculations are performed to predict
new data for several states of free hydrogen atom and hydro-
gen isoelectronic sequence corresponding to atomic number
Z ≤ 30. Tables II-IV report detailed values of Shannon en-
tropy (SE) and explore all thel states (l = n−1 to l = 0) cor-
responding to each value ofn (n = 1− 5) for free hydrogen
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atom and hydrogen-like systems with atomic numberZ span-
ning 1-25. It is seen that Shannon entropy (SE) is the lowest
for 1s (nl: n = 1, l = 0) orbital for all the atomic systems
under study. This is consistent with the fundamental notion
that the ground state corresponds to the most compact distri-
bution. Tables II-IV display the trend fornl states (l = 0, s;
l = 1, p; l = 2, d; l = 3, f ; l = 4, g): SE(1s) (4.14472988)
< SE(2p) (7.26489710) < SE(2s)(8.11092930) <

SE(3d) (9.34563418)< SE(3p) (9.80584650)< SE(3s)
(10.42648180) < SE(4f ) (10.86085518) < SE(4d)
(11.26210457) < SE(4p) (11.53386532) < SE(5g)
(12.04980084) < SE(4s) (12.07490903) < SE(5f )
(12.42371304) < SE(5d) (12.65962026) < SE(5p)
(12.85433726)< SE(5s) (13.35756972) for free hydrogen
atom. Similar to free hydrogen atom, hydrogen isoelectronic
sequence with atomic numberZ ≤ 25 also portrays analo-

TABLE II. Shannon entropy for hydrogen isoelectronic sequence with atomic numberZ ranging from 1-5, for orbitals with the principal
quantum numbern ranging from 1-5 and orbital quantum numberl ranging from(n− 1)− 0.

n l Z = 1 Z = 2 Z = 3 Z = 4 Z = 5

1 0 4.14472988 2.06528834 0.84889302 -0.01415319 -0.68358384

2 1 7.26489710 5.18545556 3.96906024 3.10601403 2.43658337

2 0 8.11092930 6.03148776 4.81509244 3.95204622 3.28261557

3 2 9.34563418 7.26619264 6.04979732 5.18675111 4.51732045

3 1 9.80584650 7.72640496 6.51000964 5.64696343 4.97753277

3 0 10.42648180 8.34704026 7.13064494 6.26759872 5.59816807

4 3 10.86085518 8.78141364 7.56501831 6.70197210 6.03254145

4 2 11.26210457 9.18266303 7.96626771 7.10322149 6.43379084

4 1 11.53386532 9.45442378 8.23802845 7.37498224 6.70555159

4 0 12.07490903 9.99546749 8.77907217 7.91602595 7.24659530

5 4 12.04980084 9.97035929 8.75396397 7.89091776 7.22148711

5 3 12.42371304 10.34427151 9.12787618 8.26482996 7.59539931

5 2 12.65962026 10.58017872 9.36378339 8.50073718 7.83130652

5 1 12.85433726 10.77489572 9.55850040 8.69545418 8.02602353

5 0 13.35756972 11.27812819 10.06173287 9.19868665 8.52925599

TABLE III. Shannon entropy for hydrogen isoelectronic sequence with atomic numberZ ranging from 6-10, for orbitals with the principal
quantum numbern ranging from 1-5 and orbital quantum numberl ranging from(n− 1)− 0.

