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We conducted an analysis of the inflationary scenario withiry({fe) gravity framework, focusing on the Gogoi-Goswami model defined by

the parameterae > 0, 8 > 0, and the characteristic curvature const&pt This model exhibits a potential in the Einstein frame characterized

by V' ¢”. The spectral index for this model is given by = 1 — (p + 2)/2N, while the tensor-to-scalar ratio is= 4p/N, where

N denotes the e-folding number at horizon crossing. Although this model aligns with the Planck 2018 observational data within a narrow
range, specificallyf.10 < p < 1.25 for N = 50, it becomes increasingly difficult to find an appropriate valuegffavthen N > 54. To
overcome this limitation, we propose incorporatingizincorrection term from the Starobinsky model to enhance the inflationary predictions.
Our analysis indicates that this correction improves the model's performance when optimal parameters are selected, specifically by setting
zo = Ro/R. < 1 (with Ry representing the scalar curvature during the late-time accelerated expaasigny; O(1), and introducing

a parametety related to theR? term within the range-0.024600 < v < 0. The parametet, establishes a connection betweemnd

[ via the de Sitter solution of the model. Additionally, the paramétgrcan be estimated similarly to that in the Starobinsky model, as

Re =~ (1.3 x 1075 /k).
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1. Introduction be conventionally quantized [6]. These limitations have led

to efforts to modify GR by adding additional terms to the
The theory of General Relativity (GR) marked a significantEinstein-Hilbert action, resulting in what are now widely
breakthrough in the 20th century, fundamentally transformknown asf(R) gravity theories. These modifications in-
ing our understanding of the universe. Einstein’s famous fieldyolve replacing the Ricci curvature scald, with an arbi-
equations revealed the intricate relationship between spacerary function of R. The corresponding field equations can
time and matter, laying the foundation for the standard modebe derived by varying the action with respect to the metric
of Big Bang cosmology, which describes a homogeneousensor, using approaches such as the metric formalism, Pala-
isotropic, and expanding universe. tini formalism [7], or the metric-affine formalism [8].

However, the standard model faces several challenges, Starobinsky [9] made a significant contribution to our
including the flatness problem, the horizon problem, andunderstanding of the early universe by predicting inflation
the issue of magnetic monopoles. To address these issuglrough the inclusion of higher-order curvature terms in the
Alan Guth introduced the concept of inflation in 1980 [1]. action of GR. This prediction remains consistent with recent
This theory proposes that the early universe experienced gbservations from the Planck mission [10]. On the other
brief period of rapid expansion, triggered by the decay of ehand, Hu and Sawicki [11] proposed a model that accounts
false vacuum state into a true vacuum in a supercooled unfor the accelerated expansion of the late universe without
verse. While inflation successfully resolves the aforementhe need for a cosmological constant. Varigi(g?) grav-
tioned problems, Guth acknowledged that it leads to an inhoity models have since been explored to explain phenomena
mogeneous universe. such as inflation [12-15], late-time acceleration [16-18], or

An alternative to Guth’s inflationary model is the slow- both epochs [19,20].
roll inflation scenario, in which the universe’s expansion is  In 2020, Gogoi and Goswami [21] introduced a ngR)
driven by a scalar field that gradually rolls toward the mini- gravity model featuringarccot and exp correction terms,
mum of its effective potential [2-5]. This scenario not only which they proposed to describe gravitational wave phenom-
addresses the issues associated with the Big Bang model betta. This model has successfully passed solar system tests
also results in a homogeneous universe, as the scalar fiejgd2] and meets the viability criteria fof( R) gravity [23,24].
(inflaton) rolls slowly. It has been shown to produce gravitational waves, and it is

