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Inflation in an R2-correctedf(R) gravity model
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We conducted an analysis of the inflationary scenario within thef(R) gravity framework, focusing on the Gogoi-Goswami model defined by
the parametersα > 0, β > 0, and the characteristic curvature constantRc. This model exhibits a potential in the Einstein frame characterized
by V ∝ φp. The spectral index for this model is given byns = 1 − (p + 2)/2N , while the tensor-to-scalar ratio isr = 4p/N , where
N denotes the e-folding number at horizon crossing. Although this model aligns with the Planck 2018 observational data within a narrow
range, specifically1.10 ≤ p ≤ 1.25 for N = 50, it becomes increasingly difficult to find an appropriate value forp whenN ≥ 54. To
overcome this limitation, we propose incorporating anR2 correction term from the Starobinsky model to enhance the inflationary predictions.
Our analysis indicates that this correction improves the model’s performance when optimal parameters are selected, specifically by setting
x0 = R0/Rc ¿ 1 (with R0 representing the scalar curvature during the late-time accelerated expansion),αmax = O(1), and introducing
a parameterγ related to theR2 term within the range−0.024600 < γ < 0. The parameterx0 establishes a connection betweenα and
β via the de Sitter solution of the model. Additionally, the parameterRc can be estimated similarly to that in the Starobinsky model, as
Rc ' (1.3× 10−5/κ)2.
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1. Introduction

The theory of General Relativity (GR) marked a significant
breakthrough in the 20th century, fundamentally transform-
ing our understanding of the universe. Einstein’s famous field
equations revealed the intricate relationship between space-
time and matter, laying the foundation for the standard model
of Big Bang cosmology, which describes a homogeneous,
isotropic, and expanding universe.

However, the standard model faces several challenges,
including the flatness problem, the horizon problem, and
the issue of magnetic monopoles. To address these issues,
Alan Guth introduced the concept of inflation in 1980 [1].
This theory proposes that the early universe experienced a
brief period of rapid expansion, triggered by the decay of a
false vacuum state into a true vacuum in a supercooled uni-
verse. While inflation successfully resolves the aforemen-
tioned problems, Guth acknowledged that it leads to an inho-
mogeneous universe.

An alternative to Guth’s inflationary model is the slow-
roll inflation scenario, in which the universe’s expansion is
driven by a scalar field that gradually rolls toward the mini-
mum of its effective potential [2-5]. This scenario not only
addresses the issues associated with the Big Bang model but
also results in a homogeneous universe, as the scalar field
(inflaton) rolls slowly.

While General Relativity (GR) has been highly success-
ful in describing the universe, it faces significant challenges,
particularly its lack of renormalizability and the inability to

be conventionally quantized [6]. These limitations have led
to efforts to modify GR by adding additional terms to the
Einstein-Hilbert action, resulting in what are now widely
known asf(R) gravity theories. These modifications in-
volve replacing the Ricci curvature scalar,R, with an arbi-
trary function ofR. The corresponding field equations can
be derived by varying the action with respect to the metric
tensor, using approaches such as the metric formalism, Pala-
tini formalism [7], or the metric-affine formalism [8].

Starobinsky [9] made a significant contribution to our
understanding of the early universe by predicting inflation
through the inclusion of higher-order curvature terms in the
action of GR. This prediction remains consistent with recent
observations from the Planck mission [10]. On the other
hand, Hu and Sawicki [11] proposed a model that accounts
for the accelerated expansion of the late universe without
the need for a cosmological constant. Variousf(R) grav-
ity models have since been explored to explain phenomena
such as inflation [12-15], late-time acceleration [16-18], or
both epochs [19,20].

