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Phase function method for elastic nucleon-nucleon
scattering using Hellmann plus coulomb potential
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The phase function method/variable phase approach to potential scattering is exploited to calculate the phase shifts for nucleon-nucleon
systems in low and intermediate energy regions by representing the nuclear part of the interaction by the Hellmann potential while the
electromagnetic part by the Coulomb one. In addition, the differential and total scattering cross-sections are estimated with our phase
parameters. Results reproduced by the concerned potential are in good agreement with the previous works in the literature.
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1. Introduction

The physics of low-energy nuclear reactions is an essential
element to comprehend the evolution of the Universe. For
the theoretical understanding of the nuclear forces and vari-
ous nuclear properties, nuclear scattering plays a crucial role
as the scattered outgoing wave brings out information about
the nuclear environment. As the many-body forces acting in-
side the nucleus are believed to be small, the two-body forces
in nucleon-nucleon or nucleon-nucleus interactions play the
dominant role. However, the relativistic and non-relativistic
bound state difficulties were the main focus of recent studies
on the quantum mechanical approach of the Hellmann poten-
tial. Recently, a number of scientists have investigated the
study of the scattering states of Hellmann issues in an ef-
fort to produce fresh findings that will aid in the comprehen-
sion of quantum systems. Yazarloo et al. expanded the in-
vestigation to include scattering states of the Dirac equation
with the Hellmann potential under the spin and pseudospin
symmetries [1] in this regard. For the spin and pseudospin
symmetries, the Dirac phase shift and normalized wave func-
tion were given. Using the PT-/non-PT symmetry and non-
Hermitian Hellmann potential, Arda and Sever investigated
the approximate non-relativistic bound and scattering states
with any` values [2].

The approximate bound state solution of the two-body
spinless Salpeter equation for the Hellmann potential was
also examined by Arda [3]. Applications of the Hellmann
potential can be found in nuclear and high-energy physics.
The Meson Field Theory, which describes the meson ex-
change that results from the interaction between a proton
and a neutron, was initially proposed by Yukawa. Accord-
ing to the Yukawa theory, particles with mass parameters in
the range between the masses of an electron and a nucleon

are responsible for the existence of the nucleus force. A sim-
ple understanding of the binding energy in the atomic nu-
cleus is anticipated to be provided using some parameters
of the Yukawa idea. Utilizing the Hellmann potential is an-
other straightforward idea to reproduce effective results for
the nucleon-nucleon system. Hellmann potential, the super-
position of the Yukawa, and attractive electromagnetic po-
tential V (r) = −(a/r) + b(e−cr/r) was first proposed by
Hellmann [4–6]. Herea andb are the strength parameters of
the Coulomb and Yukawa potential andc is the screening pa-
rameter [5,7] which regulates the shape of the potential. Var-
ious authors [8-18] have investigated the Hellman potential
in all the limits of quantum mechanics due to its importance
in atomic physics. In several relatively recent studies, the
quantum mechanical treatment of the Hellmann potential fo-
cuses on the relativistic and non-relativistic bound state prob-
lems [19-23]. The Hellmann potential model has been treated
by several physicists in many of the applications of physics
i.e. electron-core [24,25], electron-ion inner-shell ionization
problem [26, 27], alkali hydride molecules [28], solid-state
physics [29,30].

The aim of this work is to investigate the nucleon-nucleon
scattering phase shifts and cross sections for motion in the
nuclear Hellmann potential for various partial wave states by
exploiting the Phase Function Method (PFM) [31]. In this
method, the radial Schrödinger equation is converted into
a first-order nonlinear differential equation called the phase
equation and is solved numerically from the origin to the
asymptotic region to obtain the desired phase shifts. This
amounts to separating out the amplitude and the phase part of
the wave equation. The wave function’s phase shift, for scat-
tering by the potential truncated at a distancer, at each point
is represented by the phase function, indicated by the func-
tion. A potential that has been completely excised won’t un-
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dergo any phase change. As a result, the quantity is equal to
zero. With the initial condition from the origin to the asymp-
totic area, the phase function that satisfies a first-order non-
linear differential equation for a local potential is solved to
produce the scattering phase shift. As one advances away
from the origin during the phase equation’s solution, the po-
tential at each point of interaction builds up the phase shift,
and it reaches its asymptotic value as soon as one exits the
potential’s range. In all likelihood,δ`(k) = lim

r→∞
δ`(k, r). In

Sec. 2 we present our methodology and Sec. 3 is devoted to
the results and discussion. Section 4 is dedicated particularly
to cross-section calculations. We present some concluding
remarks in Sec. 5.