While General Relativity (GR) has been highly successconstrained by the GW170817 events. However, the infla-
ful in describing the universe, it faces significant challengestionary scenario of this model has not yet been thoroughly
particularly its lack of renormalizability and the inability to investigated. The scalar potential associated with the model
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is of the formV o ¢, which falls outside the inflationary [9]. We define the scalaron field @s= f r(R), allowing us
constraints set by thes CL-Planck observational data for to rewrite Eq. 4) as [17,21]:

p > 2/3[10]. In this study, we examine the inflationary sce- AV
nario of the model by incorporating an additional correction ¢ = d; , (5)
term from Starobinsky’s model, as discussed in Ref. [25].
This paper is organized as follows: In Sec. 2, we providevhereVeg is the effective potential given by
a brief review of f(R) gravity and introduce the model we Ve 1 1,
propose. In Sec. 3, we analyze the inflationary scenario of @ 3 [2£(R(¢)) — R(¢)9] + 5#°T. (6)

the model under the constraints provided by Planck 2018 ob- S
servations [10]. Finally, in the last Sec. 4, we summarize outn the absence of matte¥’(= 0), Vert simplifies toV. For a

findings and discuss potential directions for future research Stationary condition, wheréVerr/d¢ = 0, the second deriva-
tive of the potential ap = ¢o = f r(Ro) provides the mass

of the scalaron field:
2. f(R) Gravity m2 — L[ fro) B %
¢ 3 | f.rr(Ro)
This equation describes the stability of the scalaron field,
The modified Einstein-Hilbert action ¢f(R) gravity model  which is crucial for generating the late-time expansion of the

2.1. Field equations

in the Jordan frame is given by universe. In the early universe, however, the scalaron may be
in a quasi-stable state [26]. It is important to ensure that the
g /d4x¢fg {f(fz) n Em:| , (1)  Mass term remains finite, which requires tfiatz (Ro) # 0.
2K Moreover, for a specific value @y, we can derive the de Sit-

) ) ) L ter solution from Eq.l§), and the stability conditiomi >0
wheref(R) is an arbitrary function of the Ricci scal& and ¢, Eq. ).

L, is the Lagrangian of matter. Here? = 87G = Mpl~2,

with G representing the Newton gravitational constant, anth 2. Scalar-tensor equivalence

Mpl the reduced Planck mass= % = 1). Varying the ac-

tion in Eq. 1) with respect to the metrig,,,, yields the field  The equivalence betwegfi{ R) gravity and scalar-tensor the-

equation: ory has been the subject of much interest (see Refs. [6,27,28]
for some reviews). Metrig(R) gravity can be expressed in
fr(R)R,, — lf(R)gW + (9,00 = V,uV.) fr(R) f[he form of Brans-Dicke theory [29] py introduc.;ing' an auxil-
2 iary scalar fieldy. Hence, we can write the action in E4) (
= 1T}, . (2) as follows:
1 4

In this equation, the subscript notatifi; denotes the deriva- 5= 92 /d N —g {f(X)
tive of the functionf with respect to the Ricci scaldt, and
O = V,V*isthe d’Alembert operator. The left-hand side of + fx () (R — X)} 4 /d4m£m, (8)
the equation accounts for the curvature-related terms, while

the right-hand side corresponds to the matter content, reprevhere.,, is the matter Lagrangian. By varying this equation

sented by the energy-momentum tensor: with respect to the scalar fielg, we obtain the following
equation:
T — 2 0V—9Lm (3)
e /=g g Foox (O = x) = 0. 9)
For a perfect fluid, the energy-momentum teriggy simpli-  F7om EQ. 7), we havef . (x) # 0, which impliesk = x.

fies toT}, = (p + p)uut, + pg,w. Wherep is the energy Using the previous definition of the scalaron field @as=
density,p is the pressure, and, is the four-velocity of the fx(x), the action in Eq &) can be expressed as follows:

fluid. 1 . .
The field Eq.[R) leads to the following trace equation: S = ﬁ/d V=gloR - U(¢)] + /d 2L, (10)
Fr(R)R + 30f r(R) — 2f(R) = T (4) whereU (¢) is a scalar field potential given by:
U(¢) = x(¢)¢ — f(x(9))- (11)