In 2020, Gogoi and Goswami [21] introduced a newf(R)
gravity model featuringarccot and exp correction terms,
which they proposed to describe gravitational wave phenom-
ena. This model has successfully passed solar system tests
[22] and meets the viability criteria forf(R) gravity [23,24].
It has been shown to produce gravitational waves, and it is
constrained by the GW170817 events. However, the infla-
tionary scenario of this model has not yet been thoroughly
investigated. The scalar potential associated with the model
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is of the formV ∝ φp, which falls outside the inflationary
constraints set by the2σ CL-Planck observational data for
p ≥ 2/3 [10]. In this study, we examine the inflationary sce-
nario of the model by incorporating an additional correction
term from Starobinsky’s model, as discussed in Ref. [25].

This paper is organized as follows: In Sec. 2, we provide
a brief review off(R) gravity and introduce the model we
propose. In Sec. 3, we analyze the inflationary scenario of
the model under the constraints provided by Planck 2018 ob-
servations [10]. Finally, in the last Sec. 4, we summarize our
findings and discuss potential directions for future research.

2. f(R) Gravity

2.1. Field equations

The modified Einstein-Hilbert action off(R) gravity model
in the Jordan frame is given by

S =
∫

d4x
√−g

[
f(R)
2κ2

+ Lm

]
, (1)

wheref(R) is an arbitrary function of the Ricci scalarR, and
Lm is the Lagrangian of matter. Here,κ2 = 8πG = Mpl−2,
with G representing the Newton gravitational constant, and
Mpl the reduced Planck mass(c = ~ = 1). Varying the ac-
tion in Eq. (1) with respect to the metricgµν yields the field
equation:

f,R(R)Rµν − 1
2
f(R)gµν + (gµν¤−∇µ∇ν)f,R(R)

= κ2Tµν . (2)

In this equation, the subscript notationf,R denotes the deriva-
tive of the functionf with respect to the Ricci scalarR, and
¤ = ∇µ∇µ is the d’Alembert operator. The left-hand side of
the equation accounts for the curvature-related terms, while
the right-hand side corresponds to the matter content, repre-
sented by the energy-momentum tensor:

Tµν = − 2√−g

δ
√−gLm

δgµν
. (3)

For a perfect fluid, the energy-momentum tensorTµν simpli-
fies toTµν = (ρ + p)uµuν + pgµν , whereρ is the energy
density,p is the pressure, anduµ is the four-velocity of the
fluid.

The field Eq. (2) leads to the following trace equation:

f,R(R)R + 3¤f,R(R)− 2f(R) = κ2T, (4)

where¤ is the d’Alembert operator. Whenf(R) = R− 2Λ,
both Eq. (2) and Eq. (4) reduce to the familiar conditions of
General Relativity (GR). Notably, the term3¤f,R(R) van-
ishes in GR. However, inf(R) gravity, this term introduces
an additional scalar degree of freedom known as the scalaron

[9]. We define the scalaron field asφ = f,R(R), allowing us
to rewrite Eq. (4) as [17,21]:

¤φ =
dVeff

dφ
, (5)

whereVeff is the effective potential given by

dVeff

dφ
=

1
3

[2f(R(φ))−R(φ)φ] +
1
3
κ2T. (6)

In the absence of matter (T = 0), Veff simplifies toV . For a
stationary condition, wheredVeff/dφ = 0, the second deriva-
tive of the potential atφ = φ0 = f,R(R0) provides the mass
of the scalaron field:

m2
φ =

1
3

[
f,R(R0)
f,RR(R0)

−R0

]
. (7)

This equation describes the stability of the scalaron field,
which is crucial for generating the late-time expansion of the
universe. In the early universe, however, the scalaron may be
in a quasi-stable state [26]. It is important to ensure that the
mass term remains finite, which requires thatf,RR(R0) 6= 0.
Moreover, for a specific value ofR0, we can derive the de Sit-
ter solution from Eq. (6), and the stability conditionm2

φ > 0
from Eq. (7).

