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Artificial intelligence and Fourier optics: Application of DeepLabV3+
in the recovery of a diffracting aperture in light propagation
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The combination of Fourier Optics and Artificial Intelligence has driven significant advances in image processing and modeling of optical
systems, with the UNet architecture being the main protagonist. However, the DeepLabV3+ network has recently shown promising perfor-
mance detecting diffracting apertures. In this study, we investigate the effectiveness of DeepLabV3+ in identifying diffracting apertures in
light propagation models and compare its performance with that of UNet. The results reveal that DeepLabV3+ outperforms UNet in accuracy
and robustness in identifying diffracting apertures, even in the presence of noise and aperture shape variations.
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1. Introduction

Light propagation and its interaction with various media has
been a topic of interest in physics for centuries. As a disci-
pline, optics has focused on studying light and its behavior,
providing a deep understanding of phenomena such as refrac-
tion, reflection, diffraction, and interference. Among the fun-
damental concepts in optics, the aperture amplitude transmit-
tance function or diffracting aperture describes how light is
transformed as it passes through an aperture, which can be
affected by shape and size. This function is essential to un-
derstanding how light is propagated and transformed in opti-
cal systems [1]. On the other hand, Fourier optics provides
a mathematical representation of the amplitude transmittance
function, which uses Fourier transforms to analyze and de-
scribe the propagation of light in optical systems and provides
an accurate description of how light is transmitted changes as
it passes through complex optical systems [2]. These theoret-
ical tools have practical applications, from improving preci-
sion and efficiency in optical system analysis to simulating
light propagation in different media. For example, under-
standing the amplitude transmittance function in biomedical
optics is essential for accurately interpreting optical images
of biological tissues [3]. Furthermore, in the design of seg-
mented telescopes, the precise measurement of the piston er-
ror, which uses the amplitude transmittance function, is cru-
cial for optimizing the telescope’s performance [4]. Fourier
Optics has also been used to simulate physical optics, allow-
ing practical performance predictions, including diffraction
effects that emerge with fully coherent sources [5]. The aper-
ture amplitude transmittance function and Fourier Optics are
fundamental to understanding the formation of images in op-
tical systems because they allow us to describe how light is
transformed when passing through a medium, providing a de-
tailed description of how an image is formed, allowing the
design and optimization of these systems to improve the pre-

cision and efficiency in the analysis of optical systems, which
has allowed significant advances in the field.

In other fields, biomedical image segmentation is crucial
in modern medicine and research. One of the most signif-
icant advances in recent years has been the introduction of
the UNet neural network architecture proposed by Olaf Ron-
neberger in 2015 [6]. Over the years, UNet’s impact has ex-
tended beyond the biomedical realm, reaching areas such as
Fourier Optics. Thanks to the ability of the UNet architecture
to extract relevant features and patterns in high-resolution im-
ages, it has been possible to improve optical systems signif-
icantly, optimizing image reconstruction and detecting key
features [7], which makes it ideal for a wide range of appli-
cations, such as Holo-UNet, which enables the restoration of
holographic images of living cells [8], as well as improve-
ments in computing times [9]. Another architecture based on
UNet is PhaseNet, which efficiently recovers the phase of a
holographic signal [10]. Similarly, improvements have been
made in the phase unwrapping with Doppler optical coher-
ence tomography images in the Fourier domain using Res-
UNet [11]. In addition, UNet is implemented to find the
diffractive phase that can compensate for chromatic aberra-
tions in the entire visible spectrum [12]. Also, it removes
unwanted streaks in thin film fluorescence microscopy [13].
The UNet architecture has proven to be highly effective in
various applications, but it has limitations in optimizing and
improving optical systems. Therefore, there is a need to pro-
pose new architectures that address this problem and over-
come these limitations.

In computer vision and semantic segmentation, the
DeepLabV3+ network emerges as a benchmark in the field,
positioning itself as a tool of great importance within the sci-
entific community. This sophisticated architecture is an ex-
tension of its predecessor, DeepLabV3, and introduces dis-
tinctive features that enhance its ability to accurately and ef-
ficiently identify and segment objects; therefore, it is easy to
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implement in problems where UNet has been implemented.
The versatility and superior performance of DeepLabV3+
have made it an essential tool in various applications, such
as detecting objects and people, analyzing traffic, or mon-
itoring crops’ health. Its adaptability and efficiency make
DeepLabV3+ an ideal candidate for use in areas such as
Fourier Optics, where it could significantly improve optical
systems. Some possible applications in this field include
the reconstruction of holographic images, the analysis of in-
terference patterns, or the optimization of optical lens and
filter systems. Implementing the DeepLabV3+ network in
Fourier Optics would allow researchers to address more com-
plex challenges while driving the development of innovative
technologies across multiple scientific disciplines.

