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The (3+1)-dimensional new negative-order-KdV-CBS model is investigated in this study. The suggested model combines the Korteweg-de
Vries (KdV) and Calogero-Bogoyavlenskii-Schiff (CBS) equations. This research provides multiple soliton solutions and traveling wave
solutions for the KdV-CBS model. Multiple exp-function methods have been used for extracting soliton solutions. For this aim, the extended
sinh-Gordon equation expansion approach was selected to get traveling wave solutions. The findings are graphically examined by selecting
appropriate values for arbitrary parameters.
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1. Introduction

Nonlinear partial differential equations can mathematically
reflect a number of complicated processes in applied sci-
ences and different fields of engineering, namely fluid dy-
namics, optics, plasma physics, elastic media, quantum field
theory and optical fiber communication. These exact solu-
tions are crucial for understanding various dynamical pro-
cesses and real-world occurrences in a variety of scientific
fields. For this reason, these days this area is becoming in-
creasingly popular. Numerous techniques have been devel-
oped in the current context to locate these equations’ analyt-
ical solutions, including the modified simple equation tech-
nique [1], Hirota bilinear method [2], the extended unified
method [3], extended transformed rational function proce-
dure [4], the generalized projective Riccati equations proce-
dure [5], auto-B̈acklund transformations [6], Lie-B̈acklund
symmetries [7], auxiliary equation method [8], Nuccis re-
duction approach [9], the generalized Kudryashov technique
[10, 11], and so on. In this work, a (3+1)-dimensional new
negative-order-KdV-CBS model [13] is taken as

pxt + pxxxy + 4pxpxy + 2pxxpy

+ λpxx + µpxy + vpxz = 0, (1)

whereµ, λ, andv are constants. Eq. (1) is the result of com-
bining the KdV equation with the Calogero-Bogoyavlenskii-
Schiff (CBS) equation. Forv = 0 and µ = 0, Eq. (1)
becomes the negative-order KdV equation. Forλ = 0 and
v = 0 Eq. (1) becomes the negative-order CBS equation.

The considered equation is studied in this paper via two
efficient analytical techniques: Multiple exp-function pro-
cedure [12, 13] and extended sinh-Gordon equation expan-
sion procedure. The detailed description of the proposed
approaches is given in Sec. 2. Section 3 is devoted to pro-
vide one, two and three soliton solutions of the proposed
equation using multiple exp-function method. Section 4 con-
structs new traveling wave solutions using the expanded sinh-
Gordon equation expansion (shGEE) approach. By choosing
specific values of random parameters, the found results are
also introduced graphically. Section 5 provides some final
notes at the end of the work.

2. Proposed analytical techniques

The algorithm of suggested analytical techniques is given in
the following subsections.
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2.1. Review of multiple exp-function method

Take into consideration the following PDE

A(t, x, y, z, pt, px, py, pz...) = 0. (2)

This method is valid for both higher order PDEs and for sys-
tem of PDEs. The algorithm of this method is based on four
steps.
Step 1: In step 1, the following auxiliary equations are de-
fined as

γi,t = Ωiγi, andγi,x = Kiγi, (3)

whereΩi, Ki, 1 ≤ i ≤ n, respectively denotes the angular
frequency and wave number. The exponential solutions for
Eq. (3) are obtained as

γi = Cie
Kix−Ωit, (4)

whereCi, 1 ≤ i ≤ n are arbitrary constants.
Step 2: In step 2, the original PDE is transformed into a
new PDE by assuming a rational function solution involving
γi, 1 ≤ i ≤ n, that has the following form

p(x, t) =
P (γ1, γ2, ..., γn)
Q(γ1, γ2, ..., γn)

, (5)

P =
a∑

b,c=1

A∑

d,e=0

eab,deγ
d
aγe

b ,

Q =
a∑

b,c=1

A∑

d,e=0

fab,deγ
d
aγe

b , (6)

whereeab,de and fab,de are the unknowns to be evaluated.
Putting Eq. (5) into Eq. (2), this leads to new rational func-
tion equation inγi, 1 ≤ i ≤ n as

W (x, t, γ1, γ2, ..., γn) = 0. (7)

Step 3: By equalizing the coefficients of various powers of
γi, an algebraic equation system is retrieved in the unknown
eab,de andfab,de, Ki andΩi. Upon solving the obtained sys-
tem, we are able to determine polynomialsP , Q and γi,
1 ≤ i ≤ n. Finally, multiple soliton solutionsp(x, t) of the
given PDE are obtained with the following form

p(x, t)

=
P (C1e

K1x−Ω1t, C2e
K2x−Ω2t, ..., CneKnx−Ωnt

Q(C1eK1x−Ω1t, C2eK2x−Ω2t, ..., CneKnx−Ωnt
. (8)

2.2. Review of the extended sinh-Gordon equation ex-
pansion technique

Take into consideration the PDE as given in Eq. (2). The
following expression

p(x, t) = h(ζ), ζ = βx + εy − νt, (9)

is used for transforming Eq. (2) into an ODE as

F (h, h′, h′′, ...) = 0, (10)

where ordinary derivatives with respect toζ are indicated by
“ ′ ”. F is a polynomial ofh and its derivatives. Examine the
formal solutions of Eq. (10) as follows:

h(ω) =
n∑

i=1

coshi−1(ω)

× [bi sinh(ω) + ai cosh(ω)]i + a0, (11)

whereω(ζ) satisfies [14].