2. Methodology

Calculation of scattering phase shiftsδ`(k) as a function of
the center of mass energyEc.m(= k2 > 0 in the theoreti-
cal limit of ~2/2m = 1) constitutes one of the core prob-
lems of quantum scattering theory. Phase-function method
(PFM) [31] is an alternative to the traditional Schrödinger
equation approach. This methodology is based on the fact
that certain second-order linear homogeneous equations can
be reduced to their first-order non-linear counterparts of the
Riccati type called Riccati equations. The Riccati equations
are satisfied by the phase functionsδ`(k, r) that is having the
meaning of the phase shifts at each point of the wave function
for scattering by the potentialV (r) cut-off at that point. This
helps in the investigation of the different regions in the inte-
rior of the potential in producing the phase shift [32-39]. The
effective Hellmann potential in all partial waves is written as

VH(r) = −a

r
+ b

(
e−cr

r

)
+

`(` + 1)
r2

. (1)

All the three parametersa, b andc of the potential have the
unit of fm−1. At low energies, the nuclear scattering of
two charged hadrons is considered to place under the com-
bined influence of two potentials, one of electromagnetic and
the other of nuclear origin. The nuclear Hellmann poten-
tial models the two nucleon interactions and the long-range
component of the interaction is the electromagnetic poten-
tial, which is theoretically extended to infinity. To treat the
charged hadron systems one has to add an electromagnetic
interaction in addition to the nuclear potential. We consider
the electromagnetic potentialVc(r) = (2kη/r) as the long-
range part of the effective interaction. Hereη stands for the
Sommerfeld parameter. Even while the pure Coulomb poten-
tial is a theoretically limitless long-range interaction, in prac-
tice it screens out after a given distance. It is claimed that
the conventional phase function method (PFM) [31] must be
modified because it does not work well for pure Coulomb and
Coulomb-like interactions. In many circumstances where the
scattering occurs under the combined impact of Coulomb-
like potentials, the use of pure Coulomb interaction may be
justified because the Coulomb potential proves to be unim-
portant after a finite distance. For the sake of simplicity, we

compute the scattering phase shifts for the (p-p) system using
the conventional PFM [31] for our model potential in order
to assess the viability of our hypothesis. For a local potential
V (r) = VH(r) + Vc(r), δ`(k, r) satisfies a first-order non-
linear differential equation [31] written as

δ′`(k, r) = −k−1V (r)[cos δ`(k, r)ĵ`(kr)

− sin δ`(k, r)η̂`(kr)]2, (2)

where ĵ`(kr) and η̂`(kr) are the Riccati-Bessel functions
[40]. The resulting Phase equations for` = 0, 1 and2 read
as

δ′0(k, r) = −k−1V (r)[sin(δ0(k, r) + kr)]2, (3)

δ′1(k, r) = −V (r)
k3r2

[sin(δ1(k, r) + kr)

− kr cos(δ1(k, r) + kr)]2, (4)

and

δ′2(k, r) = −k−1V (r)
[
(

3
k2r2

− 1) sin(δ2(k, r) + kr)

− 3
kr

cos(δ2(k, r) + kr)
]2

. (5)

The quantityk represents the centre of mass momentum
and has a relation with the centre of mass energy ask =√

2mE/~. To obtain the scattering phase shift, the phase
equation is solved numerically for the potential under con-
sideration with the conditionδ`(k, 0) = 0.

3. Results and discussion

We have parameterized the nuclear Hellmann potential to ob-
tain the standard phase parameters [41–43] of different states
of the (n-p) and (p-p) systems by solving the differential
Eqs. (3)-(5) numerically. The functionδ`(k, r), called the
phase function, has at each point the meaning of the phase
shift of the wave function for scattering by the potential trun-
cated at a distancer. This implies that while calculating
phase accumulation within the range of the interaction, the
step size of the variabler becomes crucial. Thus, one has to
judiciously optimize the step size to have proper phase pa-
rameters. This is one of the limitations of the PFM compared
to Jost function approach to the quantum mechanical poten-
tial scattering problem. We have auto-adjusted the grid sizes
in our numerical routine for different partial wave states to
achieve the required phase parameters. We test the numer-
ical accuracy and precision of the approach by using a fi-
nite grid representation and determine the low-energy param-
eters of these potentials. In particular, we takermax = 6fm
and∆r = 0.002, 0.005, 0.001, 0.0005fm corresponding to
N = 3× 103, 1.2× 103, 6× 103 and1.2× 104 grid points,
respectively, to establish convergence.