In this article, we propose to investigate the effectiveness
of the DeepLabV3+ network in identifying diffracting aper-
ture and to compare its performance with that of the UNet
architecture. For this, we present experiments and analy-
ses using data sets of light propagation models with dif-
ferent characteristics, including noise and variations in the
shape of the aperture. Through this research, we determine if
DeepLabV3+ is a valuable tool to improve the modeling and
analysis of optical systems in practical applications.

This research contributes to scientific knowledge by
providing a rigorous evaluation of the performance of
DeepLabV3+ compared to UNet. This is evidence of the ad-
vantages of using DeepLabV3+ for diffracting aperture de-
tection in optical systems. The results obtained in this study
can potentially drive future research and applications in the
field of Fourier Optics and Artificial Intelligence, as well as
in related areas such as microscopy, astronomy, and optical
telecommunication.

The main contribution of this article lies in the proposal
and validation of a new neural network architecture that can
address the limitations of UNet in optical systems. This work
has the potential to significantly improve the analysis and de-
sign of optical systems, impacting areas such as the charac-
terization of biological tissues, microscopy, and optical com-
munications. By sharing and discussing these results, we aim
to enrich knowledge in Fourier Optics and Artificial Intelli-
gence and encourage the development of innovative solutions
in the modeling and optimizing of optical systems.

This article is organized as follows: In the ”Materials and
Methods” section, we concisely describe the DeepLabV3+
and UNet architectures and detail the generation of the data
set used in the light propagation model. In addition, we
present a brief explanation of the performance measure we
used to evaluate both models. In the ”Results” section,
we compare DeepLabV3+ and UNet in terms of robustness
against noise and variations in the diffracting aperture for un-
trained samples and discuss each approach’s main strengths
and limitations. Finally, in the ”Conclusions” section, we
synthesize the contributions of the presented work and high-
light the implications of our findings for advancing knowl-
edge and practical applications in the Fourier Optics and
Computer Vision field.

2. Materials and methods

2.1. Description of UNet and DeepLabV3+ architec-
tures

In general terms, it is difficult to determine how to compare
the two architectures since their performance can vary de-
pending on the context and the specific application. Both ar-
chitectures have proven effective in semantic segmentation
tasks. Still, they have different characteristics and advan-
tages that can make one more suitable than the other in cer-
tain situations, such as in our case study. UNet is a con-
volutional neural network (CNN) architecture specially de-
signed for semantic segmentation tasks in biomedical imag-
ing. The UNet structure comprises two main parts: an en-
coder and a decoder, which connect by a series of hop con-
nections to improve spatial information retrieval [14]. The
encoder is responsible for extracting features from the input
image through a series of convolutional and pooling layers,
which reduces spatial resolution and increases feature depth.
As it progresses through the encoder, the network captures
contextual information at multiple levels of abstraction. On
the other hand, the decoder uses convolutional and upsam-
pling layers to reconstruct the segmentation of the features
extracted by the encoder. Jump connections combine high-
resolution (fine detail) and low-resolution (context) informa-
tion, resulting in more accurate and detailed segmentation,
such as shown in Fig. 1.

On the other hand, DeepLabV3+ is also a convolutional
neural network architecture aimed at semantic segmentation
in images, which introduces an encoder-decoder module in
which the encoder uses an Atrous Spatial Pyramid Pooling
(ASPP) module [15] to capture contextual information at dif-
ferent spatial resolutions; therefore, improves the network’s
ability to identify objects of different sizes and shapes. In
addition, it incorporates atrous (dilated) convolutions in its
architecture, allowing it to expand the reception field of neu-
rons without increasing the number of parameters or calcula-
tions required; this feature enables the network to capture

FIGURE 1. UNet structure for recovery of the amplitude transmit-
tance function of the aperture in light propagation.
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FIGURE 2. DeepLab3+ structure for recovery of the amplitude
transmittance function of the aperture.

fine details in the image while maintaining high computa-
tional efficiency [16]. Unlike UNet, DeepLabV3+ supports
different backbones, accommodating various application and
performance requirements. Likewise, DeepLabV3+ uses a
“decoding” strategy that reconstructs the segmentation from
the features extracted by the encoder, including the ASPP
module, resulting in precise and detailed segmentations. The
architecture is shown in Fig. 2.