ω′ =
√

c + d sinh2(ω). (12)

The following cases arise after substituting different values
of parametersc andd in Eq. (12).
Case 1: Simplified version of sinh-Gordon equation is ob-
tained after takingc = 0 andd = 1 in Eq. (12)

ω′ = sinh(ω). (13)

Equation (13) [14] possesses the following solutions

sinh(ω) = ±ιsech(ζ), cosh(ω) = ± tanh(ζ), (14)

and

sinh(ω) = ±csch(ζ), cosh(ω) = ± coth(ζ), (15)

whereι =
√−1.

The solutions of Eq. (11) along with Eq. (13), have the
following forms

h(ζ) =
n∑

i=1

(− tanh(ζ))i−1

× [±ιbi sec h(ζ)± ai tanh(ζ)]i + a0 (16)

and

h(ζ) =
n∑

i=1

(− coth(ζ))i−1

× [±bi csc h(ζ)± ai coth(ζ)]i + a0. (17)

Case 2: After takingc = 1 andd = 1, Eq. (12) becomes

ω′ = cosh(ω). (18)

The sinh-Gordon equation has a compressed form as well.
Eq. (18) possesses the following solutions

sinh(ω) = tan(ζ), cosh(ω) = ± sec(ζ), (19)

sinh(ω) = − cot(ζ), cosh(ω) = ± csc(ζ). (20)
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The solutions of Eq. (11) along with Eq. (18), have the fol-
lowing forms

h(ζ) =
n∑

i=1

(± sec(ζ))i−1

× [bi tan(ζ)±ai sec(ζ)]i + a0, (21)

h(ζ) =
n∑

i=1

(± csc(ζ))i−1

× [−bi cot(ζ)±ai csc(ζ)]i + a0. (22)

The balancing numbern is calculated by making balance
between the highest order nonlinear term and highest or-
der derivative term. A nonlinear algebraic system is deter-
mined by surrogating the value ofn in Eq. (11) and using it
along with Eq. (12). Then by collecting the coefficients of
sinh(w)j cosh(w)i, (i = 0, 1, 2, ... , j = 0, 1), equal to zero
and solving the given system the values ofai, bi, ν, ε andβ
are obtained. Finally plugging these values into Eq. (16) and
Eq. (17) the required solutions are obtained. Similarly, Case
2 can be proceeded.

3. Formulation of the soliton solutions using
proposed techniques

The soliton solutions of the proposed model have been ob-
tained in the following subsections using multiple wave solu-
tions approach and extended shGEEM.

3.1. Applications of multiple exp-function technique

Consider the (3+1)-dimensional new negative-order-KdV-
CBS model [13] as

pxt + pxxxy + 4pxpxy + 2pxxpy

+ λpxx + µpxy + vpxz = 0. (23)

Multiple exp-function method is applied on Eq. (23) to ex-
tract soliton solutions.

1. One-soliton solutions

The one-soliton solution of Eq. (23) can be assumed as

p(x, y, z, t) =
a0 + a1γ1(x, y, z, t)
1 + b1γ1(x, y, z, t)

. (24)

Herea0, a1 andb1 are randomized constants needed
to be determined. By inserting Eq. (24) in Eq. (23),
a system is retrieved by comparing the coefficients of
various powers ofγ1, obtaining the values of the con-
stants as

a0 =
b0 (−2 b1 k1 + a1)

b1
,

Ω1 = K2
1s1 + λK1 + µs1, p1 = 0, (25)

whereγ1 = C1e
K1x+s1y+p1z−Ω1t satisfies the follow-

ing linear conditions

γ1x = K1ξ1, γ1t = −Ω1ξ1,

γ1y = s1γ1, γ1z = p1γ1. (26)

Using Eq. (25) in Eq. (24), we obtain the following
one-soliton solution of Eq. (23) as

p(x, y, z, t) =
a1C1b1e

−t(K2
1s1+µs1+λK1)+K1x+s1y − 2b0b1K1 + a1b0

b1

(
b0 + b1C1e−t(K2

1s1+µs1+λK1)+K1x+s1y
) . (27)

In Fig. 1, the one-soliton solutions for different parametric values are shown.