2.2. Scalar-tensor equivalence

The equivalence betweenf(R) gravity and scalar-tensor the-
ory has been the subject of much interest (see Refs. [6,27,28]
for some reviews). Metricf(R) gravity can be expressed in
the form of Brans-Dicke theory [29] by introducing an auxil-
iary scalar fieldχ. Hence, we can write the action in Eq. (1)
as follows:

S =
1

2κ2

∫
d4x

√−g
[
f(χ)

+ f,χ(χ)(R− χ)
]

+
∫

d4xLm, (8)

whereLm is the matter Lagrangian. By varying this equation
with respect to the scalar fieldχ, we obtain the following
equation:

f,χχ(χ)(R− χ) = 0. (9)

From Eq. (7), we havef,χχ(χ) 6= 0, which impliesR = χ.
Using the previous definition of the scalaron field asφ =
f,χ(χ), the action in Eq. (8) can be expressed as follows:

S =
1

2κ2

∫
d4√−g[φR− U(φ)] +

∫
d4xLm, (10)

whereU(φ) is a scalar field potential given by:

U(φ) = χ(φ)φ− f(χ(φ)). (11)

The action in Eq. (10) for metricf(R) gravity is equivalent
to Brans-Dicke theory [29] forωBD = 0 andκ2 = 1 [6,30].
Meanwhile, forf(R) with Palatini formalism, the equiva-
lence is found forωBD = −3/2.
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In the Einstein frame, the action (1) can be obtained using
the conformal transformation of the metric:

g̃µν = f,R(R)gµν . (12)

Thus, atLm = 0, the action is given by [27,31]:

S =
∫

d4x
√
−g̃

[ 1
2κ2

R̃

− 1
2
g̃µν∇µφE∇νφE − V (φE)

]
, (13)

whereφE is the canonical scalar field given by:

φE =

√
3
2

1
κ

ln(f,R(R)), (14)

and the scalar potential is given by:

V (φE) =
U(R)

2κ2f,R(R)2
=

Rf,R(R)− f(R)
2κ2f,R(R)2

. (15)

The value ofR̃ is calculated using the transformed metric
g̃µν , and∇µ is the covariant derivative operator. The mass
squared term of the scalaron field in this frame is given by:

m2
φE

=
d2V (φE)

dφ2
E

=
1
3

[
1

f,RR(R)
+

R

f,R(R)
− 4f(R)

f,R(R)2

]
. (16)

Both the Jordan and Einstein frames share equivalent dy-
namical properties. Anisotropic singularities in both frames
can be avoided iff,R(R) > 0 andf,RR(R) > 0 [32]. It is
convenient to study the inflationary dynamics off(R) gravity
in the Einstein frame.

2.3. Thef(R) model

We consider thef(R) gravity model proposed by Ref. [21],
given by the following equation:

f0(R) = R− α

π
Rc arccot

(
R2

c

R2

)

− βRc

[
1− exp

(
− R

Rc

)]
, (17)

whereα andβ are dimensionless positive constants, andRc

is a curvature characteristic constant with the same dimen-
sions asR. This model was proposed to study the character-
istics of gravitational waves (GWs) through the scalar polar-
ization mode arising from extra degrees of freedom inf(R)
gravity. The model provides a good explanation of the solar
system test and late-time acceleration. However, the viability
of the model under other cosmological constraints, such as

FIGURE 1. The scalar potential in the Einstein frame of the orig-
inal model can be approximated asV (φ) ∝ (κφ)p. To achieve
sufficient inflation, the parameterp should lie within the range
1.10 ≤ p ≤ 1.25 for N = 50.

early-time expansion in the inflationary scenario, still needs
to be elaborated. This article aims to explain the inflationary
phase of the model.

To fully grasp the discussion on inflation in the Gogoi-
Goswami model, it is crucial to have a solid understanding of
slow-roll inflation, which is covered in Sec. 3. Readers are
encouraged to review that section to effectively follow the
forthcoming discussion.

