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The deformed Klein-Gordonequation has been solved in three-dimensional extended relativistic quantum mechanics (3D-ERQM) symmetries
for the improved modified Yukawa-Kratzer potential (IMYKP) model under the influence of the deformation space-space symmetries. The
new relativistic energy eigenvalues were calculated using the parametric Bopp’s shift method and standard perturbation theory in addition
to the approximation scheme suggested by Greene and Aldrich for the inverse square terms. The new relativistic energy eigenvalues o
(LiH, HCI, CO and H,) molecules under the IMYKP model it was shown to be sensitive to the atomic quantum nugybersn), mixed

potential depths¥y, D, r.), the screening parameter’s invers@nd noncommutativity paramete®,{,x). In addition, we analyzed the
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generalized Kratzer potential, the improved Kratzer potential, the improved modified Kratzer plus screened Coulomb potential, the improved
Hellmann potential, the improved Yukawa potential, and improved inversely square Yukawa potential. We noticed that these particular results
are identical to our previous work and other known works in the literature. The study is further extended to calculate the mass spectra of
mesons of charmoniunag) and bottomoniumbp) within the framework of the IMYKP model in three-dimensional extended non-relativistic
guantum mechanics (3D-ENRQM) symmetries.
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1. Introduction both of them with other potentials within the framework of

the different fundamental equations. Edetl. analyzed the
The Klein-Gordon and Dirac equations, or relativistic modmodified Kratzer potential plus the screened Coulomb poten-
equations, can be solved analytically or numerically to of-tial by the pNU method and obtained the energy spectrum [2].
fer us a lot of information about a physical systems. Vari-|kot et al. obtained the exact bound state energy spectrum of
ous techniques are available in the literature to obtain theithe Schédinger equation with energy-dependent molecular
solutions, such as the parametric Nikiforov-Uvarov (pNU) Kratzer potential using AIM [3]. Ikoket al. (2019) obtained
method, the exact quantization rule, the Qiang-Dong propethe energy eigenvalues and the corresponding normalized
quantization rule, the path integral method, the asymptotic iteigenfunctions of screened Kratzer potential for lithium hy-
eration method (AIM), the factorization method, the Laplacedride (LiH) and hydrogen chloride (HCI) diatomic molecules
transform approach, the supersymmetric quantum mechawyithin the framework of non-relativistic quantum mechan-
ics (SUSYQM), the ansatz method, and the series exparcs via the pNU method. lkoet al. (2019) obtained the
sion method. These equations play a vital role in statisticaénergy eigenvalues and the corresponding normalized eigen-
physics, solid-state physics, quantum field theory, atomic an€linctions of the screened Kratzer potential for lithium hy-
sub-atomic physics, and molecular physics. Various researdfiride (LiH) and hydrogen chloride (HCI) diatomic molecules
has been carried out on these equations of many considegithin the framework of non-relativistic quantum mechanics
able potentials. Parmar and Vinodkumar (2021) studied thgia the pNU method [4]. Ahmadoet al. [5] studied solu-
combined modified Yukawa and Kratzer potential (MYKP) tions of KGE with the Manning-Rosen equation plus a class
in the case of the Klein-Gordon equation (KGE) for calcu-of Yukawa potentials using pNU and SUSYQM methods and
lated numerical results of the energy spectrum for C@, H presented the energy spectrum for &rsfate and the corre-
LiH, and HCI molecules by pNU and SUSYQM methods sponding radial wave functions in terms of the hypergeomet-
using the Greene-Aldrich approximation to handje and  ric functions. Purohiet al. (2021) solved the Schdinger
1/r* terms in the effective potential [1]. Many researchersequation in D dimensions and obtained the eigenspectrum of
have dealt with either the modified Yukawa or Kratzer potenthe energy and momentum for time-independent and time-
tials either individually or through the combination of one or
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dependent Hultbn-screened cosines Kratzer potentials Usproblems [16-26]. It should be mentioned that before the
ing the Qiang-Dong proper quantization rule and the superrenormalization approach was created and gained popularity,
symmetric quantum mechanics approach [6]. Recently, Purd-leisenberg proposed the idea of extended non-commutativity
hit et al. (2022) obtained the energy spectrum for MYKP to the coordinates as a possible treatment for eliminating the
with the magnetic field and Aharanov-Bohm flux field using limitless numbers of field theories in 1930. Snyder published
the pNU approach and SEM in this study [7]. The Kratzerthe first work on QFT’s history in 1947 [27], and Connes
potential (KP), which is known first and foremost by Kratzer introduced its geometric analysis in 1991 and 1994 [28, 29]
itself [8], is used in quantum atomic-molecular physics andn an effort to standardize QFT. Seiberg and Witten obtain
has played a vital role in the history of molecular and quan-a new version of gauge fields in noncommutative gauge the-
tum chemistry [9]. Purohiet al. (2020) [10] obtained ory [30] by extending earlier ideas on the advent of NC geom-
via the generalized Nikiforov—Uvarov method the approx-etry in string theory with a nonzero B-field. The elimination
imate bound-state solutions of the D-dimensional KGE forof the observed unwanted divergences or infinities that ap-
screened cosine Kratzer potential (SCKP) using approximapear to produce short-range in field theories like gravitational
tion suggested by Greene-Aldrich. Next year, Purehial.  theory by creating new quantum fluctuations is one of the
also investigated SCKP under the influence of the magnetipotential objectives of NC deformation of space-space and
field and Aharanov—Bohm flux field and obtained energyphase-phase. The noncommutafRfextended to the super-
eigenvalues and wave functions with external fields via thesymmetric field theories for th& (1) vector multiplets and
pNU method using the approximation method suggested bghiral multiplets of the fundamental, anti-fundamental and
Greene-Aldrich for handling centrifugal barriers [11]. On the adjoint representations of the gauge group [31], this shows
other hand, Yukawa potential, often called screened Coulombnother confirmation of the validity and effectiveness of the
potential, is a short-range potential that has applications imon-commutative theory. It is important to refer to some of
particle, high-energy, and molecular physics. It is used taour work related to the study of each of the two potentials
study the interaction that occurs between the atoms of diunder study in the framework of the extended $clmger
atomic molecules [12—-14]. Recently, Purokital. (2022) equation such as new modified Kratzer-type interactions [32],
used the linear plus modified Yukawa potential as the quarkmodified Kratzer potential [33] and the generalized perturbed
antiquark interaction potential and obtained the energy eigen¥ukawa potential [34], DKGE such as a linear combination
values and associated wave function by solving the KGE anef Hulthén and Kratzer potentials [35], modified More gen-
alytically using the pNU method [15]. Based on this moti- eral exponential screened Coulomb potential plus Yukawa
vation, in this work, we study new approximate bound statepotential [36], generalized modified screened Coulomb plus
solutions of the deformed Klein-Gordon equation (DKGE) inversely quadratic Yukawa potential [37], Manning-Rosen
in three-dimensional extended relativistic quantum mechanplus quadratic Yukawa potential [38], the deformed unequal
ics (3D-ERQM) symmetries of a newly proposed combinedscalar and vector Hellmann plus modified Kratzer potentials
potential called the improved modified exponential screenefB39], modified equal scalar and vector Manning-Rosen and
plus Yukawa potential (IMYKP) within the framework of Yukawa potentials [40] and the Kratzer potential which stud-
parametric Bopp’s shift method. This is a new potentialied by Darroodit al.[41]. For the deformed Dirac equation,
model that has not yet been studied to the best of our knowlwe have studied both modified Yukawa potential [42], im-
edge in 3D-ERQM symmetries. The main objective of thisproved inversely quadratic Yukawa potential within improved
study is to deepen the study of research [1] performed irCoulomb-like tensor interaction [43], improved Sabérg

the frameworks of symmetries known in quantum mechanpotential within the Yukawa tensor interaction, new modified
ics known in the literature and research on new application¥ukawa potential [44], new modified Yukawa potential [45],
of this potential. It is worth noting that the first foundations spatially dependent mass for the improved Eckart poten-
of quantum mechanics were based on non-commutative axial including the improved Yukawa tensor interaction [46].
ioms for all positionsg;”" " « gi™"" £ g™ « g™ and  Furthermore, the modified Kratzer potential was studied in
momentum%ff""’i) w o) o plehd) ﬁ}fvhvi), individu-  the framework of the Duffin-Kemmer-Petiau (DKP) equa-
ally or in combinationg """ « 70 £ z{shi), glehd) o tion [47]. The following are the vector and scalar IMYKP
here ¢) stands for the Weyl-Moyal star product. However, models that will be used in this study (. (7) and S, (7))

the scientific task was not accomplished due to mathemat@s follows:

cal difficulties. This made the specialized researchers ignore .