The quality of description of standard data on the basis of
certain theoretical function or functional of several variables
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TABLE I. List of parameters for (n-p) and (p-p) systems.

System States a(fm−1) b(fm−1) c(fm−1)
1S0 0.012 −0.800 0.510
3S1 0.014 −1.200 0.390
1P1 0.100 −2.100 0.515
3P0 0.500 −4.500 0.900

n-p/p-p 3P1 0.200 −2.200 0.600
3P2 0.100 −3.000 0.498
1D2 0.016 −2.090 0.050
3D1 0.017 −1.820 0.010
3D2 0.011 −1.980 0.010
3D3 0.016 −2.180 0.065

FIGURE 1. (n-p) S-wave scattering phase shifts as a function of
laboratory energy.

in Eqs. (3)-(5) are estimated by theχ2 method. For some
defined values of the standard phase shifts, we have obtained
the best-fitted parameters of Table I. As the nuclear force is
assumed to be charge independent the model parameters for
various spin states of (n-p) and (p-p) systems are the same.
The parameters for the different states of (n-p) and (p-p) sys-
tems are given in Table I.

For the computation of the scattering phase shifts, we
have chosen to work with~2/mp = 41.47 MeV fm2.
The (n-p) and (p-p) scattering phase shifts are presented in
Figs. 1-4. From the figures it is noticed that our results for
the phase shifts are in conformity with the standard values
of Pérezet al. [41], Gross and Stadler [42], and Wiringaet
al. [43]. For 1S0 (n-p) and (p-p) states our results fall below
the standard data [41] by one or two degrees in the energy
range 5-25 MeV. Looking closely at Fig. 2 it is observed that
our results are in reasonable agreement with those of Pérezet
al. [41] except for3P0, 3P1 & 1P1 states at energies 25 MeV
respectively. The1P1 phase value falls below the standard
one [41] by2◦ at 50 MeV. ForD partial waves our results are

FIGURE 2. (n-p) P-wave scattering phase shifts as a function of
laboratory energy.

FIGURE 3. (n-p) D-wave scattering phase shifts as a function of
laboratory energy.

in good qualitative as well as quantitative agreement with
Ref. [41] except at 25 MeV for3D2 state. Over our entire
model, potential reproduces correct trends of the (n-p) scat-
tering phases.

Our model potential for (p-p) system reproduces correct
phase parameters as shown in Fig. 4 with an exception for
1S0 state where the peak value is less by one degree and at
50 MeV it is 3◦ more than that of Ref. [41]. Except1S0 state
all other states are in quantitative agreement with Pérezet
al. [41]. With the Hellman model of interaction, the associ-
ated potentials for different partial wave states are depicted in
Figs. 5-8 in the unit of MeV. The dimension of the potential
functionVH(r) in Eq. (1) is in the unit offm−2 but portray
them by multiplying with~2/mp = 41.47 MeV fm2. It is
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FIGURE 4. (p-p) S-, P- and D-wave scattering phase shifts as a
function of laboratory energy.

FIGURE 5. (n-p) S-wave potentials as a function ofr.

observed that repulsive cores develop in the partial wave
states other than the S-wave due to the addition of centrifugal
barriers.

4. Scattering cross section

Total cross-sectionσt(α) with α representing entrance chan-
nel is given byσt(α) = σS(α) + σR(α), whereσS(α) rep-
resents only elastic scattering cross section andσR(α) stands
for combined inelastic/reaction cross section. However, in
low energy collisions, the total cross section emerges mostly
from the elastic scattering channel with negligible contribu-
tion from the rest of the involved reaction channels [44, 45].
We desire to investigate to what extent our model calcula-
tions will be able to yield realistic cross-section data in view
of small discrepancies between the results of our phase shift
analysis and of other calculations.

FIGURE 6. (n-p) P-wave potentials as a function of r.

FIGURE 7. (n-p) D-wave potentials as a function of r.