n l Z = 6 Z = 7 Z = 8 Z = 9 Z = 10

1 0 -1.23054851 -1.69300055 -2.09359473 -2.44694383 -2.76302538

2 1 1.88961871 1.42716667 1.02657249 0.67322338 0.35714184

2 0 2.73565090 2.27319886 1.87260468 1.51925558 1.20317403

3 2 3.97035578 3.50790374 3.10730957 2.75396046 2.43787892

3 1 4.43056810 3.96811607 3.56752189 3.21417278 2.89809124

3 0 5.05120340 4.58875136 4.18815719 3.83480808 3.51872653

4 3 5.48557678 5.02312474 4.62253056 4.26918145 3.95309991

4 2 5.88682617 5.42437413 5.02377995 4.67043085 4.35434930

4 1 6.15858692 5.69613488 5.29554070 4.94219160 4.62611005

4 0 6.69963063 6.23717859 5.83658442 5.48323531 5.16715376

5 4 6.67452244 6.21207040 5.81147622 5.45812711 5.14204557

5 3 7.04843464 6.58598260 6.18538843 5.83203932 5.51595777

5 2 7.28434186 6.82188982 6.42129564 6.06794653 5.75186499

5 1 7.47905886 7.01660682 6.61601265 6.26266354 5.94658199

5 0 7.98229132 7.51983928 7.11924511 6.76589600 6.44981446
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TABLE IV. Shannon entropy for hydrogen isoelectronic sequence with atomic numberZ = 15, 20 and 25, for orbitals with the principal
quantum numbern ranging from 1-5 and orbital quantum numberl ranging from(n− 1)− 0.

n l Z = 15 Z = 20 Z = 25

1 0 -3.97942070 -4.84246692 -5.51189757

2 1 -0.85925348 -1.72229969 -2.39173034

2 0 -0.01322128 -0.87626750 -1.54569815

3 2 1.22148359 0.35843738 -0.31099327

3 1 1.68169591 0.81864970 0.14921905

3 0 2.30233121 1.43928500 0.76985434

4 3 2.73670459 1.87365837 1.20422772

4 2 3.13795398 2.27490776 1.60547711

4 1 3.40971473 2.54666851 1.87723786

4 0 3.95075844 3.08771223 2.41828157

5 4 3.92565025 3.06260403 2.39317338

5 3 4.29956245 3.43651624 2.76708558

5 2 4.53546967 3.67242345 3.00299280

5 1 4.73018667 3.86714046 3.19770980

5 0 5.23341913 4.37037292 3.7009422

gous trend as shown above. Shannon entropy goes up steadily
with the principal quantum numbern when the orbital quan-
tum numberl stays the same, but it goes down with the or-
bital quantum numberl when the principal quantum number
n stays the same, as also indicated in the Figs. 4 and 5 later. It
displays the order of localization of electron density of differ-
ent orbitals in free hydrogen atom and the hydrogen isoelec-
tronic sequence under study. It is notable that information
entropy values for hydrogen-like ions are systematically pre-
sented for the first time and will provide useful information
in the study of free one-electron atomic systems in future.

Further, the systematic variation of Shannon entropy with
respect to atomic numberZ and the global dependence of
Shannon entropy onn and l, principal and orbital quantum
number respectively, is analyzed. Figures 1-3 plot this varia-

FIGURE 1. Variation of Shannon entropy with atomic numberZ
for hydrogen isolelectronic sequence for the first fivenl atomic
states corresponding ton principal quantum number with fixedl
orbital quantum number equal to 0, namely s states (1s− 5s).

FIGURE 2. Variation of Shannon entropy with atomic numberZ
for hydrogen isolelectronic sequence for the first fivenl atomic
states corresponding ton principal quantum number with fixedl
orbital quantum number equal to 1, namely p states (2p− 6p).

tion of Shannon entropy with the atomic numberZ (Z ≤ 30)
for various atomic orbitals. The first five atomic states with
l = 0, 1 and 2 are shown in Fig. 1, 2 and 3 respectively. The
shift in Shannon entropy with respect to atomic numberZ in
hydrogen isoelectronic sequence is noted. The electron den-
sity is localized or confined for high values of atomic number.

It is observed that the Shannon entropy decreases with
increase in atomic number. This trend is observed for the
ground as well as the excited states of hydrogenic sequence
under study. Figures 1-3 also illustrate that entropy enhances
with the principal quantum numbern. As one moves along
the hydrogen isoelectronic sequence, Shannon entropy de-
creases as localization increases. This study corroborates the
concept that position entropy indicates that the position of the
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FIGURE 3. Variation of Shannon entropy with atomic numberZ
for hydrogen isolelectronic sequence for the first fivenl atomic
states corresponding ton principal quantum number with fixedl
orbital quantum number equal to 2, namelyd states (3d− 7d).