The slow-roll inflation scenario in this model can be an-
alyzed using the scalaron potential in the Einstein frame, as
defined in Eq. (15). Figure 1 illustrates the scalar potential for
various parameter values. With the parameters specified by
the model, the scalar potential in the Einstein frame takes the
form V (φ) ∝ (κφ)p. For this type of potential, the spectral
index is given byns = 1 − (p + 2)/(2N), and the tensor-
to-scalar ratio isr = 4p/N , whereN represents the number
of e-foldings at horizon crossing, typically in the range of
N ≈ 50 − 60 [33]. To align with the Planck 2018 obser-
vational data, which determined the spectral index of scalar
perturbations to bens = 0.9649±0.0042 with an upper limit
on the tensor-to-scalar ratio ofr < 0.1, the parameterp must
be set within the range1.10 ≤ p ≤ 1.25 for N = 50. How-
ever, it becomes challenging to find a suitable value ofp for
N ≥ 54 that satisfies the Planck constraints. Consequently,
the Planck 2018 observational data [10] disfavors this type of
potential.

Even though the model described by Eq. (17) provides
a good explanation for late-time acceleration, we propose
adding an extraR2 correction term to account for the infla-
tionary phase. TheR2 term becomes relevant in regions of
high curvature, where the model’s behavior aligns with that
proposed by Starobinsky [9], which successfully explains
the inflationary phase. This approach is also discussed in
Ref. [25]. The modified model is given by:
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f(R) = R− α

π
Rc arccot

(
R2

c

R2

)

− βRc

[
1− e(−

R
Rc

)
]
− γ

R2

Rc
, (18)

whereγ is a constant.
Before exploring the inflationary scenario of this model,

it is essential to test it against several criteria to ensure its vi-
ability as anf(R) gravity model. This step is crucial because
the addition of theγ term to the original model could impact
its viability. We consider the following conditions [34]:

lim
R→0

f(R) = 0, lim
R→∞

f(R) ∝ R2. (19)

The first condition corresponds to a flat Minkowski solution,
while the second condition generates inflationary expansion.
Our model (18) satisfies these conditions for any values ofα,
β, andγ < 0. It can be inferred that theα andβ parameters
dominate in the small curvature region, while theγ parameter
dominates in the large curvature region.

To avoid an antigravity regime, thef(R) gravity model
must satisfy the conditionf,R(R) > 0. For our model, this
condition takes the form:

1− βe−x − 2γx− 2αx

π (x4 + 1)
> 0, (20)

wherex = R/Rc. Meanwhile, to ensure stable cosmological
perturbation, the conditionf,RR(R) > 0 must hold, which is
given by:

β e−x − 2γ +
2α

(
3x4 − 1

)

π (x4 + 1)2
> 0. (21)

Both conditions are easily satisfied whenγ < 0 and x is
large, as theγ term becomes dominant. However, asx → 0,
both conditions require further investigation, as the contribu-
tions fromα andβ can no longer be neglected, potentially
leading to a violation of these conditions.

To fully grasp the behavior of the model asx → 0, it is
essential to consider the late-time de Sitter solution. This so-
lution corresponds to the conditiondV/dφ = 0, which can
be expressed as [35,36]:

2f(R0)−R0f,R(R0) = 0, (22)

whereR0 represents the de Sitter curvature. The stability of
this de Sitter solution is characterized by [37]:

f,R(R0)
f,RR(R0)

> R0. (23)

AssumingR0 = Rc, Eq. (22) yields a relation forβ:

β =
e((π − 2)α− 2π)

2π(3− 2e)
∼= −0.202697α + 1.115621. (24)

The stability condition from Eq. (23) results in:

2
Rcπ2

(
α + βe−1π − π

2

) (
α + βe−1π − 2πγ

)
< 0. (25)

By substituting the expression forβ from Eq. (24), we
can determine the range ofα:

−1.6838 + 8.2054γ < α < 0.3675. (26)

This range is similar to that of the original model, but in-
cludes an additional term dependent onγ. Equation (26) im-
plies thatγ < 0.25 for consistency. However, the original
model’s late-time stable de Sitter solution requiresγ < 0.
For instance, settingγ = −0.0122 slightly lowers the lower
bound ofα to 0.1 and increases the upper bound ofβ to 0.02.