where[d is the d’Alembert operator. Whef{ R) = R — 2A,

both Eqg. 2) and Eq. 4) reduce to the familiar conditions of The action in Eq.[20) for metric f(R) gravity is equivalent
General Relativity (GR). Notably, the terfif z(R) van-  to Brans-Dicke theory [29] fowpp = 0 andx? = 1 [6,30].
ishes in GR. However, irf (R) gravity, this term introduces Meanwhile, for f(R) with Palatini formalism, the equiva-
an additional scalar degree of freedom known as the scalardence is found fowgp = —3/2.
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In the Einstein frame, the actidf)(can be obtained using 0.4
the conformal transformation of the metric:

—a = 0.10,3 = 0.20
a=0.1503=0.20
0.20,3 = 0.20

g/w = f,R(R)g;w~ (12) 0.3r _ _Z $0174

Thus, at’,,, = 0, the action is given by [27,31]:
S = /d4w\/—§[ié
22

- %g*‘”vavybe —V(¢Er)|, (13)

whereg¢g is the canonical scalar field given by:

0.4 0.6 0.8

31 RO
o= /2 (s a0, (14)
o FIGURE 1. The scalar potential in the Einstein frame of the orig-
and the scalar potential is given by: inal model can be approximated &§¢) « (x¢)?. To achieve
U(R) Rf n(R) — F(R) sufficient inflation, the parameter should lie within the range
V(¢E) _ R ) (15) 1.10 < p < 1.25for N = 50.

T 22f (R’ 202fr(R)

early-time expansion in the inflationary scenario, still needs
to be elaborated. This article aims to explain the inflationary
phase of the model.

To fully grasp the discussion on inflation in the Gogoi-

The value ofR is calculated using the transformed metric
g, @andV,, is the covariant derivative operator. The mass
squared term of the scalaron field in this frame is given by:

s d*V(¢p) Goswami model, itis crucial to have a solid understanding of
Mop = do% slow-roll inflation, which is covered in Sec. 3. Readers are
encouraged to review that section to effectively follow the
1 1 R 4f(R) forthcoming discussion.
=3 7 + 7 5| - (16) _ _ S
frr(R) ~ frR(R)  fg(R The slow-roll inflation scenario in this model can be an-

. ] ] alyzed using the scalaron potential in the Einstein frame, as
Both the Jordan and Einstein frames share equivalent dysefined in Eq.15). Figure 1 illustrates the scalar potential for

namical properties. Anisotropic singularities in both frames,arious parameter values. With the parameters specified by
can be avoided if r(R) > 0 and frr(R) > 0[32]. ItiS  the model, the scalar potential in the Einstein frame takes the
convenient to study the inflationary dynamicsfof?) gravity  ¢orm V($) o (k). For this type of potential, the spectral

in the Einstein frame. index is given byn, = 1 — (p + 2)/(2N), and the tensor-
to-scalar ratio is- = 4p/N, whereN represents the number
2.3. Thef(R) model of e-foldings at horizon crossing, typically in the range of

N =~ 50 — 60 [33]. To align with the Planck 2018 obser-
We consider thef (R) gravity model proposed by Ref. [21], vational data, which determined the spectral index of scalar

given by the following equation: perturbations to be, = 0.9649+0.0042 with an upper limit
) on the tensor-to-scalar ratio of< 0.1, the parametey must
o i be set within the range.10 < p < 1.25 for N = 50. How-
R)=R- —R. t [ =< . T, .
Jo(R) e areee (RQ) ever, it becomes challenging to find a suitable valug far
R N > 54 that satisfies the Planck constraints. Consequently,
— BR. [1 — exp (_Rﬂ , (17)  the Planck 2018 observational data [10] disfavors this type of
¢ potential.
wherea and 3 are dimensionless positive constants, @hd Even though the model described by E4.7)(provides