FIGURE 4. Variation of Shannon entropy withn principal quan-
tum number for hydrogen isoelectronic sequence for atomic states
corresponding to fixedl orbital quantum number equal to 0 and for
atomic numberZ = 1− 5.

particle is ambiguous. These observations are further reit-
erated in Fig. 4 and Fig. 5. In Fig. 4, variation in Shan-
non entropy is noted for a fixed orbital quantum number
l = 0 in various excited states with principal quantum num-
bern = 1− 20, for atomic numberZ = 1− 5. It is inferred
from Fig. 4 that each hydrogenic ion exhibits a rapid rise in
entropy for smaller values of principal quantum numbern
(say,n ≤ 15) and at a slower rate for larger principal quan-
tum numbern. This is in conformity with that as principal
quantum numbern rises, the radial orbitals get extended in
space. Figure 5 portrays the variation in Shannon entropy
with all l states corresponding ton = 10 states for hydrogen
isoelectronic sequence with atomic numberZ = 1− 5. It is

FIGURE 5. Variation of Shannon entropy withl orbital quantum
number for hydrogen isoelectronic sequence for atomic states cor-
responding to fixedn principal quantum number equal to 10 and
for atomic numberZ = 1− 5.

observed that the position entropy globally decreases with or-
bital quantum numberl for a fixed principal quantum number
n (in this casen = 10).

Figure 4 exhibits the variation of Shannon entropy with
principal quantum numbern (n = 1− 20) for a fixed orbital
quantum numberl = 0 while Fig. 5 shows the variation of
Shannon entropy with orbital quantum numberl (l = 0 − 9)
for a fixed principal quantum numbern = 10, correspond-
ing to free hydrogen atom and hydrogen isoelectronic se-
quence along hydrogen-like helium to hydrogen-like boron
with atomic numberZ = 1 − 5. The increase or decrease
in the Shannon entropy is a reflection of the extension or
contraction of the density distribution corresponding to the
expansion or localization of the wave function. At orbital
quantum numberl = 0 the density distribution is flat, so the
Shannon entropy is large. For the same value of principal
quantum number n, as orbital quantum numberl increases
the electron gets more localized and the density distribution
gets concentrated so the Shannon entropy diminishes.

These results affirm the interpretation that Shannon en-
tropy ascertains density distribution and marks a measure of
uncertainty in the spatial location of the particle. A more
localized distribution is characterized by a smaller value of
Shannon entropy while a spread in density distribution cor-
responds to an increment in Shannon entropy. These calcu-
lations of Shannon information entropies in atomic systems
could assist spectroscopists in a deeper understanding of the
spread of electron density, diffusion of atomic orbitals, peri-
odic properties and correlation energy [60-61]. To the best
of our knowledge, the data has not been presented earlier and
can be used by other authors for performing further calcula-
tions of different parameters of these ions.

Rev. Mex. Fis.69060401



8 R. JOSHI, N. VERMA, AND M. MOHAN

4. Conclusions

In conclusion, elaborate calculations of Shannon entropy are
presented for free hydrogen atom and extended to hydrogen
isoelectronic sequence with atomic numberZ ≤ 30 for the
ground state and the excited statesn ≤ 20 corresponding
to both zerol states (s states) and non-zerol states (p −m),
namely1s−10m (n, l are principal and orbital quantum num-
ber, respectively) using the competent Numerov method. The
computed results are in excellent agreement with the avail-
able results in literature. New entropic values are reported
for higher excited states of hydrogen-like ions which will be
useful for future referencing and stimulate further research
in this direction to study the diffused nature of orbitals. In
addition, variation of Shannon entropy with atomic number
Z and the state of excitation is analyzed for the systems un-
der study. A thorough examination suggests that for any ar-
bitrary nl state an increase in atomic numberZ stimulates
localization. Consequently, as one moves to heavier atoms
the electron density gets more compact. In addition to the
above mentioned behavior of entropy with atomic number
Z, a global decrease and monotonic increase in Shannon en-
tropy is observed on fixing principal quantum numbern and
changing orbital quantum numberl and vice versa. These
observations reinforce the beauty in the pattern of periodic
trends in chemistry for ionization energy, electronegativity,
ionic radius, electron affinity, etc. of atomic systems. The
present computations of Shannon information entropies can

be potentially applied by spectroscopists to analyze the quan-
tum chaotic systems to designate the extent of localization
and complexity of an electron cloud based on one-electron
orbitals or density distribution. It is hoped that the study will
reveal a deeper knowledge of density functionals and distinct
spectroscopic phenomena to investigate the structure and dy-
namics of atomic systems and will help in a better interpreta-
tion, diagnostics and understanding of spectroscopic data.
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