WhenR0 6= Rc, the de Sitter solution is obtained if

2αx2
0

x4
0 + 1

+ π
[
βe−x0(x0 + 2) + x0 − 2β

]

= 2α arccot(x−2
0 ), (27)

wherex0 ≡ R0/Rc. We find that theγ term does not ap-
pear in the de Sitter solution, so the parameter bounds remain
consistent with those of the original Gogoi-Goswami model
[21]. The solution forβ is given by

β
(
(−2 + (x0 + 2)e−x0)π(x4

0 + 1)
)

= (−2αx4
0 − 2α) arctan(x−2

0 ) + α(πx4
0 − 2x2

0 + π)

− π(x5
0 + x). (28)

The stability condition for the de Sitter solution, assuming
Rc > 0, is expressed as

FIGURE 2. Relationship between the parameterα andx0 for vari-
ous values ofγ. For example, whenγ = −0.5, the corresponding
line indicates the upper bound ofα asx0 changes.
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FIGURE 3. The relationship betweenx0 andx for specific values ofα andγ is illustrated in the plot. This shows that to maintain a smallx0,
both the parameterγ should be negative andα should be sufficiently small.

(
πβ(x0 + 1)(x4

0 + 1)2e−x0 − π(x4
0 + 1)2 + 8αx5

0

)

× (
πβ(x4

0 + 1)2e−x0 − 2πγ(x4
0 + 1)2 + 2α(3x4

0 − 1)
)

< 0. (29)

As shown in Eq. (25), the term withγ introduces a deviation
to the solution at the boundaries ofα andβ, with a factor of
(x4

0 + 1)2. It can be inferred that a small negative value ofγ
is required to maintain consistency with the Gogoi-Goswami
model.

Figure 2 illustrates the relationships between the param-
etersα, x0, andγ derived from the de Sitter solution and its
stability. In this context,β is expressed in terms ofα andx0

using Eq. (28). For eachγ, the permissible values ofα ≥ 0
are constrained by the line corresponding to thatγ value.

The relationship betweenx0 andx for specific values of
γ andα can be determined by examining the de Sitter so-
lution, its stability, the antigravity conditionf,R > 0, and
the stability of cosmological perturbationsf,RR > 0. This
relationship is depicted in Fig. 3. The Ricci scalar in de Sit-
ter space,R0, is proportional to the cosmological constantΛ
(with Λ ≈ 1.1056×10−52m−2), which governs the late-time
expansion of the universe. Consequently, ifRc represents the

energy scale during inflation,x0 = R0/Rc → 0. To achieve
this, α andγ must be selected to drivex0 → 0. Figure 3
shows that this condition is met whenγ < 0 andα is suffi-
ciently small.

3. Inflation of the model

The dynamics of slow-roll inflation are governed by a scalar
field φ and an effective potentialV (φ) in the Einstein frame.
The Friedmann equations [5] are commonly used to study
these dynamics, given by:

H2 =
κ2

3

[
1
2
φ̇ + V (φ)

]
, (30)

φ̈ + 3Hφ̇ = −V,φ(φ). (31)

Here, H ≡ ȧ/a is the Hubble parameter,a is the expan-
sion scale factor, anḋφ indicates the derivative with respect
to time t. Slow-roll inflation occurs when the acceleration
term in Eq. (31) is small (̈φ ¿ 3Hφ̇), and can be neglected,
leading to the condition:

φ̇ ' −V,φ(φ)
3H

. (32)
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Other slow-roll parameters,εV andηV , can also be defined
as:

εV =
1

2κ2

(
V,φ(φ)
V (φ)

)2

, (33)

ηV =
1
κ2

V,φφ(φ)
V (φ)

, (34)

which must satisfyεV , ηV ¿ 1 for inflation to occur [4,10].
The e-folding numberN is another important quantity

that determines the slow-roll inflation scenario, representing
the number of expansions that occur. It can be expressed
as [5]:

N ≡ ln(
af

ai
) ' −

∫ φf

φi

V (φ)
V,φ(φ)

dφ, (35)

whereai andaf are the initial and final values of the scale
factor. Inflation ends whenεV andηV approach 1, and the
e-folding number is typically betweenN = 50 and60.