2. Two-soliton solutions

To construct two-soliton solution, the assumed solution of Eq. (23) has the following form

p(x, y, z, t) =
2 [K1γ1 + K2γ2 + a12(K1 + K2)γ1γ2]

1 + γ1 + γ2 + a12γ1γ2
, (28)

wherea12 is unknown to be calculated. By inserting Eq. (28) in Eq. (23), a system is retrieved by comparing the
coefficients ofγ1 andγ2. The constants are evaluated as

a12 =
K2

2 + K2
1 − 2K1K2

K2
1 + K2

2 + 2K1K2
, Ω1 = K2

1s1 + λK1 + µs1, Ω2 = K2
2s2 + λK2 + µs2, (29)
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FIGURE 1. a) b0 = 11, K1 = 1, s1 = 0.1, a1 = 0.41, b1 = 0.21, p1 = 0, λ = 1.11, µ = 1.51, v = 1.06, C1 = 11, y = 1, z = 1. b)
b0 = 1.1, K1 = 1, s1 = −0.1, a1 = 0.1, b1 = 0.1, p1 = 0, λ = −1, µ = 1.05, v = 1.06, C1 = 11, y = 2, z = 1. Graphical representation
of one-soliton.

FIGURE 2. a)C1 = 0.5, C2 = 0.5, K1 = −1.44, K2 = 0.4, s1 = 1.4, s2 = 1.4, p1 = 0 = p2, λ = 0.75, µ = 0.5, v = 0.75, y = z = 1.
b) C1 = 0.1, C2 = 0.2, K1 = 1.5, K2 = −0.5, s1 = 1, s2 = 0.1, p1 = 0 = p2, λ = 0.1, µ = 0.1, v = 0.1, y = z = 1. Graphical
representation of two-soliton.

where γ1 = C1e
K1x+s1y+p1z−Ω1t and γ2 =

C2e
K2x+s2y+p2z−Ω2t satisfies the following linear

conditions

γ1x = K1γ1, γ1t = −Ω1γ1,

γ1y = s1γ1, γ1z = p1γ1,

γ2x = K2γ2, γ2t = −Ω2γ2,

γ2y = s2γ2, γ2z = p2γ2. (30)

Inserting Eq. (29) in Eq. (28), one may find two-
soliton solutions of Eq. (23).

In Fig. 2, the two-soliton solution for different para-
metric values are shown.

3. Three-soliton Solutions

To construct three-soliton solution, the assumed solu-
tion of Eq. (23) can be written as

p(x, y, z, t) =
U (γ1, γ2, γ3)
V (γ1, γ2, γ3)

, (31)

where

U(γ1, γ2, γ3) = 2
[
K1γ1 + K2γ2 + K3γ3

+ a12(K1 + K2)γ1γ2 + a13(K1 + K3)γ1γ3

+ a23(K2 + K3)γ2γ3

+ a12a13a23(K1 + K2 + K3)γ1γ2γ3

]
, (32)

V (γ1, γ2, γ3) = 1 + γ1 + γ2 + γ3 + a12γ1γ2 + a13γ1γ3

+ a23γ2γ3 + a12a13a23γ1γ2γ3. (33)

One can apply the same procedure as elaborated in
one-soliton solutions and two-soliton solutions to de-
rive the three-soliton solutions.

3.2. Application of extended shGEEM

In this subsection, mathematical analysis of proposed equa-
tion is given and its solutions are constructed along with cases
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FIGURE 3. a) a0 = 1, b = 1, c = 1, v = 1, λ = 1, µ = 1, y = z = 1. b) a0 = 1, b = 1, c = 1, v = 1, λ = 1, µ = 1, y = z = 1, t = 1.
Graphical representation of Eq. (39). a) 3D plot and b) 2D plot.

FIGURE 4. a)a0 = 1, b = 1, c = 1, v = 1, λ = 1, µ = 1, y = z = 1 b)a0 = 1, b = 1, c = 1, v = 1, λ = 1, µ = 1, y = z = 1, t = 1.
Graphical representation of real part of Eq. (40). a) 3D plot and b) 2D plot.

arising in Subsec. 2.2. The traveling wave transformation is
taken, as

p(x, y, z, t) = h(ζ), ζ = x + by + cz − at, (34)

wherea is wave velocity andb andc are random unknowns.
By applying the transformation Eq. (34) into Eq. (23), an
ODE is obtained, as

bh′′′′ + 6bh′h′′ + (λ + bµ + cv − a)h′′ = 0. (35)

Case 1: In this caseω′ = sinh(ω). According to the ex-
tended shGEEM, Eq. (35) has solutions of the form

h(ζ) = ±ιb1 sec h(ζ)± a1 tanh(ζ) + a0, (36)

and

h(ζ) = ±b1 csc h(ζ)± a1 coth(ζ) + a0, (37)

wherea0, a1 and b1 are constants needed to be specified.
Applying extended shGEEM, the following values of the un-
knowns are obtained as,
Set 1:

a1 = −2, b1 = 0, a = 4b + cv + λ + bµ.