is a curvature characteristic constant with the same dimera good explanation for late-time acceleration, we propose
sions ask. This model was proposed to study the characteradding an extrak? correction term to account for the infla-
istics of gravitational waves (GWs) through the scalar polartionary phase. Thé&? term becomes relevant in regions of
ization mode arising from extra degrees of freedonf (&) high curvature, where the model’s behavior aligns with that
gravity. The model provides a good explanation of the solaproposed by Starobinsky [9], which successfully explains
system test and late-time acceleration. However, the viabilitghe inflationary phase. This approach is also discussed in
of the model under other cosmological constraints, such aRef. [25]. The modified model is given by:
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f(R)=R— %RC arccot (}R;E)
n 2
7ﬂRc [176(_70)} 77%, (18)

wherev is a constant.
Before exploring the inflationary scenario of this model,

it is essential to test it against several criteria to ensure its vi-

ability as anf (R) gravity model. This step is crucial because
the addition of they term to the original model could impact

its viability. We consider the following conditions [34]:
. o . 2
lim f(R)=0, lim f(R) o R (19)

The first condition corresponds to a flat Minkowski solution,

while the second condition generates inflationary expansion.

Our model (L 8) satisfies these conditions for any valuegwpf
08, andy < 0. It can be inferred that the and g parameters
dominate in the small curvature region, while thparameter
dominates in the large curvature region.

To avoid an antigravity regime, th& R) gravity model
must satisfy the conditiorf z(R) > 0. For our model, this
condition takes the form:

2ax

1—Be ™™ —2yp — ————
pe T )

>0, (20)
wherexz = R/R.. Meanwhile, to ensure stable cosmological
perturbation, the conditiofi gz (R) > 0 must hold, which is

given by:
2a (3x4 - 1)

)
m(z*+1)

fe " —2y+ (21)
Both conditions are easily satisfied when< 0 andz is
large, as they term becomes dominant. However,aas- 0,

both conditions require further investigation, as the contribu-

tions froma and 8 can no longer be neglected, potentially
leading to a violation of these conditions.
To fully grasp the behavior of the model as— 0, it is

essential to consider the late-time de Sitter solution. This so-

lution corresponds to the conditiatl’/d¢ = 0, which can
be expressed as [35,36]:

2f(Ro) — Rof r(Ro) =0, (22)

where R, represents the de Sitter curvature. The stability of

this de Sitter solution is characterized by [37]:
f.r(Ro)

f.rr(Ro)
AssumingRy = R, Eq. 22) yields a relation fo3:

e((r —2)a — 27)
97(3 — 2¢)

> Ry. (23)

8=

>~ _(.202697 + 1.115621. (24)
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The stability condition from Eq293) results in:

(a + Be lm — f) (a + e tr — 27w) < 0. (25)

2
R w2 2
By substituting the expression fatr from Eq. 24), we
can determine the range af

—1.6838 + 8.2054vy < a < 0.3675. (26)
This range is similar to that of the original model, but in-
cludes an additional term dependentporEquation26) im-
plies thaty < 0.25 for consistency. However, the original
model’s late-time stable de Sitter solution requites< 0.
For instance, setting = —0.0122 slightly lowers the lower
bound ofa to 0.1 and increases the upper bound o6 0.02.
WhenR, # R., the de Sitter solution is obtained if

20z
z§+ 1

+7 [ﬁe_xo (xo+2)+ 20 — Qﬁ]

= 2a arccot (g ?), 27)

wherezy = Rog/R.. We find that they term does not ap-
pear in the de Sitter solution, so the parameter bounds remain
consistent with those of the original Gogoi-Goswami model
[21]. The solution fors is given by

8 ((—2 + (w0 + 2)e ™) m(xg + 1))
= (—2axj — 2a) arctan(zg %) + a(rxg — 233 + )
(28)

— m(x) + ).

The stability condition for the de Sitter solution, assuming
R, > 0, is expressed as

o = R{.‘,"’R‘.