To constrain our model, we used the latest Planck obser-
vation data [10]. This required the use of the important pa-
rameters, the tensor-to-scalar ratio (r) and the scalar spectral
index (ns), which can be inferred from Eqs. (33) - (34) as
follows:

r = 16εV , (36)

ns = 1− 6εV + 2ηV . (37)

The values of these parameters given by Ref. [10] arer <
0.11 andns = 0.9649± 0.0042. The Planck 2018 constraint
on r is equivalent to an upper bound on the energy scale of
inflation when the pivot scale exits the Hubble radius, given
by

V∗ =
3π2As

2
rM4

pl < (1.6× 1016GeV)4

(95% CL), (38)

whereAs is the scalar power spectrum amplitude. This rela-
tion implies an upper bound on the Hubble parameter during
inflation of

H∗ < 2.5× 10−5Mpl. (39)

We examined the slow-roll inflation scenario of the model
described by Eq. (18) in the Einstein frame. In this context,
the inflaton is represented by the canonical scalar field given
by:

φ(x) =

√
3
2

1
κ

ln
(

1− 2αx

π (x4 + 1)
− β e−x − 2γx

)
, (40)

wherex = R/Rc. The corresponding scalar potential is

V (x) =
Rc

κ2

A(x)
B(x)

, (41)

with

A(x) = α arccot
(
x−2

)− βπ (x + 1) e−x

+ π
(
β − γ x2

)− 2α x2

x4 + 1
, (42)

and

B(x) =
8
π

(
βπ e−x

2
+

[
γx− 1

2

]
π +

αx

x4 + 1

)2

. (43)

Figure 4 illustrates the relationship between the potential
V and the inflatonφ. For any given values ofα, x0, andγ,
the effective potential exhibits a flat region, which is essen-
tial for achieving slow-roll inflation. The parameterγ sig-
nificantly influences the potential, as it sets the energy scale
during inflation and thus affects the inflaton’s behavior. In

FIGURE 4. The figure displays a parametric plot ofφ(R) andV (φ(R)) for our model (18). The plots show that the parametersα andx0 are
associated with the minima, whereasγ determines the overall height of the potential.
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contrast, the parametersα andx0 determine the potential’s
behavior beyond the flat region, impacting the end of infla-
tion and the minima of the effective potential where reheating
occurs.

For a qualitative analysis, we focus on the flat region
of the scalar potentialV (φ). In this regime, theγ term
dominates compared to theα and β terms, particularly
when R À Rc. Under these conditions, we approxi-
matef(R) ≈ R − γ(R2/Rc), leading to the scalaron field
κφ ≈

√
(3/2) ln

(
1− 2γ[R/R2

c ]
)
. In this regime,R ≈

[Rc/2γ]
(
1− e−

√
2/3κφ

)
. Thus, the inflaton potential can

be approximated as:

V ≈ −Rc

8γκ2

(
1− e−

√
2
3 κφ

)2

. (44)

This potential resembles the Starobinsky type, characterized
by f(R) ≈ R − γ(R2/Rc). For effective inflation, this
potential necessitates−(γ/Rc) ≈ (1/6M2), with M ∼
1.3 × 10−5/κ ∼ 3 × 1013 GeV [25,38]. Therefore, a rea-
sonable estimate forγ in this model is obtained by setting
Rc ≈ M2, which yields−γ ≈ 1/6 ≈ 0.167. This estimate
will be compared with our numerical results.