2.2. Data sets used light propagation models

This study prepared various data sets to evaluate and com-
pare the UNet and DeepLabV3+ architectures in identifying
diffracting apertures in light propagation models. The dataset
consists of40, 000 images of square and triangular aper-
tures, 20,000 of each type, with dimensions160 × 160 pix-
els, generated from a polychromatic light source at a distance
d = 50cm to obtain diffraction intensity patternsI(x, y; d).
Fig. 3 shows the optical system schematic of light propaga-
tion from a diffracting aperture.

The diffracting apertures were subjected to translation,
scaling, and rotation transformations to add variability to the
models. The image set was divided into training and vali-
dation sets in a 90:10 ratio. Figure 4a) shows some images
used to train convolutional neural networks. The input image
corresponds to an image of the diffraction intensity patterns.

FIGURE 3. Schematic diagram of the simple optical system to gen-
erate the dataset.

FIGURE 4. Some images for training and validation. a) Output im-
age (diffracting aperture) and b) Input image (diffraction intensity
pattern). Degraded patterns with Gaussian noise: c)µ = 0 and
σ = 0.2. d) µ = 0 andσ = 0.5. e)µ = 0 andσ = 1.0.

In contrast, the output image is a binary image that labels
each pixel as the amplitude transmittance function of the
aperture.

The images present significant variability in terms of
lighting, contrast, and object shapes, which allows evaluation
of the generalization capacity of the networks under differ-
ent conditions. Also, in the case of robustness in aperture
recovery, an additional dataset is generated in which differ-
ent noise levels are added to the images of the diffraction
intensity patterns. In vision systems, the robustness of the
algorithms against noise and other disturbances in the input
images is crucial. In this sense, the present experiment evalu-
ates the robustness of our proposal against images affected by
different levels of noise, as shown in Figs. 4c), 4d), and 4e).

In the design of optical systems, it is essential to guar-
antee the robustness of the model in unforeseen situations.
A critical case is testing the model with significantly differ-
ent images than those used during training and validation.
In some applications, the model uses different environments
with varying imaging conditions and variations in diffracting
apertures; this situation can be incredibly challenging. There-
fore, the work presents an experiment in which we evaluate
the robustness of the proposal under extreme conditions of
area change in the apertures and the intensity of the diffrac-
tion patterns. The study selected the images used for testing
to differ significantly from those in the training and validation
data set, as shown in Fig. 5.
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FIGURE 5. Generalization in different conditions: dataset with
shapes of the aperture outside the training.

The proposed data sets serve as the basis for training, val-
idating, and comparing the UNet and DeepLabV3+ neural
network architectures to identify diffracting apertures in light
propagation models and assess their efficiency.

2.3. Performance metrics

Accuracy, F1-score, recall, and precision metrics are stan-
dard measures used to assess the performance of deep learn-
ing models. S. Zagoruyko and N. Komodakis [17] highlight
the importance of using these metrics to evaluate deep learn-
ing models. Deep learning models must evaluate their perfor-
mance using a combination of these metrics to gain a com-
plete understanding of their performance on specific tasks.
Since then, these metrics have become the most widely used
to evaluate deep learning models, and it is recommended that
all models use them to evaluate their performance. Using
these metrics is essential to ensure that deep learning models
are accurate and reliable in complex tasks. The metrics al-
low quantifying and comparing the accuracy and robustness
of DeepLabV3+ and UNet in identifying diffracting apertures
in light propagation models. The metrics used are described
below:

• Loss: The metric measures the discrepancy between
model predictions and actual values. A lower loss
value indicates better model performance.

• Accuracy: The metric evaluates the proportion of suc-
cesses in the model’s predictions compared to the total
number of predictions made.

• Intercept Over Union (IoU): The IoU is a metric that
measures the overlap between the regions predicted by
the model and the actual regions in the images. A
higher IoU value indicates a better match between the
predicted and existing areas.

• Precision: measures the ratio of true positives to the
total positive predictions made by the model.

• Recall: also known as completeness, assesses the ratio
of true positives to the total number of positive cases.

• F1 score: measure the combines precision and sensitiv-
ity into a single value, providing a balanced assessment
of both aspects of model performance.

In addition to these metrics, we calculated GPU and CPU
compute time to compare the inference time efficiency of the
different architectures. The models were trained on a com-
puter with an Intel Core i7-9700k running at 3.0 GHz, 32 GB
of RAM, and an NVIDIA GeForce GTX 1660 SUPER GPU
with 6 GB of Video RAM. The computer time measure is es-
pecially relevant in practical applications, where processing
time can be a critical factor in the implementation and perfor-
mance of the optical system.