two basic axioms and complete the research path in the Iast( Vi (Q )
axiom, and this is what is known as the relative and non- \ Suk (")
relativistic quantum mechanics known in the literature. In

recent years, real indicators have appeared, for example, thighere ¢y (), Syx (r)) are the (vector, scalar) modified
divergence problem in the standard model (SM), where gravYukawa-Kratzer potential, according to the view of 3D-RQM
itational forces are not included in addition to many otherand 3D-NRQM symmetry, known in the literature [1]:

Viyk (r) _L27? zzg;ir; +0 (62) (1)
Syi (r) =52 =422 +0 (02)
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A -2 A — A A
Vs (r) = - LR 200 | Apewlar) (4 - —De> : (2.1)
r r T r
and
S1exp (—2ar Sy exp (—ar S S
Sy (r) = — 51 pr(2 ) L5 pr( ) _ Sy — (4 _ TS - De) , (2.2)

where potential strength parameters = A3 = Vj, Ay = 2Vy, Ag = 2D.71., A5 = D.r? anda is the screening parameters,

D, is the dissociation energy, is the equilibrium bond length(; andr) are the interatomic distances in the extended QM

and usual QM symmetries, respectively. The coupling is the scalar product of the usual components of the angular
momentum operatds (L, L,, L.) and the infinitesimal non-commutativity vecter (612, 623, 613) /2. In the case o7 v,

the noncentral generators can be suitably realized as self-adjoint differential opedfé%r@ 75"Y) appear in n three
varieties. The first is the canonical structure (CS) variety, the second is the Lie structure (LS) variety, and the last corresponds
to the quantum plane (QP) variety in the representations ofé8atger, Heisenberg, and interaction pictures, satisfying a
deformed algebra of the form (for simplicity, we have used the natural irits: = 1) [25,48-55]:

{x,(j,h z)7p1(js o 2)} = idlw = [Z]\;(Ls hi)s a7?1(/5’h7i):| = Z.hefféullv (3)
In-3D-QM symmetry In-3D-EQM symmetry
and
i€, 0 @ For CS variety,
[asff’h*”, a:(j”“)} =0= [@(f hoi)sgls:h, Z)] zhjjyéf; 10 - For LS variety, (4)
iGy Bhap For QP variety.
with Ang = giem Z)Ag’h’i), hereaff’h7i) can be equal one oftf v 1. v Z',) andA(S "% can be equal one oﬁg VPV PL)

which are the generalized coordinates and the corresponding generallzmg momentums, respectively, in 3D- EQM symmetries
while the corresponding coordinate,%s’h’l)(xz Vozhvoal) andpﬂS o) (v, vV plt v pl) in the usual 3D-QM symmetries,
respectively, ¢ = or). Additionally, the uncertainty relatlon (in LHS of the below equation) that corresponds to the LHS of

Eq. (3), will become in 3D-EQM symmetries as follows:

‘A{E(é ,h, L)Ap(é Jhot)

> h6,/2 = ‘AqA(é D) AFERD | S iy 18, /2. (5)
On the other hand, we notice that the RHS of Eq. (4) generates a novel uncertainty relation:

@ For CS variety,
> ¢ v For LS variety, ©

’AA(S h,i A'\(s h,i)
% For QP variety.

hereh,, andG,,, are equal to the average values:

o= [(2 (25)
aBa(s,h,i) ~(s,h,i
G = |05 (G070 75) )|

The new subdivided three-uncertainties relations in Eg. (6) have no comparison in the existing literature. Under the
Lorentz transformation, which includes boosts and/or rotations of the observer’s inertial frame, Egs. (3) and (4) are covariant
equations (have the same behaviorcjﬁsh”)). We are expanded the modified equal-time noncommutative canonical com-
mutation relations (METNCCCRS) to include both Heisenberg and interaction pictures in both 3D-ERQM and 3D-ENRQM
symmetries. Heré,,, is the Kronecker symbolyu, v = 1,2, 3), ,,,, is antisymmetric real constarg & 3) matrices with the
dimensionality (lengttf) parameterizing the deformation of space-spagg,is an antisymmetric tensor operator describing
the non-commutativity of space-time,(, = —e,, = 1 for u # v ande.. = 0) andd € R is the noncommutative parame-
ter, h.y; = his the effective Planck constant. The new deformed scalar prédugt« g(x) is defined by the Weyl-Moyal
x-product in three different ways [56—61]:

(h*g)(x) =exp (ie“”@(’“)ff@ﬁ) (hg) (z) =~ (hg) (z) — i 5 hOy gl i —av + O (92) )
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4 A. MAIRECHE

The second component in Eq. (7) provides a physical representation of the consequences of space-space non-commutativity.
The outline of the paper is as follows: Section 2 presents an overview of the 3D-KGE under the modified Yukawa-Kratzer
potential models. Section 3 is devoted to investigating the 3D-DKGE using the well-known Bopp’s shift method to obtain
the effective potential for the IMYKP model. Furthermore, using standard perturbation theory, we find the expectation values
of the radial terms1(/(1 — 2)*, 22/(1 — 2)®, 22/(1 — 2)*, /(1 — 2)%, /(1 — 2)* and1/(1 — 2)*) to calculate the corrected
relativistic energy generated by the effect of the perturbed effective potEﬁﬁql(r) of the IMYKP model, and we derive the

global corrected energies for bosonic particles and antiparticles whose spin quantum number has an integer value. Section 4
is reserved to analyze the non-relativistic limit, in 3D-ENRQM symmetries for the IMYKP model. In the next section, we

will discuss the most important special cases in the relativistic and non-relativistic cases, which are useful for specialists and
readers alike. Section 6 is reserved for the study of spin-averaged mass spectra of HLM under IMKSCP models in 3D-ENRQM
symmetries. Finally, we present our conclusion in Sec. 7.

2. Anoverview of KGE under the modified Yukawa-Kratzer potential model in 3D-RQM symme-
try

In order to construct a physical model describing a physical system that interacted with the improved modified Yukawa-Kratzer
potential model in the 3D-ERQM symmetries, it is useful to recall the eigenvalues and the corresponding eigenfunctions under
the influence of this system within the framework of relativistic quantum mechanics (RQM) known in the literature. In this
case, the system is governed by the following Klein-Gordon equation:

<v2 + (Enl - Vyk (T))2 - (Myk' + Syk (T))2) Vo (’/’, 0, 90) =0. (8)

The vector potential/,;, (r) and space-time scalar potentig};, () are produced from the four-vector linear momentum
operatord” (V. (r), A = 0) and the reduced masd,;, of (LiH, HCI, CO and, H) molecules. WhileE,,, is the relativistic
eigenvalues(n, ) represent the principal and spin-orbit coupling terms. Since the modified Yukawa-Kratzer potential model
has spherical symmetry, it allows the wave function solutian (r, 6, ») of the known form(u,,; (r)/r)Y}, (6, ) while

Y (6, ) is spherical harmonics and is the projections on the Oz-axis. The radial compongptr) satisfies the differential
equation as follows [1]:

2 Vir()) 2 _ [ Syr(r) 2 1
g e ( 5 ) ( 5 ) _Z<l-i2-) g () = 0. ©
" — (Bt Vi, (r) + 2M Sy (7)) r

Parmar and Vinodkumar used the Alhaidatral. [62] scheme to write the radial part of KGE in Eq. (9), by restyling the vector
and scalar potentiald/x (r) , Syx () — (Vi (r)/2, Syx (r)/2) under the non-relativistic limit. Usinf;, (r) from Eq. (2)
with Vi, (r) = Sy () in Eq. (9), we obtain the following

d? _ 1141
<CZ’I“2+EZZ_M2_:yk (7’)_ (T2 ))Unl (7"):0, (10)
with
-2 - A, A
gk (r) = (Bui + M) <Alexp (rz ) 4, (r ) 4 Ay + e De) . (12)