We conducted numerical simulations to explore the infla-
tionary dynamics of the model given by Eq. (18). Our find-
ings indicate that the inflationary properties of the model are

significantly influenced by the parametersα, x0, andγ. The
parameterx0 is derived by substitutingβ using the de Sitter
solution relation. Sincex0 is associated with the Ricci scalar
R0 of the current spacetime, which is proportional to the cos-
mological constantΛ and responsible for late-time accelera-
tion, it is crucial to choose a sufficiently small value forx0.
In our simulations, we setx0 ≤ 0.1. To maintain a smallx0,
the model’s viability requiresγ < 0 andα to be sufficiently
small. In our calculations,γ was varied withγ ≤ −10−4,
where this upper limit is used to represent the valueγ → 0.

The numerical results for the inflationary parameters,
specifically the tensor-to-scalar ratior and the spectral in-
dex ns, are presented in Fig. 5. Initially, we determine the
values ofx0 andα before varyingγ ≤ 10−4. To identify
permissible values forγ, we use the criterionεV (φf ) ' 1
to check whether inflation can terminate. The initial value of
the scalaron field at the onset of inflation (φi) is determined
by applying the e-folding number criterion, withN ranging
from 50 to 60. For each e-folding numberN , φi is calcu-
lated, and the tensor-to-scalar ratior(φi) and the spectral in-
dexns(φi) are then computed and plotted in Fig. 5.

Figure 5 shows the numerical results forr andns plot-
ted against the Planck 2018 inflationary constraints to assess
the alignment of the chosen parameter values with these con-

FIGURE 5. The plots display the tensor-to-scalar ratior and the spectral indexns for various values of the parametersx0 andα. The
parameterγ is varied, generating lines forr andns corresponding to e-folding numbersN = 50 andN = 60, measured from the end of
inflation. The range ofγ is depicted from a value represented by a blue bullet (' −10−4) to the minimum value compatible with inflation
(γmin), indicated by a red square.
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TABLE I. Numerical results for inflation parameters for various values ofα andx0 ¿ 1.

N = 50 N = 60

x0 α γmin ns r ns r

1.0e-01 1.0e+02 -0.000750 0.96114476 0.00430126 0.96752005 0.00303028

1.0e-01 1.0e+01 -0.005400 0.96127743 0.00426987 0.96761423 0.00301144

1.0e-01 1.0e+00 -0.024600 0.96120678 0.00428725 0.96756413 0.00302186

1.0e-01 1.0e-01 -0.036900 0.96114711 0.00430101 0.96752106 0.00303025

1.0e-01 1.0e-03 -0.038600 0.96115527 0.00429919 0.96752763 0.00302902

1.0e-01 1.0e-05 -0.038600 0.96115651 0.00429892 0.96752849 0.00302885

1.0e-03 1.0e+02 -0.000750 0.96114478 0.00430125 0.96752004 0.00303028

1.0e-03 1.0e+01 -0.005400 0.96127769 0.00426981 0.96761442 0.00301141

1.0e-03 1.0e+00 -0.024900 0.96119895 0.00428913 0.96755751 0.00302318

1.0e-03 1.0e-01 -0.036800 0.96115935 0.00429829 0.96752944 0.00302867

1.0e-03 1.0e-03 -0.038800 0.96114238 0.00430204 0.96751831 0.00303076

1.0e-03 1.0e-05 -0.038800 0.96114598 0.00430126 0.96752083 0.00303029

1.0e-05 1.0e+02 -0.000750 0.96114478 0.00430125 0.96752004 0.00303028

1.0e-05 1.0e+01 -0.002680 0.96144495 0.00422629 0.96773567 0.00298483

1.0e-05 1.0e+00 -0.024900 0.96119895 0.00428913 0.96755751 0.00302318

1.0e-05 1.0e-01 -0.036800 0.96115936 0.00429829 0.96752944 0.00302867

1.0e-05 1.0e-03 -0.038800 0.96114238 0.00430204 0.96751831 0.00303076

1.0e-05 1.0e-05 -0.038800 0.96114598 0.00430126 0.96752083 0.00303029

straints. Due to the close proximity of the computedr and
ns values across differentα andx0 values, it is impractical to
display all results in Fig. 5. Therefore, selected numerical re-
sults are summarized in Table I. From Fig. 5 and Table I, we
conclude that inflation can terminate successfully (εV ' 1)
even whenα is set to102. The minimum value ofγ (denoted
γmin) primarily depends onα. For instance, withα = 102,
γmin ' −0.000750, while for α ¿ 1, γmin ' −0.0388. The
effect ofx0 ¿ 1 onγmin appears to be minimal.