3. Results

3.1. Comparison between UNet and DeepLabV3+

This section compares the UNet and DeepLabV3+ neural net-
work architectures in identifying diffracting apertures in light
propagation models. Table I shows a comparative analysis of
the performance metrics obtained from both architectures.

The DeepLabV3+ network performed better in Loss and
Accuracy than UNet, obtaining a loss value of 0.01023 and
an accuracy of 99.543%, compared to values of 0.04628 and
98.146% for UNet, respectively. Furthermore, DeepLabV3+
showed a significant improvement in the IoU (Intersection
over Union) metric, reaching a value of 0.89922 compared to
UNet’s 0.66473. This improvement indicates a better match
between the detected and valid regions in the test images.

Regarding Precision, Recall, and F1-Score metrics,
DeepLabV3+ outperformed UNet with values of 0.96001,
0.95151, and 0.95574, respectively, versus UNet’s values
of 0.84931, 0.78093, and 0.81368. These results suggest a
greater ability of DeepLabV3+ to identify diffracting aper-
tures and minimize false positives and negatives.

Regarding the computation time, DeepLabV3+ showed
an advantage in inference time in GPU and CPU, with times
of 0.03733s and 0.06073s, respectively. On the other hand,
UNet took 0.04242s on GPU and 0.12059s on CPU.

TABLE I. Comparative analysis with different neural network architectures.

Loss Accuracy IoU Precision Recall F1-Score Time GPU Time CPU

UNet 0.04628 0.98146 0.66473 0.84931 0.78093 0.81368 0.04242s 0.12059s

DeepLabV3+ 0.01023 0.99543 0.89922 0.96001 0.95151 0.95574 0.03733s 0.06073s
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FIGURE 6. Results of the recovery of the degraded diffracting aperture with Gaussian noise from semantic segmentation networks. Note that
the models were not trained with images containing noise; nevertheless, DeepLabV3+ recovered the apertures with low noise levels.

The results reveal that the DeepLabV3+ architecture out-
performs UNet regarding precision and robustness when
identifying diffracting apertures; these findings support the
idea that DeepLabV3+ is a valuable tool for improving the
modeling and analysis of optical systems in practical appli-
cations.

3.2. Evaluation of the robustness against noise and vari-
ations in the aperture shape

In this section, we analyze the robustness of the UNet and
DeepLabV3+ neural network architectures against noise and
variations in the shape of the aperture in light propagation
models. To evaluate the robustness against noise, we intro-
duce Gaussian noise in the test images with different inten-
sity levels (σ = 0.2, 0.5 and1.0). Table II presents a com-
parative analysis of the IoU metric under different Gaussian
noise levels. Also, Fig. 6 shows the recovery of the validation
apertures from the models trained with the training set.

TABLE II. Comparative analysis with the IoU metric under Gaus-
sian noise withµ = 0

σ = 0.2 σ = 0.5 σ = 1.0

UNet 0.66524 0.21617 0.13995

DeepLabV3+ 0.89901 0.21323 0.16438

For σ = 0.2, UNet obtained an IoU value of 0.66524,
while DeepLabV3+ achieved a value of 0.89901, demon-
strating a better ability of DeepLabV3+ to identify diffract-
ing apertures in the presence of low noise. By increas-
ing the noise level toσ = 0.5, both models experienced
a decrease in the IoU metric, being 0.21617 for UNet and
0.21323 for DeepLabV3+. Despite the decrease in perfor-
mance, DeepLabV3+ still holds an advantage over UNet.
With even higher noise (σ = 1.0), UNet showed an IoU value
of 0.13995, while DeepLabV3+ reached a value of 0.16438.

The results also demonstrate that both architectures
can adapt to variations in the shape of the aperture, with
DeepLabV3+ being more robust to extreme changes in imag-
ing conditions. Although the performance of both models
is affected by the difference in the images used for the test,
DeepLabV3+ shows a minor decrease in its performance
compared to UNet.

On the other hand, we focus on exploring the robustness
of both models against extreme variations in the shape of the
aperture that is outside the training set, a critical aspect of
the practical application of these techniques in natural opti-
cal systems. Figure 7 shows the results of the IoU metric
of 4 shapes (Fig. 5) that cannot be considered in training to
provide the aperture recovery capacity of DeepLabV3+.