The author of Ref. [1] used the supersymmetry quantum mechanics and factorization methods to obtain the expression of
un (r) as a function of Gauss’s Hypergeometric functidiy (—n,n + 2wy + 2X 1, 2X,,; + 1; z) in usual 3D-RQM sym-
metries as,

Wnl

z

V. (7“, 9, (p) = :,Z'l (1 — Z)X"L o Fy (—n, n+2wn +2X,,2X0 + 1; Z) Yviz (9, (p) R (12)

with

wnt =\ + L1+ 1) + (B + M) Ay — EortdDAs

(03

; (13)

Xt :%+\/(Enl+M) (A5 — A1) + (1 +1/2)°

Rev. Mex. Fis69 060802



NEW EIGENSOLUTION OF THE KLEIN-GORDON AND SCHBDINGER EQUATIONS. .. 5

wherez ande?, equal(exp (—ar)) and (=[(En + M) (En — M + Az — D,)]/a?), respectively, whileV,,; is the normal-
ization constant:

D (2w + 1) \/ an! (2Xn + 1) T (n + 2w + 2Xn + 1) a4

" T (0 2w + 1)\ 2290 X (20, 4+ DT (2Xy +n+ 1)

The corresponding relativistic energy eigenvalues for the modified Yukawa-Kratzer potential model for (LiH, HCI, CO and,
Hs) molecules in 3D-space, obtained the equation of energy [1]:

E2 — M? = (Ey+ M) (D, — A3 + 0® A5 — aAg) + *1(1+ 1)

2

(15)

—

2 %7—2%]”)(042(145-1—141)4‘@(142_A1)+l(l+1)) +n+an

3. The new solutions of DKGE under the IMYKP models in 3D-ERQM symmetries:
3.1. Review of BS method

Let us begin in this subsection by finding the physical form of IMYKP models in three-dimensional extended relativistic
guantum mechanics (3D-ERQM) symmetries. Our objective is achieved by applying the new principles that we have seen
in the introduction (Egs. (3), (4), and (7)), summarized in the new relationships of the modified equal-time noncommutative
canonical commutation relations (METNCCCRSs) and the notion of the Weyl-Moyal star product. These data allow us to rewrite
the usual radial KG equations in Eqg. (10) in the 3D-ERQM symmetries as follows:

d? 1{l+1
(—I-E2 —mg—Eyk (r) — ( —g )) * upy (r) = 0. (16.1)
T

There are two approaches to including non-commutativity in quantum field theory: The first method is represented by rewrit-
ing the various NC physical fields?,,;, <I>nl,€g, ) in terms of their corresponding fieIc(silnl, UBTNC ) in the known

qguantum space in the literature, in proportion to the non-commutative parar®etéss, -3, 613) /2, which is similar to the
Taylor development [63—71] while the second method depends on reformulating the non-commutative opérateith its

view of the quantum operato(g, p) known in the literature and the properties of space associated with the non-commutative
parameter® (6;2, 023, 613) /2. It is normal for the physical results to be identical when using either of them. It is known to
specialized researchers that F. Bopp had proposed new quantization rules

—~ T, i
((ﬂ,p) - (q =T — 581777[- _p+ 28513> )
instead of the usual correspondence
~ ~ i
This procedure is called Bopp’s shifts method (BSM) [72-77]. This quantization procedure is called Bopp quantization [76].

The Weyl-Moyal star produét(z, p)*g(x, p) induces BSM in the respect that itis replacedzby—%am p-i—%ax)*g(x, p) [69].
This, allows us to obtain

By (1) % tng (1) = Eyg (r) (F) wp (r)
(16.2)

z(z:;) s um (1) = l(l;;l)unl (r)
The Bopp’s shift method has achieved great success when applied by specialized researchers to the four basic equatior
correspond to the relativistic deformed Satlinger equation (see,g, [32—34,77-82]) and the other three relativistic equations
represented by the deformed Klein-Gordon equation @ge[83—88]), deformed Dirac equation (seeg, [47,93,94]) and

the deformed Duffin-Kemmer-Petiau equation (geg, [86—89]). It is worth motioning that that Bopp’s shift method permutes

us to rewrite Eq. (16.1) without star product to the simplest form:

d? I N (S |
<W+E721I_WL(2)_:yk(r)_ (7/;2 )>7.Lnl(7’)_0. (17)

Rev. Mex. Fis69 060802



6 A. MAIRECHE

The modified algebraic structure of covariant canonical commutation relations with the notion of the Weyl-Moyal star product
in Egs. (3) and (4), which become new METNCCCRs with ordinary known products in literature, are as follonesdsee,
[72-77]):

|:a(,f7h’i)7%1(,s7h7i)i| — iheff(sp,u and [a}(f,h,i), Z]\I(js,h,i)} — ’i@wj. (18)

In 3D-ERQM symmetries, one p055|ble way of implementing the algebra defined b g/ Eq. (18) i |s to construct the noncommu-

tative set of vanables@ﬁS i) 2(5h0y from the corresponding commutative variable§ (", ") employing of linear

transformations. This can be generally done by using the Seiberg-Witten map, given by [72-77]:
3
s,h,i s,h,i 0., (s,h,i
(aﬁ’”)_(aci Vo >0 Byl )+0(92)> (19
~(s,h,i) - V9:}1L 0 .
i " 40 (6°)
This allows us to find the operatéf, in the 3D-ERQM symmetries, equal to [80-85]:
P =r’-LO+0 (7). (20)
The Taylor expansion of effective potentt), () can be expressed as in the 3D-ERQM symmetries, as:

= (1) =2 (1)~ 5~ =10 40 (67), (21)

and

Y 104D 10+ 0 6 (g2, (22)
rt

72 72

Substituting Egs. (20) and (21) into Eq. (17), we obtain the following as the radisb@oler equation:

d2 — —per
(45 + B = md =2 (1)~ = ) s (1) =0, 3
with
—pert LI+1) 1 9=(r) 2
Ep (1) ==L - - — Lo +0 (0%). (24)

If we compare Egq. (23) and Eq. (10), we observe an additive poteﬁgié -) dependent on new radial terms, which

is coupled with the couplind.® that explains the interaction of the physical features of the system with the topological
deformations of space-time. From a physical point of view, this means that the spontaneously generaiggﬁermas a

result of the topological properties of deformation space-space can be considered very small compared to the fundamental term

—per I(I+1)— (B, + M) As exp (—2ar
:zkt<r): (_ ( ) <’I’4 l ) _(Enl+M>_aA1 p(r3 )
exp (—2ar) exp (—ar) exp(—ar) Ay
A1 T4 —|— OLAQ 2’[“2 + A2 2’{‘3 2’[” L@ + O (@ ) (25)

Furthermore, by using the unit step function (also known as the viside step fugtigror simply the theta function), it
is possible to rewrite the global induced potenﬁF” for bosonic particle (positive energy) and bosonic antiparticle
(negative energy) in 3D-DKG symmetries as:

EZZ” (r) for bosonic particles

=k () =E5" (0 (|Bie]) =57 ()0 (= |[Exe]) —{ : (26)

_EZ?* (r) for bosonic antiparticles

where the step functiofi(z) is given by:

0(z) =

1forz >0
(27)

0 for otherwise ’

Rev. Mex. Fis69 060802



NEW EIGENSOLUTION OF THE KLEIN-GORDON AND SCHBDINGER EQUATIONS. .. 7

Eq. (23) cannot be solved analytically for any staté 0 because of the centrifugal term and the studied potential itself. In
fact, since the effective perturbative potenE@Eft (r) given in Eq. (25) has a strong singularityrat- 0, we need to use the
technique of the Greene and Aldrich approximation scheme [95] and applied by Parmar and Vinodkumar [1]. The radial part
of the three-dimensional deformed Klein-Gordon equation (3D-DKGE) with the IMYKP model contains the centrifugal terms
I(1+1)/r? andi(l + 1)/r* since we assume# 0. However, the IMYKP model is a kind of potential that cannot be solved
exactly when the centrifugal term is taken into account unless) is assumed. The conventional approximation used in this
paper:
2 2

R O I O B (28)

(1 —exp (—ar)) (1-2) r  l—exp(—ar) 1-—z2

r

This allows us, after direct calculations, to find the following results:

a?t exp(—2ar) a2
=~

(172)4’ r3 (172)3

~
~

1
povs
exp(—2ar atz?2  exp(—ar o’z
p(T4 )~ et p(T2 ) i (29)

3

~ o’z 1 o «
r3 ~ (17’2)3 andra ~ (172)3

This gives the perturbative effective potential as follows:

K K272 K372 K. K K
EZZ’I“t (Z) _ 1 . + 2% . + 3z - 4z . + 5% . + 6 . L(") + O (@2)’ (30)
1-2" (127 -2 (1-27 (1-2° (1-2)
with
Ky = a* [(By + M) As +a*1 (1 +1)]
Ko =Kg = (E, +M)atA
2 3 ( l )04 1 (31)

Ky =Kg5= _(Enl +M)013A2/2
K6 = (Enl —|—M) O¢3A4/2

The IMYKP model is extended by including new radial terif§l — 2)*, 22/(1 — 2)°, 22/(1 — 2)*, 2/(1 - 2)*, 2/(1 — 2)°

and1/(1 — z)* to become the IMYKP model in 3D-ERQM symmetries. The new additiveijgftt (r) is also proportional

to the infinitesimal couplind.®, this is logical from a physical point of view, because it explains the interaction between the
physical properties of the studied poteniiahnd the topological properties resulting from the deformation of space-épace

This allows us to consider the additive effective potential as a perturbation potential compared with the main ggieftjal

(parent potential operator ) in the symmetries of 3D-ERQM symmetries, that is, the ineﬁi@ﬁwr) < Zy (r) has been
achieved. That is all the physical justification for applying the time-independent perturbation theory that can be satisfied. This
allows us to give a complete prescription for determining the energy level of the gene(a;ljzenlz)th excited states.

3.2. The expectation values under the IMYKP models in the 3D-ERQM symmetries

In this subsection, we want to apply the perturbative theory, in the case of 3D-ERQM symmektries, to find the 6-e>;pectation val-
Yy a\ Y
uesTy b o S T S T T, S andT ;¢ which are equal, respective()l/(l - z)4> <z2/(1 - z)3> ,

(nlm)* = (nlm)’ = (nlm)’ = (nlm) (nlm (nlm), (nim)
yk yk yk yk
<z2/(1 — z)4>( iy’ <z/(1 - z)2>( oy’ <z/(1 — z)3>( - and <1/(1 — z)3>( . for bosonic particles taking into ac-
count the unperturbed wave functidn,; (r, 0, ©) which we have seen previously in Eq. (12). After straightforward cal-
culations, we obtain the expectation valug; . T2 3, T4 S, Ten 5, T2S S and T7) S by applying the standard

nlm)’ ~(nlm)’ ~(nlm)’ = (nlm) * = (nlm) (nlm)

perturbation theory in first-order as follows:

+oo
T = Cnt / 220n (1= )X Py (—nyn 4 20+ 2X00, 2K + 152)]7 dr (32.1)
0
+oo
T = Cnt / 220t (1 = )23 LR (—nyn 4 2w + 2X 0, 2X 0 + 15 2)] dr, (32.2)

0
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8 A. MAIRECHE

+oo
T = Cni / Z2omF2 (1 P LBy (—nyn 4 2w+ 2X 00, 2X 0 + 15 2)] P dr (32.3)
0
+o0
T = Ciif / 2om L (1 — )22 LBy (—n,m 4 2w + 2X0, 2K + 152)] dr, (32.4)
0
+00
T = Cnt / Z2omF L (1 22X T3 By (—nyn 4 2w+ 2X 00, 2X 0 + 15 2)]P dr, (32.5)
0
and
400
TS = Cnt / 2ont (1 — 2)2X 3 [ By (=, 4 2w + 2X00, 2X 0 + 1;2)]7 dr. (32.6)
0
We have used useful abbreviatioéé?xp;y)k = <n,l,m‘)?’n,l,m> to avoid the extra burden of Writing),? equal

1/(1—2)% 22/(1—2)%, 22/(1 = 2)*, 2/(1 — 2)*, z/(1 — 2)* and1/(1 — 2)®. We can evaluate the above integrals either
in a recurrence way through the physical values of the principal quantum numbef(1, ...) and then generalize the result
to the generaln, [, m)th excited state or we use the method proposed byeTak [96] and applied by Ahmadoest al.[97], to
obtain the general excited state directly. Introducing the change of vatiablexp (—ar). This maps the regiof < r < oo

to0 < z < 1 and allows us to obtaidr = — 4=, and transform Eqg32, i = 1, 6) into the following form:
b1 Cn2 + _
T(ynlm) = ;‘l /22“’"1_1 (1-— z)2X"’ 4 [2F1 (—nyn+ 2wy + 22X +2 —2,2X + 15 z)]2 dz, (33.2)
0
Cn2 +
T = %/22“’””'2_1 (1—2)> 72 [ o Ry (—nyn A+ 2w + 22X + 2 — 2,2X 0 + 1;2)) 7 dz, (33.2)
0
n2 7
TS = ;l / ZomA2=1 () _ 2T R (cnyn 4 2w 42X 4 2 — 2,2X, + 15 2)) dz, (33.3)
0
OnZ +
TS = %/22“’"“"1_1 (1= 22 oy (=1, + 205 + 2X0 4+ 2 — 2,2X, + 15 2)] dz, (33.4)
0
n2 +
ngmg = ;ﬂ / Zomtl=1 () _ V2T LB (—nun 4 2w 42X + 2 — 2,2X, + 15 2)] dz, (33.5)
0
and
& 0712 ! _
TS = %/22“”’_1 (1= 2)2 73 [ LFy (—n,n + 2w + 2X0 + 2 — 2,2X, + 15 2)]% de. (33.6)

0

We calculate the integrals in Eq83, i = 1, 6) with the help of the special integral formula [98]:
+1
/2’2)\_1 (1- z)z(yﬂ) LF (—nn+2w+A+1);2X+ 1;2)]? dz
0

ool +D)TRAOT (042 +1)) T (2A+1) (34)
S (nt+rv+ I+ (20 + DT (n+20+2 (v + 1))’
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NEW EIGENSOLUTION OF THE KLEIN-GORDON AND SCHBDINGER EQUATIONS. .. 9

herel" (£) denoting the usual Gamma function. By identifying E(&3,7 = 1,6) with the integrals in Eqgs. (34), we obtain
the following results:

_OpEnl(n 4 Xo = 2)T 2wa) T (042X, — 4) T (2w +1)

TYR-1 35.1
(lm) = o (n+ Dp/2—-2)T (n+ 2wy +1)T (n+Dyy —4) (35.1)
k-2 Ol (n+ Xn —3/2)T (2w + 2) T (042X — 3) T 2wy + 3) (35.2)
(nlm) = (n+ Dpi/2 —1/2)T (n+ 2wp +3) T (n+Dyy — 1) ’ '
k-3 Ot (n4 Xn —2)T (2w 4+ 2) T (042X — 4) T (2wig + 3) (35.3)
(nlm) = (n+ Dy /2 — DT (n+2wp + 3)T (n+Dyy — 2) ’ '
k=4 _ % nl(n+ X — DT Quwny +1)T (n+2X, —2)T 2w +2) (35.4)
(ntm) = (n+ Dy /2—1/2)T (n+ 2wp +2)T (n+Dypyy — 1) '
k=5 _ Cr2nl (n+ X — 3/2)T Qun + DT (042X, — 3) T (2w +2) (35.5)
(nlm) « (n+Dpi/2—1)T (n+ 2wp, +2)T (n+Dyy — 2) ’ '
and
k=6 C:ZZQ nl(n+ X, —3/2)T 2wn) T (42X, —3)T (2w + 1) (35.6)

(mim) = o (n+ Dp/2—3/2)T (n+ 2wy +1)T (n+Dypy —3)

with D,,; = 2wy, + 2X,,;.

3.3. The corrected energy for the IMYKP models in 3D-ERQM symmetries

What draws attention here is the application of our physical method resulting from the principle of superposition for the purpose
of determining the total values of the relativistic energy, in 3D-RNCQM symmetries. The global effective p&éﬁﬁ@t

which is the sum ofE, (r) +1 (1 + 1)/r? + Z2¢™ (r)) is responsible for the production of total relativistic energy within the
framework of extended quantum mechanics symmetries under improved modified Yukawa-Kratzer potential. Naturally, the
effective potential £, () + 1 (I + 1)/r?) is responsible for the relativistic energy known in the literature under the modified
Yukawa-Kratzer potential that we have seen in Eg. (14), which is dominant in the absence of space-space deformation. Wherea
the spontaneously generated poten’ﬁ@i ) due to space-space deformation will play the role of the corrected energy.
Considering that the NC parameteris arbltrary, it can be dealt with physically. Firstly, the influence of the perturbed spin-
orbit can be generated from effective perturbed poteﬁtjg’l’t ) corresponding to the bosonic particle and antiparticle with
spin-s such as LiH, HCI, CO and, H We obtain the perturbed spin-orbit effective potential by replacing the coupling of the
angular momenturlk, operator and the NC vect& with the new equivalent coupling:

LO —OLS with© = /03, + 03, + 6%,

This degree of freedom results from the arbitrary nature of the infinitesimal NC v@ctdfe have oriented the spin-s of the
(LiH, HCI, CO and, B) molecules to become parallels to the vecdowhich interacted with the IMYKP model. Additionally,
we use the following transformation which is well known in 3D-RQM symmetries:

OLS —0G” with G* = — (J* - L? — §?).

N —

In 3D-ERQM symmetry, the operatorﬁg’z, J2, L2, S? andJ.) form a complete set of conserved physics quantities, and the
eigenvalues of the operat@¥? are equal to the values:

1
FGLs) =506 +1) 10+ = s(s+ 1)), (36)
with I — s| < j < |l + s| for (LiH, HCI, CO and, H) molecules. As a direct consequence, the square partially corrected ener-

glesAE“’2 (n, Vo, a, D 1, ©, 4,1, 8) = AES"2 due to the perturbed effective potent@”t ) produced for thén, I, m)""
excited state in 3D-ERQM symmetries as follows

AE? = OF (j,1,5) (M){n,. (n, Vo, Dere) . (37)
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10 A. MAIRECHE

The global expectation value{M>(nlm) (n, Vo, o, D¢ 1) for (LiH, HCI, CO, and, B) molecules, which were created from
the effect of the IMYKP model, are determined from the following expression:

(M) sy (1 Vo, 0, Dere) = ZK TV (0, Vo, 0, Dot (38)

(nlm) (nlm)

The second principal physical contribution is due to the effect of the magnetic perturbative effective potential, which generates
the perturbed potentlap“ (r) under the IMYKP model in the 3D-ERQM symmetries. These effective potentials are achieved
when we replace both

——
LO — 7L X withR = Re,, (39)
with the additive physical condition
[©] = [7] [¥] = (length?,

here R and7) are the intensity of the magnetic field induced by the effect of the deformation of space-space geometry and
a new infinitesimal non-commutativity parameter. This choice, which comes from the fact that the@®eistarbitrary, or

that the magnetic field is directed according to e ) axis serves to simplify quantitative calculations without affecting the
nature of the physical point of view, we also need to apply:

<nlvl,7m/ |Lz‘ n,l,m) = M/ mO10n/n, (40)

with — |I| < m < + |I| for the (LiH, HCI, CO and, H) molecules. All of these data allow for the discovery of the new square
improved energy sh|mEm92(n W, a, D¢ re, T, m) for (LiH, HCI CO and, HB) molecules due to the perturbed Zeeman

effect created by the influence of the IMYKP model for the!, m) excited state in 3D-ERQM symmetries as follows:

6
AE;’}Cﬁ(n, Vo,, De e, 7,m) = TN(ZK Tg]klm‘; (n, Vo, a, De,1e))m, (41)
pn=1
After we have completed the first and second stages of the self-production of energy, we are going to discover another very
important case under the IMYKP model in 3D-ERQM symmetries. This physical new phenomenon is produced automatically
from the influence of perturbed effective potem:ngF” ) which we have seen in Eq. (30). We consider the bosonic particle
(or antiparticle) undergoing rotation with angular velocity The features of this subjective phenomenon are determined
through the replace the arbitrary vec@®rmwith x2. Allowing us to replace the coupling® with YL2 , as follows:

LO — \LO. (42)

Herey is just an infinitesimal real proportional constant. The effective poteﬁﬂ@lﬁf”’* , which induced the rotational
movements of the bosonic particles, can be expressed as follows:

pert

( ) —y < K1 K222 K32’2 K4Z K5Z K6

WL (r (1_2)4+(1_2)3+(1_Z)4+(1_z)2+(1_Z)3+(1_Z)3>LQ+O(@2). (43)

We chose a rotational velocify parallel to the Qz) axis 2= Qe,) to simplify the calculations, this, of course, does not
change the physical characteristics of the examined problem as much as it simplifies the calculations. The pertubed generated
spin-orbit coupling is then transformed into new physical phenomena as follows:

LQ — xQL.,. (44)

All of this data allow for the discovery of the new corrected square improved erzilef@gt2 (n,Vo, a, De, 7e, X, m) oOf the
(LiH, HCI, CO and, H) molecules due to the perturbed effective poterwi’gla ”’t z) which is generated automatically by
the influence of the IMYKP model for thig, [, m)th excited state in 3D-ERQM symmetrles as follows:

AE ;ztz =X (Z (nlm) (n Vo,a,De,re)> m. (45)
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NEW EIGENSOLUTION OF THE KLEIN-GORDON AND SCHBDINGER EQUATIONS. .. 11

It's worth noting that the authors of ref. [99] were studied rotating isotropic and anisotropic harmonically confined ultra-
cold Fermi gases in two and 3-dimensional space at zero temperature, but in this case, the rotational term was added to th
Hamiltonian operator manually, whereas, in our study, the rotation opédq’,@f“’t (z) LQ) appears automatically due to the

effect of the deformation of space-space under the IMYKP model. The eigenvalues of the op&kdtions bosonic particle

and antiparticle (negative energy) with spir= (1,2..) are equalj(j + 1) — (! + 1) — s(s + 1)] /2, the possible values of
jare{|l —s|,|[l —s|+1,...,|l+ s|}. Inthe symmetries of the 3D-ERQM symmetries, the total relativistic improved energy
EY% (n, Vo, @, ©, T, X, 4, [, s, m) for the (LiH, HCI, CO and, H) diatomic molecules with IMYKP model, corresponding to

nc

the generalizedn, [, m)th excited states are expressed as:
B (n, Vo, @, De,re, ©,7, X, 4, L 5,m) = B + (M), (PR +xQ)m + OF (4,1, 5))]'/?, (46)

(nlm)
whereFE,,; are usual relativistic energies under the IMYKP model obtained from equations of energy in Eq. (15). It should be
noted that the corrected relativistic energy in Eq. (46) can be generalized to include negative energy (the bosonic antiparticle)
and the positive relativistic energy (the bosonic particle) as follows:

B 4 [(MYY* (TR 4+ xQ) m + OF (4,1, 5))]'/2

(nlm)
for bosonic particle
AN . 7 (47)
Enl - [<M>?nlm) ((TN + XQ) m+ @f (Ja lv S))]1/2
for bosonic antiparticle

which can be written explicitly using the stéd| E4¥|) function as:
B = k] o (|e]) — o (~ | ) (8)

t—nc

It is important to point out that because we have only used corrections of the first order of infinitesimal noncommutative
parameter$®©, 7, x), perturbation theory cannot be used to find corrections of the second(@ﬂ,eer, XQ).

4. The SE with IMYKP models in 3D-ENRQM symmetries

The main purpose of this section is to analyze the non-relativistic limit, in three-dimensional extended non-relativistic QM
(3D-ENRQM) symmetries, for the IMYKP model. Two steps must be applied. The first one corresponds to the non-relativistic
limit, in usual three-dimensional non-relativistic QM (3D-NRQM) symmetries. This is achieved by transferring the following
values ¢&,,; + p andE,; — p), by @u andE]7), respectively. This step was studied by Parmar and Vinodkumar [1] as:

» 21(1+1
Er?ly(n7‘/07aaDe,Te) = % +De — A3 +a2A5 _aA4
s
2
_Oﬁ l(l+1)%(a2(A5+A1)+a(A2—A4))+n_|_Xglr 9)
2p 2(n+X17) 2 v
with
1
T’Zf=5+\/2u(A5—A1)+(1+1/2)2. (50)

Now, under the non-relativistic limit, the relativistic expectation va[ﬂgg;‘; reduce to the new corresponding non-relativistic
expectation valueR?", ", (1 = 1,6) as:

(nlm)’
C?nl(n+ X" —2)T (2w T (n+2X"7 —4) T (Wi +1)

Rlyiomy = =& (17 D2 2T (0t 20§ DTt D - 4) o

o Cr2n! (n+ X" —3/2)T (2w 4+ 2) T (n+2X77 — 3)T (2w + 3) (51.2)
(im) = 70" (4 DR J2— 1/2)T (n+ 20 + 3) 0 (nr D —1)

Rk _ C™2nl (n+ X —2)T (2w + 2) T (n4+2X7 — 4) T (2w, + 3) (51.3)
(nim) = o (n+ D /2— )T (n+ 2w +3)T (n+D77 —2)
s _ Onfnl(n+ Xpr — 1T 2wy + 1T (042X — 2) T (2wpf +2) (51.4)
(nim) a (n+D/2—1/2)T (n+ 2w +2)T (n+D]] — 1) ,

goks _ Caf nt(n+ X7 —3/2) T (Qwiif + 1) T (n2X07 = 3) T (2w +2) (51.5)
(nim) = " (n+Dpi /2= )T (n+ 207 +2)T (04D —2)
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12 A. MAIRECHE

and

puk—6 _ Caf nh(n+ X0 = 3/2)T (2wii) T (n42X57 = 3) T (2w +1)

(nm) = o (n+ D" /2-3/2)T (n+ 2w +1)T (n+D77 —3)

(51.6)
with
nl

DI =20 42X
2u(By+As—D.)

A n
W™ _\/z [+1) +2ud5 — 2844 — : , (52)
Cnr — MDQ@wpT+1) ol (X + 1T (n 2 +2 57 +1)

T r(nt2wn7+1) ) 220l PRI (2007 40+ 1)0(2X 7T +nt1)

while the relativistic factors(, (o« = 1,6) in Eq. (31) are reduced to the corresponding non-relativistic faéf¢js(c: = 1,6)
as follows:

Kpr = —at [A5 +atl(I+1) /2@
Kym = K5" = —a*A,;

Kp" = K2 = a’4,/2

K§m = —a’A,/2

(53)

As a direct consequence, the new non-relativistic improved enﬁﬁgy of the excited statén, l,m)th in 3D-ENRQM
symmetries under the IMYKP model equals the non-relativistic ené);gy in Eq. (49) under the MYKP model, as a main

part, plus non-relativistic correction which is generated with the effect of deformation space-space, as the perturbed part, as
follows:

a?l(1+1)
2p

EMN” glk(n, Vo, 0, Dere,©,7, %, 4,1,8,m) = + D, — A3z + o? A5
Z 2'“‘ 2 nr 2
N (1+1) % (a (A5+A1)+a(A2—A4))+n—|-an
—ad, — —

24 2(n+X77) 2

+ (MY (0, Vo, De ) (TR + XQ) m + OF (4,1, 5)), (54)

(nlm)

where(M)Y* """ (n, Vo, o, D, Te) is the non-relativistic expectation values which determined from the projection relation:

(nlm)

<M>yk—nT (na V07047De,7"e ZKnrRyki n %7aaDe,T6) . (55)

(nlm) (nlm)
p=1

5. Study of important particular cases in 3D-ERQM and 3D-ENRQM symmetries

We will look at some specific examples involving the new bound state energy eigenvalues in Egs. (46) and (54) in this section.
By adjusting relevant parameters of the IMYKP model in 3D-ERQM and three-dimensional extended non-relativistic quantum
mechanics (3D-ENRQM) symmetries, we could derive some specific potentials useful for other physical systems for much
concern the specialist reaches. It should be noted that these special cases were treated within the framework of relativistic and
non-relativistic quantum mechanics known in the literature in ref. [1], and we are now in the process of generalizing them to
include extended relativistic and non-relativistic quantum mechanics symmetries.

(1) If we choose}, = 0, we obtain improved modified Kratzer potential (IMKP), and- 0, from Eqgs. (46) and (54), we
deduced eigenvalues correspond to IMKP for 3D-ERQM and 3D-ENRQM symmetries as [33]:

Ef (n, Dere,©,7,X, 4,1, 8,m) = Bl + (M) (PR 4 xQ) m + OF (4,1, 5))]"/2, (56)
and
21D?r?
2
2 2
(n+ 124 \/2uD.r? + (1 +1/2) >

+ (MR (PR 4 Q) m + OF (4,1, 5)), (57)

(nlm)

EM =k (n,Dere,©,7,%,5,1,5,m) = Do —

nc—nl
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NEW EIGENSOLUTION OF THE KLEIN-GORDON AND SCHADINGER EQUATIONS. .. 13
where the relativistic eigenvalugs; in 3D-RQM symmetries are obtained from Refs. [1, 2]:
(B +p) D2r?

E'rlilg —]\42 = (EZ["'M) De -
<n+ 1/2 + \/(Ejfl +p) D2r2 4+ (1+ 1/2)2)

55 (58)

while the new relativistic and non-relativistic expectations vaKU\é$'("n,m) and (M), z;,f) can be determined from the follow-
ing limits:
k _ . yk
<M> (nlm) — (VQ,OBIE(O,O) <M> (nlm) (59)
M nr—k _ li nr—yk
< >(nlm) (Vo,a;IB(O,O) < >(nlm)

(2) If we chooseA; = Ay = 0 and A3 = —), we obtain improved generalized Kratzer potential (IGKP), and> 0,
from Egs. (46) and (54), we deduced eigenvalues correspond to IGKP for 3D-ERQM and 3D-ENRQM symmetries as:

E9% (1, Dere, ©,7, X, 4,1, 8,m) = EL7 9%+ [(MYE, (TR + xQ) m + OF (4,1,5))]/2, (60)

(nlm)
and
2uD?r?

Enr_gk(n’DQer @,T,X,j,l,S,m) = De + >\ -

nc—nl

(n +1/2+ \/2;@@73 +(+ 1/2)2)2
M) (PR 4 xQ) m+ OF (4.1, 9)), (61)

where the relativistic eigenvaluﬁéc in 3D-RQM symmetries obtained form [1,100]

(Bt + ) D202

(n+ 1/2 + \/<Efj +u) D272 + (1 + 1/2)2>27

BY* = M2 = (S + M) (D +2) - (62)

while the new relativistic and non-relativistic expectations vaIWs)?r’flm) and (M >?£l;§’>k can be determined from the fol-
lowing limits:

My = I M)
< >(”Zm) (A1,Az,a,ASIL(O,O,O,f)\) < >("lm)
< >nr—gk — hrn < >n7‘—yk (63)
(nlm) (A1,As,,A3)—(0,0,0,—X) (nlm)
(3) If we chooseA; = A; = 0 andA3 = —D., we obtain improved Kratzer potential, and— 0, from Egs. (46) and
(54), we deduced eigenvalues correspond to improved Kratzer potential for 3D-ERQM and 3D-ENRQM symmetries as:
EfP(n, Dere,©,7,x, 4,1, s,m) = Ej P 4+ (M), (TR +xQ) m + OF (4,1,))]"/?, (64)
and
L 2 D2 2
B M (0, Dere,©,7,x.,1, 5,m) = — —— :
(n +1/2+ \/2uDerg +(+ 1/2)2)
+ (MR (7R X Q) m+ OF (4.1, 5)), (65)

where the relativistic eigenvaluéﬁf in 3D-RQM symmetries obtained form [1,101]:

kp 2,.2
Ekp2 MQ _ (Enl + :u) Dere

nl

(66)

29

(ne vz (B8 ) D2r2 5 04127
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while the new relativistic and non-relativistic expectations valwsf,flm) and <M>?7fl;f)’“ can be determined from the fol-
lowing limits:

MYP = I M)Y*
Wim) = (4, 10 000D M i
nr—gk nr—yk (67)
(M) l = lim (M) l )
(nfm) " (A1, 42,0,45)—(0,0,0,-D,) *  ("m)
(4) If we choose,A; = A3 = 0 and A, = —A, we obtain improved modified Kratzer plus screened Coulomb poten-

tial (IMKSCP). From Eqgs. (46) and (54), we deduced eigenvalues correspond to IMKSCP for 3D-ERQM and 3D-ENRQM
symmetries as:

BES = EL7F 4 (M) (PR + xQ)m + OF (5,1,5))]'/2, (68)
and
2
2 2 2D.r2 —a(A+2D.r. (l+1
prrke LT I(QZH) + D + a?Der? — 2aD,r. — o (02 Deré —a(A+2Dere)) + U0+ 1)
2n+1+ 2\/2MD§7"§ +(14+1/2)
+ (M) (TR + X Q) m+ OF (5.1, 9)), (69)

where the relativistic eigenvaluﬁ;lC in 3D-RQM symmetries are obtained from Refs. [1, 2]:
EN? — M? = (EE + 1) (De + 0*Der? — 2aD.re) + o®1(1 + 1)

2

g2 | B ) (2Derd —a (At Dere)) +10+1) | (70)

on 4+ 142/ (BX + ) D22 + (14 1/2)°

while the new relativistic and non-relativistic expectations vaI(MS'(iflm) and (M)ZZ;TSC can be determined from the fol-
lowing limits:

M ke _ li M yk

< >(nlm) (A17A37A21)IE(0,07—A) < >(nlm) (71)
M nr—kc _ li M nr—yk

( >(nlm) (AI,AS,A;)IE(O,O,—A) ( >(n1m)

(5) If we chooseA; = A5 =0, A, = B andA, = C, we obtain improved Hellmann potential (IHP). From Eqgs. (46)
and (54), we deduced eigenvalues correspond to IMKSCP for 3D-ERQM and 3D-ENRQM symmetries as [39]:

BN = By " 4 (M), (M4 xQ)m +OF (j,1,5)]", (72)
and
=t _ 02U+ 1) ol o® [2u(B-C)+1(1+1)  n+l1+2]?
ne—nl 9y 241 2n + 21 + 2 2
+ (MY (PR + x2) m+ OF (5,1,5)), (73)

where the relativistic eigenvaluéf{;f in 3D-RQM symmetries obtained from Refs. [1,102]:

nl

BN = M? = —aC (Bl + ) + 0®U(1 + 1)
2
(E,’ﬁ’+u)(3_c)+1(z+1)+n+l+2

22
—a2C
@ o+ 20+ 2 2 ’

(74)

while the new relativistic and non-relativistic expectations valWﬁfl’lm) and (M >?£l;f)” can be determined from the fol-
lowing limits:

My o= li M)Y*
(M) (i) (Al,As,AQ,ﬁg—»(o,o,Bm( ) (ntm) 25
< >nr—hp _ lim < >nr—yk ( )
(PIm) ™ (A1,45,45,44)—(0,0,B,C) ' (P
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(6) If we chooseAd; = A3 = D, = 0 andA, = —A , we obtain an improved screened Coulomb potential or improved
Yukawa potential (I'YP). From Egs. (46) and (54), we deduced eigenvalues correspond to IMKSCP for 3D-ERQM and 3D-
ENRQM symmetries as [38, 88, 103]:

E¥ = 7Y 4 (M), (TR + XxQ)m + OF (j,1,))]"/2, (76)

nl (nlm)

and

nc—nl —

prreup _ 021D 0 [I141) —2uda”t  nt 42 2
20 24 2n 421 + 2 2

+ (M) Gy, (TR +XQ) m + OF (5,1, 5)). (77)

where the relativistic eigenvaluég’y in 3D-RQM symmetries obtained from Ref. [104, 105]:

(78)

nl

—Aa” (B 4 p) + 11+ 1) n+l+2r

EZ/PQ M2: 2 1) — 2
Ul +1) —a N+ 21 + 2 2

while the new relativistic and non-relativistic expectations valiigs(y, . and (M), ** can be determined from the fol-
lowing limits:

MY, = I M)YE
M) oty (A1 As.Dy . An)—(0.0.0,— A) M)y (79)
nr—yp __ . nr—yk
< >(nlm) - (A1,Ag,De,}XIZI)nH(O?O,O,fA) < >(nlm)

(7) If we choose A, = Ay = A5 =0, Ay = AandA, = D, we obtain improved inversely square Yukawa potential.
From Egs. (46) and (54), we deduced eigenvalues correspond to improved inversely square Yukawa potential for 3D-ERQM
and 3D-ENRQM symmetries as [37, 105]:

B = B+ (M) (PR 4 x @) m+ OF (,1,5))], (80)
and
e —i 2l(l+1 o?
EncfnllJp = (2 ) 5,
I 2p
5 2
1ye
) 1+ 1) — 204 +(n+1/2+ (1+3) 2,uA>
2
(n F1/244/(1+3)° - Z/LA)
+ (M)Er S (PR + XQ) m + OF (4,1,5)), (81)

where the relativistic eigenvaluég’? in 3D-RQM symmetries obtained from Ref. [5, 103]:

EWP? _ M? = a2l(141) — o?

2

(124 3 -4 (B2 +))

2 )

) —A (B + ) U+ 1) n

2<n+1/2+\/(l+§)2A(Ef}i”w))

while the new relativistic and non-relativistic expectations VaWSiZ]fm) and (M >?T’L’l:ni§/p can be determined from the fol-
lowing limits:

(82)

MyPr = I MYV
Mt = 1y 000,40 50— 000,405 M i) 83
< >n7’—iyp _ lim < >nr—yk ( )
(nlm) " (45, 44,45,4,,42)—(0,0,0,4,D5) * | (MM
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6. Spin-averaged mass spectra of HLM under IMKSCP models in 3D-ENRQM symmetries

The quark-antiquark interaction potentials, are spherically symmetrical and provide a good description of the heavy-light
mesons (HLM) such as andbb. This would give us a strong incentive to dedicate this section to the purpose to determine the
modified spin-averaged mass spectra of the heavy quarkonium system saemesb under the IMKSCP model interaction,

in 3D-ENRQM symmetries, by using the following formula,

1 nr—yk—u nr—yk—m nr—yk—I1 .

Myk*hllm =2m, + 3 (Enc—nl + Enc—nl + Enc—nl ) for Spm_l

- n — q - i
e E"" Y% for spin-0

nc—nl

; (84)

nr—yk—u nr—yk—m nr—yk—I1 nr—yk : . _
whereE, “V " E) 0 B )T and B are the new energy eigenvalues that correspgng ( 4 1, s = 1),

G=1Ils=1),@F=101-1,s=1)and({ =, s = 0) under improved modified Yukawa-Kratzer potential model interactions in
3D-NRNCQM symmetries. We generalized the original formula [106—108]:

yk—hlm __ nr
Mnl = 2mq + Eﬂ,l ,

herem, is the quark mass which equals the antiquark magsn the case of charmoniuw, bottomoniumbb while E™7 is
the non-relativistic energy under modified Yukawa-Kratzer potential models which is determined by generalizing Eq. (49) in
3-dimensional spacé\ = 3). We need to replace the factpr(j, [, s) with new generalized values as follows:

1/2 for (j=1+1s=1)
. B 1 for (j=10s=1)
F(G:1,s) = (—21 —2) /2 for j=1-1,s=1) (#)
0 for (j=1s=0)

L BV T andEYE ! yand ERT Y of the heavy quarkonium system

nl? “nec—nl nc—nl

Permuted us to obtain the new energy eigenvalHJ%S}
such as:¢ andbb as:
1_Forthe casej = [ + lands = 1, E]'7~" can be expressed by the following formula:

—u 2l(1+1
Eglz—nl = % + D, — Az + a? A5 — aAy
2
042 l(l—i—l)Q—’i(a2(A5+A1)+a(A2—A4)) n—‘,—anT —yk l
_ = o n MY N Q ©-]. (86
2 Forthe casej =l ands =1, Eﬁ{fj;ﬁ can be expressed by the following formula:
2l(l+1
E%ynlf::;ll = % + D, — Az + a?A5 — a Ay

Oé2

2
L(1+1) 2% (a2 (A5 + A1) + a (As — Ay)) L X
2u

nl

2(n+ X77) 2

+ (M) (PR 4 XQ)m — ©). (87)

3_For the casej = [ — lands = 1, can be express on the new energy eigenvﬁlﬂé’l by the following formula:

ol +1)

ne—nl — 9

+ D, — Az +Oé2A5 — Ay

042

2

2
L(141) 24 (a? (As+A1) +a (As—Ag)) X

2 (n+X77) S| DG (PRxQ)m=0 (1+1)).  (88)

4 _For the cas€j = [, s = 0), we can be express on the new energy eigenvE[;(,[gj?jl’C by the following formula:

_ 21(1+1)
B yk _ «
nc—nl 2#

2
I+ 3 (0% (As+ A) +a(do = Ad)  nt Xy

nl

+ D, — Az —|—a2A5 — oAy

042

o (M) I (PR 4 x2)m). (89)

(nlm)
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By substituting Egs. (86), (87) and (88) into Eqg. (89), the new mass spectrum of the meson systems in 3D-ENRQM symmetries
under the IMYKP model for any arbitrary radial and angular momentum quantum numbers becomes:

) (%4 xQ)m — 4£06) for spin-1

Mykfhlm _ Mykfhlm +

nc—nl nl

(90)
(M) {788 (R 4 x Q) m) for spin-0

Thus the spin-averaged mass spestt4 ~"'™of the heavy quarkonium system such-asindbb under the modified Yukawa-

Kratzer potential model interactions in usual 3D-NRQM symmetries:

2(1+1
NfYk—him _ 2my + a(zu—’_) + D, — A3 + a2A5 — Ay

nl

2
_ 0 (LD (P (As+ A +a (A= Ay) 0t Xy 1)
2% 2(n+ X7) 2 ’
is extended to includééMgf_’ffm = Myrhim_ M;‘{l’“’hlm> in 3D-ENRQM symmetries:
MR (X4 x@)m — 06 fors = 1
T @

(M) YE (7R 4 Q) m)for s = 0

(nlm)

Which is sensitive to the atomic quantum numbersj, [, s, m), potential depthsl(, ), and the non-commutativity parame-
ters ©, 7, x) under the deformed properties of space-space. This allows us to realize logical physical limits:

; (93)

yk—hlm __ Myk—hlm
- nl

Lim
(©,7x)—(0,0,0) "¢

to be achieved.

6.1. Composite systems

In this section, and in the context of NC algebra, consider composite systems such as molecules compgrisetipzirticles

of massn, (o = 1,2). In the non-relativistic context, it is important to consider the characteristics of the system descriptions.

It was discovered that those composite systems with various mass descriptions need various NC parameters [51,52,109]:
L/E\Ls’h’i), f&s,h,i) — 0

muv?

(94)

*

where the non-commutativity parametéf,, is determined fromzi=1 pi@,(,?,z, with ©; = my/(my1 +ms) and

e = ma/(my +ms), and 9,(7?3 is the new parameter of non-commutativity, corresponding to the mass particle of mass
1. Note that in the case of a physical system composed of two identical partictes:» such as the diatomic Hmnolecules
under the effect of the improved modified Yukawa-Kratzer potential and a class of Yukawa potential, the pdﬂ{ﬁj)nei@qw.

Thus, the three parameteé®s  andy which appear in Eq. (79) are changed to become as follows:

2 2 2 2 2 2
wr = (San) o+ (pae) + (e o9
a=1 a=1 a=1

with A¢ can be preser®¢, 7¢ and x¢. As mentioned above, in the case of a system of two particles with the same mass
1 = jiz, WE havee,(fﬁ) =0, T,([Z) = T andXL’L) = X Finally, we can generalize our obtained non-relativistic total
energyEr_  (n, Vo, @, De, 7e, ©°, 7¢, X¢, 7, [, s, m) under the improved modified Yukawa-Kratzer potential considering
that composite systems with different masses are described with different new NC parameters in Eq. (94) for the HCI, CH, LiH
and ScH diatomic molecules as:

2l(l+1)

2u

2
C o LI+ (@ (s + A) +a(ds —Ay)  n+ Xp7
2p 2(n+ X37) 2

Enr—yk

ne—nl (na‘/()aa)De,re?@7T7X7j7l757m) = + De - AS + O¢2A5 - OéA4

+ (MYI T (0, Vo, 0, De ) (TR + X°Q) m + ©°F (4,1, 5)). (96)
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It is worth noting that for the three-simultaneous limits In the context of 3D-ERQM and 3D-ENRQM symmetry, we
(®,7,x) — (0,0,0) and(©°, 7 x°) — (0,0,0), we re- have treated certain significant particular instances that we
cover the energy equations for both the KGE and SE witthope will be valuable to the specialized researcher, such as
modified Yukawa-Kratzer potential in 3D-RQM and 3D- the improved modified Kratzer potential, improved general-
NRQM symmetries, which are obtained in main Ref. [1].  ized Kratzer potential, improved Kratzer potential, improved
modified Kratzer plus screened Coulomb potential, improved
; screened Coulomb potential and improved inversely square
7. Conclusions Yukawa potential. It is shown that the IMYKP model in a
In summary, this paper presents an approximate analyBD-ERQM and 3D-ENRQM symmetry has similar behav-
ical solution of the 3-dimensional deformed Klein-Gordon ior to the dynamics of a bosonic particle and bosonic anti-
and deformed equations in 3D-ERQM symmetries with theparticle with equal scalar and vector potential for the modi-
improved modified Yukawa-Kratzer potential model mod-fied Yukawa-Kratzer potential model models in a 3D-RQM
els using the parametric Bopp’s shift method and standargymmetry (commutative space) influenced by the effect of
perturbation theory. Under the deformed features of spaced constant magnetic field, a self-rotational and a perturbed
space, we found new bound-state energies that appear seiRin-orbit interaction. We recover the energy equations for
sitive to gquantum numberg@(j,l’s’m), the mixed poten- the KGE and SE with modified Yukawa-Kratzer potential
tial depths p, D.,r.), the screening parameter’s inverse in 3D-RQM and 3D-NRQM symmetries, which were found
a and the non-commutativity paramete®,{,y). More-  in the main reference [1], for the three-simultaneous limits
over, the non-relativistic limit of the studied potential in 3D- (©, 7, x) — (0,0,0) and(6°, 7, x¢) — (0,0,0).
ENRQM symmetries has been investigated. The modified
spin-averaged mass spectra of heavy and heavy-light mesons The work is partially supported by the Laboratory of
such asce andbb in both 3D-NRQM (commutative space) Physics and Material Chemistry and by a DGRSDT and
and 3D-ENRQM symmetries were determined by applyingSNDL of Algeria. We thank the kind referees for their use-
our results of the new non-relativistic energies that repreful suggestions and criticism that have greatly improved this
sent the binding energy between the quark and anti-quarknanuscript.
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