The dependence ofγmin on α for x0 ¿ 1 can be under-
stood by examining the properties of the scalaron potential
depicted in Fig. 4. Variations inα affect the minimum height
of the potential, leading to faster inflation termination for
largerα due to a shallower potential minimum. To achieve
sufficient inflation, a higher potential is necessary, which cor-
responds to a smaller|γmin|.

While selectingα = 102 can yield effective inflation,
the stability of the de Sitter solution must also be taken
into account. Thus, a more reasonable upper limit forα
when x0 ¿ 1 is α ∈ O(1), as illustrated in Fig. 2, with
γmin ' −0.024600.

The values of the parametersx0, α, andγmin in this model
do not directly influence the choice of the parameterRc. It
is crucial to note that the slow-roll parametersεV andηV ,
as well as the inflation parametersr andns, are independent
of κ andRc. These parameters are considered solely to en-
sure that the inflationary potential complies with the obser-

vational constraints of Planck 2018, as specified by Eq. (38).
In the Starobinsky model,f(R) = R − γ(R2/Rc), inflation
is effectively explained by selecting−γ ' 1/6 ' 0.167 and
Rc = M2 ' (1.3 × 10−5/κ)2. This model requires only
minor adjustments when applied to the one under review. In-
flation is well within the Planck 2018 constraints ifx0 ¿ 1,
αmax ∈ O(1), andγ = γmin ' −0.024600 < 0. The param-
eter choiceRc = M2 remains valid for this model.

4. Conclusion

We examined the inflationary phase within the Gogoi-
Goswamif(R) gravity model. In this model, the potential
in the Einstein frame is expressed asφp. Consequently, the
spectral index is given byns = 1 − (p + 2/2N), and the
tensor-to-scalar ratio isr = 4p/N , whereN represents the e-
folding number at horizon crossing. To align with the Planck
2018 observational data, which set the spectral index of scalar
perturbations atns = 0.9649± 0.0042 and impose an upper
limit of r < 0.1, we find that1.1 ≤ p ≤ 1.25 for N = 50
is required. However, it proves challenging to find a suitable
value forp whenN ≥ 54. To address this issue, we intro-
duced a correction term to improve the model’s predictions
of the inflationary phase.

Our proposed model has successfully passed viability
tests. It can produce a Minkowski solution for low curvature,
an inflationary phase for high curvature, and a stable de Sit-
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ter solution during late-time expansion. We have shown that
the model achieves positive gravitational coupling and stable
cosmological perturbations, depending on the parametersα,
x0, andγ, which ensure a stable de Sitter solution. The pa-
rameters that satisfy the viability conditions are illustrated in
Figs. 2 and 3. Moreover, our model features a flat potential
region influenced by the parameterγ < 0, which enables in-
flation. Naturally, we takex0 ¿ 1 so thatαmax = O(1)
for γ < 0. Numerical analysis confirms that the model fits
the Planck 2018 observational data well, withγ in the range

−0.024600 < γ < 0 andRc ' (1.3 × 10−5/κ)2. Con-
sequently, thisf(R) gravity model effectively explains the
early universe’s expansion, specifically inflation.

However, several questions remain. Sinceα andβ (orx0)
primarily influence the potential near its minimum, their roles
in the reheating phase after inflation require further investi-
gation. Additionally, it needs to be explored whether these
parameters can contribute to the reheating phase and the for-
mation of primordial matter. These issues will be addressed
in future research.
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