FIGURE 2. Relationship between the parameteandx for vari-
ous values ofy. For example, when = —0.5, the corresponding
line indicates the upper bound aefasz, changes.
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FIGURE 3. The relationship betweer, andz for specific values ofv and~ is illustrated in the plot. This shows that to maintain a smgll
both the parameter should be negative and should be sufficiently small.

energy scale during inflation,y = Ro/R. — 0. To achieve
this, « and~ must be selected to drivey, — 0. Figure 3

(mB(@o + 1)(ap +1)°e™™ — m(ap +1)° + Baxp) shows that this condition is met when< 0 anda is suffi-
x (mB(zg +1)%e™ ™ — 2my(zg + 1) + 2a(3zg — 1)) ciently small.
< 0. (29)

3. Inflation of the model

As shown in Eq.25), the term withy introduces a deviation

to the solution at the boundaries @fand 3, with a factor of The dynamics of slow-roll inflation are governed by a scalar
(z4 + 1)2. It can be inferred that a small negative valueyof field ¢ and an effective potential (¢) in the Einstein frame.

is required to maintain consistency with the Gogoi-GoswamiThe Friedmann equations [5] are commonly used to study

model. these dynamics, given by:
Figure 2 illustrates the relationships between the param- 9
etersa, o, andy derived from the de Sitter solution and its =5 [1¢ + V((;S)} , (30)
stability. In this contextf is expressed in terms of andxg 312
using Eq. 28). For eachy, the permissible values af > 0 b+3Hd= —Vo(d). (31)

are constrained by the line corresponding to thahlue.

The relationship betweer, andx for specific values of Here, H = a/a is the Hubble parametey, is the expan-
v anda can be determined by examining the de Sitter sosjon scale factor, and indicates the derivative with respect
lution, its stability, the antigravity conditioff z > 0, and  to timet. Slow-roll inflation occurs when the acceleration

the stability of cosmological perturbatiorfszr > 0. This  term in Eq. 81) is small ¢) < 3H¢), and can be neglected,
relationship is depicted in Fig. 3. The Ricci scalar in de Sit-leading to the condition:

ter spaceRy, is proportional to the cosmological constant
(with A =~ 1.1056 x 10~52m~2), which governs the late-time b~ — Vie(®) (32)
expansion of the universe. Consequentlyifrepresents the o '
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Other slow-roll parameters;, andny, can also be defined whereA, is the scalar power spectrum amplitude. This rela-

as: tion implies an upper bound on the Hubble parameter during
_ 1 <V¢(¢)>2 - inflation of
262\ V(9) ) H, < 2.5 x 107" My (39)
v = % Vii?g(ﬁ?) ’ (34) We examined the slow-roll inflation scenario of the model

The e-folding numbetV is another important quantity the inflaton is represented by the canonical scalar field given
that determines the slow-roll inflation scenario, representin:
the number of expansions that occur. It can be expressed

. 1 2
as [5]: o(z) = \/§ In (1 N T 273:) » (40)
N=mn(Y)~ —/ " V) 4 (35)
a; . Vele) wherez = R/R... The corresponding scalar potential is
wherea; anda; are the initial and final values of the scale 4
factor. Inflation ends when,, andny, approach 1, and the Viz) = Re ($)7 (41)
e-folding number is typically betweeN = 50 and60. K? B(z)

To constrain our model, we used the latest Planck Obse(/_vith
vation data [10]. This required the use of the important pa-
rameters, the tensor-to-scalar ratip 4nd the scalar spectral

_ -2\ _ —x
index (u.), which can be inferred from Eqs3®) - (34) as Ale) = aarceot (¢7°) — fr (x +1)e
follows: 20 22
+m(B-72%) - (42)
r = 16ey, (36) zt+1
ns =1—6ey + 2ny. (37) and
The values of these parameters given by Ref. [10]rare 8 (Bre™® 1 ar \°
0.11 andn, = 0.9649 + 0.0042. The Planck 2018 constraint ~ 5(*) = — ( = RE i) Kl e (43)

onr is equivalent to an upper bound on the energy scale of
inflation when the pivot scale exits the Hubble radius, given  Figure 4 illustrates the relationship between the potential

by V and the inflatonp. For any given values af, x(, and~,
3m2A, 6 . the effective potential exhibits a flat region, which is essen-
Vi=——rMy < (1.6 x 107°GeV) tial for achieving slow-roll inflation. The parametersig-

nificantly influences the potential, as it sets the energy scale

(95% CL), (38)  during inflation and thus affects the inflaton’s behavior. In
6 < T 1.5 1.5
hY |
N |
i) I
5 a =1{.1 A i _— —
wp = 0.001 I ™ ™~
- y = —0.02 ! \\ i
4 p=-005 [\ : 10 A 1.0 \
. - 4 =-010 |, | ’ \\ ' \
~ \ I \ \
- 1 ] a= 0.1 \ v o=—01 \
T3 1 | y=—01 \ ) g =06 \
s ! I - zp=005 | I - a=01 \
% H ! 29 = 0.30 \ f =92 \
a i A 05l | — =090 ‘-\ /’ 050 — a=03 \
lll I A\ / \\ 4
P
~ \ Ssz
] e 7
NV g
Ny
0 Ny 0 0
8 6 4 -2 0 2 8 6 4 -2 0 2 5 8 6 4 -2 0 2
a) Kb b) K ¢ ) K@

FIGURE 4. The figure displays a parametric plot@fR) andV (¢(R)) for our modelL8). The plots show that the parameterandz, are
associated with the minima, whereasletermines the overall height of the potential.
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contrast, the parametessandx, determine the potential’s significantly influenced by the parametersz,, and~. The
behavior beyond the flat region, impacting the end of inflaparameter is derived by substituting using the de Sitter
tion and the minima of the effective potential where reheatingsolution relation. Since is associated with the Ricci scalar
occurs. Ry of the current spacetime, which is proportional to the cos-
For a qualitative analysis, we focus on the flat regionmological constanf and responsible for late-time accelera-
of the scalar potential/’(¢). In this regime, they term  tion, it is crucial to choose a sufficiently small value fay.
dominates compared to the and § terms, particularly In our simulations, we sety < 0.1. To maintain a smaltg,
when R > R.. Under these conditions, we approxi- the model's viability requires < 0 and« to be sufficiently
mate f(R) ~ R — v(R?/R.), leading to the scalaron field small. In our calculationsy was varied withy < —104,
k¢ ~ /(3/2)In (1 —2y[R/R?]). In this regime,R ~  where this upper limit is used to represent the value 0.

[Re/27] (1 —e v 2/3”¢)- Thus, the inflaton potential can  The numerical results for the inflationary parameters,

be approximated as: specifically the tensor-to-scalar ratioand the spectral in-
—R. Tk 2 dexng, are presented in Fig. 5. Initially, we determine the
Vi 8yK2 (1 —e Ve ) (44)  values ofzy anda before varyingy < 10~%. To identify

epdermissible values fof, we use the criteriomy (¢5) ~ 1
to check whether inflation can terminate. The initial value of
the scalaron field at the onset of inflatiom;) is determined
by applying the e-folding number criterion, withi ranging
from 50 to 60. For each e-folding numbaf, ¢; is calcu-
lated, and the tensor-to-scalar rati@;) and the spectral in-
dexns(¢;) are then computed and plotted in Fig. 5.

This potential resembles the Starobinsky type, characteriz
by f(R) ~ R — v(R?/R.). For effective inflation, this
potential necessitates(vy/R.) ~ (1/6M?), with M ~
1.3 x 107°/k ~ 3 x 103 GeV [25,38]. Therefore, a rea-
sonable estimate foy in this model is obtained by setting
R. ~ M?, which yields—y ~ 1/6 ~ 0.167. This estimate
will be compared with our numerical results.

We conducted numerical simulations to explore the infla-  Figure 5 shows the numerical results foandn, plot-
tionary dynamics of the model given by E48j. Our find-  ted against the Planck 2018 inflationary constraints to assess
ings indicate that the inflationary properties of the model arghe alignment of the chosen parameter values with these con-

1 1
I N—5 ‘ N=50
osou| = osou| o
", B " - 1
0.00421 = i =-0.00075 000421 | o Yo =-0.0386
i o~ =-0.0001 i e 7 =-0.0002
j L ! 0.0040 + ;
0.0040 : xp =0.1, @ =100 : xg =01, 0 =1e-05
0.0038 | Planck 2018 . 0.0038} | Planck 2018
1. | | 3 |
0.0036 - : : 0.0036 | ; :
00034 | ! 000341 | }
I | | |
0.0032+ | 0.0032F I
| | | |
0.0030 ! LY | 0.0030 | : \. :
| |
0.0028 — ! 0.0028 — ‘
0.9600 09620 0.9640 0.9660 0.9680 0.9700 t 0.9600 0.9620 09640 0.9660 0.9680 0.9700
‘1) Mg )) Ny
1 I 1
| N=50 I N=50
e N—60 o — N—50
S : I
o0042f | = Ymin =-0.00075 00042f | = Auin =-0.0388
| o v =-0.0001 | o =-0.0002
0.0040 + ; : ;
! 20 =16-05, @ =100 AR 2y =16-05, 0 =16-05
_ 00038 Planck 2018 0.0038F | Planck 2018
- | 1 - | 1
0.0036 | : 00036 | :
00034} | i 00034 | !
| |
0.0032F | | 000320 | :
| ] ] |
0.0030 . : 0.0030F ! =" !
| |
0.0028 — . 0.0028 —1 :
0.9600 09620 0.9640 09660 0.9680 0.9700 0.9600 0.9620 0.9640 0.9660 0.9680  0.9700
¢) N, d) n,

FIGURE 5. The plots display the tensor-to-scalar rati@nd the spectral index, for various values of the parameters anda. The
parametery is varied, generating lines ferandn, corresponding to e-folding numbefé = 50 and N = 60, measured from the end of
inflation. The range of is depicted from a value represented by a blue butiet(10~*) to the minimum value compatible with inflation
(ymin), indicated by a red square.
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TABLE |. Numerical results for inflation parameters for various values ahdz, < 1.

N =50 N =60
o o Ymin s r Ns T
1.0e-01 1.0e+02 -0.000750 0.96114476 0.00430126 0.96752005 0.00303028
1.0e-01 1.0e+01 -0.005400 0.96127743 0.00426987 0.96761423 0.00301144
1.0e-01 1.0e+00 -0.024600 0.96120678 0.00428725 0.96756413 0.00302186
1.0e-01 1.0e-01 -0.036900 0.96114711 0.00430101 0.96752106 0.00303025
1.0e-01 1.0e-03 -0.038600 0.96115527 0.00429919 0.96752763 0.00302902
1.0e-01 1.0e-05 -0.038600 0.96115651 0.00429892 0.96752849 0.00302885
1.0e-03 1.0e+02 -0.000750 0.96114478 0.00430125 0.96752004 0.00303028
1.0e-03 1.0e+01 -0.005400 0.96127769 0.00426981 0.96761442 0.00301141
1.0e-03 1.0e+00 -0.024900 0.96119895 0.00428913 0.96755751 0.00302318
1.0e-03 1.0e-01 -0.036800 0.96115935 0.00429829 0.96752944 0.00302867
1.0e-03 1.0e-03 -0.038800 0.96114238 0.00430204 0.96751831 0.00303076
1.0e-03 1.0e-05 -0.038800 0.96114598 0.00430126 0.96752083 0.00303029
1.0e-05 1.0e+02 -0.000750 0.96114478 0.00430125 0.96752004 0.00303028
1.0e-05 1.0e+01 -0.002680 0.96144495 0.00422629 0.96773567 0.00298483
1.0e-05 1.0e+00 -0.024900 0.96119895 0.00428913 0.96755751 0.00302318
1.0e-05 1.0e-01 -0.036800 0.96115936 0.00429829 0.96752944 0.00302867
1.0e-05 1.0e-03 -0.038800 0.96114238 0.00430204 0.96751831 0.00303076
1.0e-05 1.0e-05 -0.038800 0.96114598 0.00430126 0.96752083 0.00303029

straints. Due to the close proximity of the computednd  vational constraints of Planck 2018, as specified by B8).

ns values across differentandz values, itis impractical to  In the Starobinsky modef.(R) = R — v(R?/R..), inflation
display all results in Fig. 5. Therefore, selected numerical reis effectively explained by selectingy ~ 1/6 ~ 0.167 and
sults are summarized in Table I. From Fig. 5 and Table I, wek. = M? ~ (1.3 x 107°/k)%. This model requires only
conclude that inflation can terminate successfully ¢ 1) minor adjustments when applied to the one under review. In-
even wherw is set tol02. The minimum value of (denoted  flation is well within the Planck 2018 constraintsdf < 1,
~min) Primarily depends omv. For instance, witlh = 102, amax € O(1), andy = ymin =~ —0.024600 < 0. The param-
Vmin =~ —0.000750, while for o < 1, ymin ~ —0.0388. The  eter choiceR. = M? remains valid for this model.

effect ofxg < 1 onvymin appears to be minimal.

The dependence ofyin on « for 2y <« 1 can be under-
stood by examining the properties of the scalaron potenti
depicted in Fig. 4. Variations in affect the minimum height
of the potential, leading to faster inflation termination for
largera due to a shallower potential minimum. To achieve
sufficient inflation, a higher potential is necessary, which cor-Spectral index is given by, = 1 — (p +2/2N), and the

responds to a small¢fmin|. tensor-to-scalar ratio is= 4p/N, whereN represents the e-
While selectinga = 10* can yield effective inflation,  folding number at horizon crossing. To align with the Planck
the stability of the de Sitter solution must also be taken2018 observational data, which set the spectral index of scalar
into account. Thus, a more reasonable upper limitdor perturbations at, = 0.9649 + 0.0042 and impose an upper
whenzy < lisa € O(1), as illustrated in Fig. 2, with  jimit of » < 0.1, we find thatl.1 < p < 1.25 for N = 50
Ymin = —0.024600. is required. However, it proves challenging to find a suitable
The values of the parameters, c, andymin in this model  value forp when N > 54. To address this issue, we intro-
do not directly influence the choice of the parameker It  duced a correction term to improve the model’'s predictions
is crucial to note that the slow-roll parameteks and 7y, of the inflationary phase.
as well as the inflation parameterandn,, are independent Our proposed model has successfully passed viability
of k and R.. These parameters are considered solely to ertests. It can produce a Minkowski solution for low curvature,
sure that the inflationary potential complies with the obser-an inflationary phase for high curvature, and a stable de Sit-

af" Conclusion

We examined the inflationary phase within the Gogoi-
Goswamif(R) gravity model. In this model, the potential
in the Einstein frame is expressed#s Consequently, the
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ter solution during late-time expansion. We have shown that-0.024600 < v < 0 and R, ~ (1.3 x 1075/k)%.

INFLATION IN AN R2-CORRECTEDF(R) GRAVITY MODEL 9

Con-

the model achieves positive gravitational coupling and stablsequently, thisf(R) gravity model effectively explains the
cosmological perturbations, depending on the parameters early universe’s expansion, specifically inflation.

xo, and~, which ensure a stable de Sitter solution. The pa-
rameters that satisfy the viability conditions are illustrated inprimarily influence the potential near its minimum, their roles
Figs. 2 and 3. Moreover, our model features a flat potentiain the reheating phase after inflation require further investi-

region influenced by the parametex 0, which enables in-
flation. Naturally, we takery < 1 so thatamax = O(1)

However, several questions remain. Sincandg (or xg)

gation. Additionally, it needs to be explored whether these
parameters can contribute to the reheating phase and the for-

for v < 0. Numerical analysis confirms that the model fits mation of primordial matter. These issues will be addressed

the Planck 2018 observational data well, witln the range
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