Set 2:

a1 = −1, b1 = 1, a = b + cv + λ + bµ.

Rev. Mex. Fis.70031305
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FIGURE 5. a) a0 = 1, b = 1, c = 1, v = 1, λ = 1, µ = 1, y = z = 1. b) a0 = 1, b = 1, c = 1, v = 1, λ = 1, µ = 1, y = z = 1, t = 1.
Graphical representation of imaginary part of Eq. (40). a) 3D plot and b) 2D plot.

FIGURE 6. a)a0 = 1, b = 1, c = 1, v = 1, λ = 1, µ = 1, y = z = 1 b)a0 = 1, b = 1, c = 1, v = 1, λ = 1, µ = 1, y = z = 1, t = 1.
Graphical representation of Eq. (45). a) 3D plot and b) 2D plot.

Putting the values fromSet 1into Eq. (36) and Eq. (37),
the hyperbolic solutions for the proposed equation are ob-
tained, as

p(x, y, z, t) = ∓2 tanh(ζ) + a0 (38)

and

p(x, y, z, t) = ∓2 coth(ζ) + a0, (39)

wherea0 is an arbitrary constant and the traveling wave vari-
ableζ is defined asζ = x + by + cz − (4b + cv + λ + bµ)t.

Putting the values fromSet 2into Eq. (36) and Eq. (37),
the hyperbolic solutions for the proposed equation are ob-
tained, as

p(x, y, z, t) = ±ι sec h(ζ)∓ tanh(ζ) + a0 (40)

and

p(x, y, z, t) = ± csc h(ζ)∓ coth(ζ) + a0, (41)

wherea0 is an arbitrary constant and the traveling wave vari-
ableζ is defined asζ = x + by + cz − (b + cv + λ + bµ)t.

3.2.1. Case 2:

In this particular instanceω′ = cosh(ω). According to the
extended shGEEM, Eq. (35) has solutions of the form

p(x, y, z, t) = b1 tan(ζ)±a1 sec(ζ) + a0 (42)

and

p(x, y, z, t) = −b1 cot(ζ)± a1 csc(ζ) + a0. (43)

Applying extended shGEEM, the following values of the un-
knowns are obtained as
Set 3:

a1 = 0, b1 = −2, a = 4b + cv + λ + bµ.

Rev. Mex. Fis.70031305
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FIGURE 7. a)a0 = 1, b = 1.1, c = 1.1, v = 1, λ = 1.2, µ = 1, y = z = 1. b)a0 = 1, b = 1.1, c = 1.1, v = 1, λ = 1.2, µ = 1, y = z =

1, t = 1. Graphical representation of Eq. (46). a) 3D plot and b) 2D plot.

Set 4:

a1 = 1, b1 = −1, a = b + cv + λ + bµ.

Putting the values fromSet 3 into Eq. (42) and Eq. (43),
the trigonometric solutions for the proposed equation are ob-
tained,

p(x, y, z, t) = −2 tan(ζ) + a0. (44)

and

p(x, y, z, t) = 2 cot(ζ) + a0, (45)

wherea0 is an arbitrary constant and the traveling wave vari-
ableζ is defined asζ = x + by + cz − (4b + cv + λ + bµ)t.

Putting the results fromSet 4into Eq. (42) and Eq. (43),
the trigonometric solutions for the proposed equation are ob-
tained,

p(x, y, z, t) = − tan(ζ)± sec(ζ) + a0, (46)

and

p(x, y, z, t) = cot(ζ)± csc(ζ) + a0, (47)

wherea0 is an arbitrary constant and the traveling wave vari-
ableζ is defined asζ = x + by + cz − (b + cv + λ + bµ)t.

4. Results and discussion

This work provides one, two and three soliton solutions and
traveling wave solutions of new negative-order-KdV-CBS
model. It has been noticed that the graphical illustrations of
the obtained solutions highly depend on the selection of spe-
cific values for arbitrary parameters. Due to their ability to
describe numerous new wave features, the ensuing travelling
wave solutions can be fruitful in theoretical examinations of
the system under discussion.

5. Conclusion

We analyze the behavior of the novel KdV-CBS model with
negative order. We used the multiple exp-function technique
and extended sinh-Gordon equation expansion procedure to
construct one, two and three soliton solutions and traveling
wave solutions of the considered model. Then, for some of
the discovered solutions, 3D and 2D graphs with unrestricted
parameters were provided. To the best of our knowledge,
the findings could aid in deciphering the phenomena that the
equation depicted. The discovery of more soliton solutions
for this model using comparable integration methods is an-
other future objective.
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