The DeepLabV3+ architecture demonstrates higher
robustness against noise and aperture shape variations com-
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FIGURE 7. Experiment results: obtained aperture image and IoU
metric.

pared to UNet and extreme changes in image capture condi-
tions. Its performance is slightly affected by the difference in
the images used for the test. The presented findings support
the utility of DeepLabV3+ to improve the modeling and anal-
ysis of optical systems in practical applications, even under
harsh conditions.

3.3. Discussion of results

The comparative study of the UNet, and DeepLabV3+ archi-
tectures to identify the diffracting aperture in light propaga-
tion models, several contributions can be recognized:

• Learning capacity: The experiments demonstrate that
autoencoder architectures could learn optical phenom-
ena and describe the diffracting aperture from diffrac-
tion patterns; this indicates their effectiveness in the
proposed task, as shown in Table I.

• Computational efficiency: In terms of computational
times, Table I shows that the DeepLabV3+ architec-
ture is computationally efficient compared to the other
architectures; this can be important for real-time appli-
cations.

• Identification accuracy: DeepLabV3+ provided the
most accurate identification of the diffracting aperture
in light propagation models compared with UNet.

• Generalization ability of trained apertures: The archi-
tectures demonstrated generalizability of the diffract-
ing aperture identification task from diffraction pat-
terns to different test data sets under conditions similar
to the trained patterns.

The results show that DeepLabV3+ is an innovative solu-
tion for calculating the diffracting aperture in light propaga-
tion models. However, it also has some limitations that must
be considered when using it in applications, such as

• Requires large training data sets: The proposal can
learn the relationship between the light intensity dis-
tribution in the source plane and the corresponding
diffracting aperture from an extensively suitable train-
ing data set. The quality and quantity of the training
data can influence the accuracy and generalizability,
mainly to adapt to different scenarios with patterns not
considered in training.

• Limitations on the resolution of the diffracting aper-
ture: The resolution of the diffracting aperture may be
limited by the ability of the network to learn and rec-
ognize subtle patterns in the light intensity distribution.
This can be a limitation in situations requiring a high
resolution in the diffracting aperture measurement.

• Limitations on the shape of the diffracting aperture:
The ability of DeepLabV3+ to recognize and measure
the diffracting aperture may be limited by the shape of
the aperture. In particular, it is possible that the net-
work cannot measure diffracting apertures that present
extreme shapes or complex interference patterns be-
cause it is limited by the number of aperture shapes
with which it was trained. Figure 5 shows the diffi-
culty of recovering the arrow aperture. The limitation
is probably solved by adding more opening shapes to
generalize the model; however, it requires more signif-
icant processing and storage capacity.

• Limitations in the memory required in training:
DeepLabV3+ architecture is relatively deep and uses
many parameters, which require a significant amount
of memory to store the gradients and update the
weights during training; this may be a limitation on
systems with GPUs with limited memory resources. In
particular, the present research is limited to the shapes
of squares and triangles because we are limited to 6 GB
of GPU memory, so we cannot include more shapes to
make the model more robust.

• Limitations in the application in real-time: Although
DeepLabV3+ presents competitive times (Table I) in
real-time applications, it may be limited by the net-
work’s processing speed and the CPU or GPU capacity
used for its implementation.

4. Conclusions

Artificial Intelligence and Fourier Optics are complementary
disciplines used in different ways. However, both fields can
lead to more advanced and efficient solutions in light prop-
agation; this can be of great importance in the research and
development of optical systems, in the precise measurement
of light, and in solving optical problems in practical appli-
cations. The comparison demonstrates the effectiveness of
artificial intelligence in adapting and describing optical phe-
nomena. DeepLabV3+ is an innovative and efficient solution
for the precise and reasonable time calculation of the diffract-
ing aperture in light propagation models. The reconstruction
results validate the generalizability and descriptiveness of the
diffracting aperture from diffraction patterns. However, it
must be considered that the results obtained depend on the
selection of the data set used for the training and evaluation
of the network. DeepLabV3+ can be used in various appli-
cations in optics, where accurate and fast measurement of
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the diffracting aperture is important to improve image qual-
ity and efficiency in image acquisition or processing data.
Furthermore, real-time inference of the diffracting aperture
is faster, making it suitable for real-time optical systems. The
findings of this study provide valuable information for future
research and for improving the accuracy of diffracting aper-

ture identification in light propagation models using machine
learning techniques. In future studies, the performance of
DeepLabV3+ on different types of light propagation images,
such as those involving complex optical elements, can be ex-
plored.