FIGURE 8. (p-p) S-, P- and D-wave potentials as a function of r.
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FIGURE 9. Differential p-p scattering cross section as a function
of θ (degree) atELab = 2.4 MeV. Standard theoretical results are
from Ref. [50].

FIGURE 10. Differential p-p scattering cross section as a function
of θ (degree) atELab = 9.918 MeV. Standard theoretical results
are from Ref. [51].

For Coulomb-distorted nuclear scattering the scattering
amplitude is expressed as

fnC(θ) = fC(θ) + fn(θ), (6)

where

fC(θ) = − η

2χ sin2(θ/2)

× exp[−iη ln sin2(θ/2) + 2iσ0(η)], (7)

and

fn(θ) =
1

2iχ

∞∑

`=0

(2` + 1) exp(2iσ`(η))

× P`(cos θ)(exp(2iδn
` )− 1). (8)

The quantityδn
` is the Coulomb-distorted nuclear phase shift.

The negative sign in front of Eq. (7) originates from the fact
that the Coulomb force between two protons is repulsive. The
Coulomb-distorted nuclear cross-sectionσnC(θ) is given by

σnC(θ) = |fC(θ) + fn(θ)|2 = |fnC(θ)|2. (9)

For identical particles, like (p-p), scattering

σ(θ) = |f(θ) + f(π − θ)|2. (10)

One may calculate the total scattering cross-section by inte-
grating the differential cross-sectionσ(θ) over the entire solid
angle and the angle integrated cross-section is

σs =
4π

k2

∞∑

`=0

(2` + 1) sin2 δ`, (11)

FIGURE 11. (n-p) total scattering cross section as a function of
laboratory energy. Standard theoretical results are from Ref. [48].

FIGURE 12. (p-p) total scattering cross section as a function of
laboratory energy. Standard theoretical results are from Ref. [48].
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whereδ` is the total scattering phase shift. Note that this
integrated cross-section is sometimes called the total cross-
section because it is the total after integration over all angles.
The elastic scattering of neutrons by protons has been inves-
tigated by a number of researchers [46–49]. In the present
text, we calculate differential and total scattering cross sec-
tion for the (n-p) & (p-p) systems and compare them with the
data [47–51] available in the literature by exploiting Eqs. (7)-
(11). The (p-p) differential cross sections are portrayed in
Figs. 9 and 10 together with those of Refs. [50, 51] over the
whole angular range.

The total cross-section calculations for neutron-proton
and proton-proton scattering are performed including the
contributions of S, P, and D waves. Our cross-section results
for the systems under consideration are in excellent agree-
ment with those of Ref. [48]. As represented in Figs. 11
and 12.

5. Conclusions

From the foregoing discussion, it is clear that the Hellmann
potential is quite capable of producing the nature of phase
shifts of respective states with inconsequential differences in
their numerical values. This is due to the fact that unlike
atomic cases the nuclear potentials are highly state-dependent
and cannot be generated in a proper way from any known
interaction. Practically speaking, phase-shift studies of ex-
perimental data are frequently used to compare the various
models. Compared to n-p scattering observables, particularly
the n-p analyzing power, is crucial for validating different as-
pects of the potential. For incident laboratory energies up

to 30 MeV, high-accuracy cross-section and analyzing power
data are provided for the hadron-hadron scattering. The
simplest situation in which delicate effects like many-body
forces or charge-symmetry breaking can be investigated is the
nucleon-deuteron system. With the use of a two-body sepa-
rable potential, nucleon-deuteron elastic scattering has been
studied within the Faddeev formalism [52]. It is therefore of
great interest to investigate the N-N elastic scattering using
a straightforward local potential model. A synchronized de-
scription of all obtainable theoretical and experimental data
over a large energy range would expose more information
on the nucleon-nucleon interaction and possibly on the sig-
nificance of three-body forces for the nucleon-deuteron sys-
tem. Having close agreements for the spin-independent elas-
tic channel (n-p) and (p-p) scattering phase parameters with
those of Ṕerezet al. [41], Gross and Stadler [42], Wiringaet
al. [43] and cross sections with the results of Arndtet al. [48],
Jackson-Blatt [50], Slobodrianet al. [51], etc. it can be con-
cluded that this simple-minded approach of PFM to compute
scattering phase shifts and there from the cross sections for
motion in the nuclear Hellmann potential will be an interest-
ing gateway to a wide variety of physicists and deserves due
attention.
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