1. E. Hecht, Optics, 5th ed. (Pearson, 2017).

2. J. W. Goodman, Fourier Optics, 3rd ed. (Roberts and Company
Publishers, 2005).

3. L. Wang and H. Wu, Biomedical Optics: Principles and Imag-
ing, 10-15 John Wiley & Sons, New Jersey (2007).

4. D. Yue, Y. He, and Y. Li, Piston error measurement for seg-
mented telescopes with an artificial neural network, Sensors 21
(2021) 3364.

5. U. Flechsiget al., Physical optics simulations with PHASE
for SwissFEL beamlines, In AIP Conference Proceedings, vol.
1741 (AIP Publishing, 2016).

6. N. Siddiqueet al., U-Net and Its Variants for Medical Image
Segmentation: A Review of Theory and Applications,IEEE
Access9 (2021) 82031,https://doi.org/10.1109/
ACCESS.2021.3086020 .

7. T. Zeng, Y. Zhu, and E. Y. Lam, Deep learning for digital
holography: a review,Opt. Express29 (2021) 40572,https:
//doi.org/10.1364/OE.443367 .

8. Z. Zhanget al., Holo-UNet: hologram-to-hologram neural net-
work restoration for high fidelity low light quantitative phase
imaging of live cells,Biomed. Opt. Express11 (2020) 5478,
https://doi.org/10.1364/BOE.395302 .

9. J. Wuet al., High-speed computer-generated holography using
an autoencoder-based deep neural network,Opt. Lett. 46(2021)
2908,https://doi.org/10.1364/OL.425485 .

10. T. Zhanget al., Rapid and robust two-dimensional phase un-
wrapping via deep learning,Opt. Express27 (2019) 23173,
https://doi.org/10.1364/OE.27.023173 .

11. C.Wuet al., Phase unwrapping based on a residual en-decoder
network for phase images in Fourier domain Doppler optical
coherence tomography,Biomed. Opt. Express11 (2020) 1760,
https://doi.org/10.1364/BOE.386101 .

12. X. Dunet al., Learned rotationally symmetric diffractive achro-
mat for full-spectrum computational imaging,Optica7 (2020)
913,https://doi.org/10.1364/OPTICA.394413 .

13. Z. Wei et al., Elimination of stripe artifacts in light sheet flu-
orescence microscopy using an attention-based residual neu-
ral network,Biomed. Opt. Express13 (2022) 1292,https:
//doi.org/10.1364/BOE.448838 .

14. O. Ronnebergeret al., Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2015 (Springer In-
ternational Publishing, Cham, 2015) pp. 234-241,https:
//doi.org/10.1007/978-3-319-24574-4 28 .

15. L.-C. Chenet al., Rethinking atrous convolution for semantic
image segmentation, arXiv preprint arXiv:1706.05587 (2017)

16. L.-C. Chen et al., Encoder-Decoder with Atrous Separable
Convolution for Semantic Image Segmentation, In Computer
Vision - ECCV 2018: 15th European Conference, Munich, Ger-
many, September 8-14, 2018, Proceedings, Part VII (Springer-
Verlag, Berlin, Heidelberg, 2018) p. 833,https://doi.
org/10.1007/978-3-030-01234-2 49 .

17. K. He and J. Sun, Convolutional neural networks at constrained
time cost, In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2015) pp. 5353,https:
//doi.org/10.1109/CVPR.2015.7299173 .

Rev. Mex. Fis.70011301

https://doi.org/10.1109/ ACCESS.2021.3086020�
https://doi.org/10.1109/ ACCESS.2021.3086020�
https://doi.org/10.1364/OE.443367�
https://doi.org/10.1364/OE.443367�
https://doi.org/10.1364/BOE.395302�
https://doi.org/10.1364/OL.425485�
https://doi.org/10.1364/OE.27.023173�
https://doi.org/10.1364/BOE.386101�
https://doi.org/10.1364/OPTICA. 394413�
https: //doi.org/10.1364/BOE.448838�
https: //doi.org/10.1364/BOE.448838�
https://doi.org/10. 1007/978-3-319-24574-4_28�
https://doi.org/10. 1007/978-3-319-24574-4_28�
https://doi.org/10.1007/ 978-3-030-01234-2_49�
https://doi.org/10.1007/ 978-3-030-01234-2_49�
https://doi.org/10.1109/CVPR.2015.7299173�
https://doi.org/10.1109/CVPR.2015.7299173�

