
Material Sciences Revista Mexicana de Fı́sica70061003 1–8 NOVEMBER-DECEMBER 2024

Comparative analysis of performance, efficiency, and resource
usage between COMSOL Multiphysics and the MPh library of

Python in the simulation of physical phenomena

M. A. Ortiz Villicaña, Y. Y. Huamani Tapia, and C. Guerrero-Mendez

Universidad Aut́onoma de Zacatecas, Unidad Academica de Ciencia y Tecnologı́a de la Luz y la Materia,
Circuito Marie Curie S/N, Parque de Ciencia y Tecnologı́a QUANTUM

Ciudad del Conocimiento, 98160, Zacatecas, Zac., México.
e-mails: marcoortiz@uaz.edu.mx; yembyhuamani@uaz.edu.mx; guerreromendez@uaz.edu.mx

Received 6 May 2023; accepted 1 February 2024

MPh is a library of Python that makes possible to link the Python computer language with COMSOL Multiphysics. The use of the MPh
library opens the possibility to save the computer resources employed when simulating physical phenomena and solving mathematical models
and equations. In the Python command interpreter is possible to change or adjust some settings and parameters from the models created in
COMSOL, and to execute the COMSOL kernel to solve those models. In this study, we compare the performance of COMSOL Multiphysics
and the MPh library of Python when computing the magnetic field generated by a distribution of currents and ferromagnetic material. The
metrics employed to do the comparison and the methodology to measure them are described, as well as the computer equipment where the
programs ran. The results show that the execution time of the computations are similar in both software, but in the rest of the metrics, the
execution in Python surpassed the execution in COMSOL. We showed that the MPh library of Python demands less CPU and RAM usage
when solving the mathematical models and the files containing the solutions use less storage memory. As a conclusion, we propose the use
of the MPh library of Python to improve the performance of the computer in charge of carrying out the calculations.

Keywords: Computer resources usage; COMSOL Multiphysics; MPh Phython; performance comparison.

DOI: https://doi.org/10.31349/RevMexFis.70.061003

1. Introduction

Simulating physical phenomena is a fundamental tool in en-
gineering and the physical sciences, as it allows us to un-
derstand and predict the behavior of systems under different
conditions. In many cases, the simulation of physical phe-
nomena requires the use of large amounts of computational
resources due to the quantity of data and mathematical opera-
tions involved. Therefore, it is important to consider the com-
putational cost, especially if accurate results are desired in a
reasonable amount of time. As a consequence, the selection
of the most appropriate software tool that make the most of
available resources is also an important desicion. There are
various software tools available for this purpose, each with
its own strengths and weaknesses. In this study, we compare
the performance, efficiency, and resource usage of COMSOL
Multiphysics and the MPh library of Python in the simulation
of physical phenomena.

COMSOL Multiphysics is a widely used multidisci-
plinary simulation software that offers an extensive range
of tools for the simulation and analysis of physical systems
[1,2]. It is commonly used in engineering and materials sci-
ence problems and has applications in a vast number of areas
in physics, chemistry and engineering. One of the main ad-
vantages of COMSOL is its user-friendly graphical interface,
which makes it easy to use for those with little programming
experience.

On the other hand, Python is a general-purpose program-
ming language that is widely used in data science and en-
gineering. It is a very powerful and flexible language that
offers a large number of libraries and modules for the sim-
ulation and analysis of physical systems [3]. In addition,
Python has a large user community and extensive documenta-
tion available online. Nevertheless, Python requires program-
ming skills and may be more difficult to use for those with
little programming experience. A feature opposite to that of
COMSOL is that Python and its libraries are open-source and
free software, which means they can be used for free by any-
one. Information and documentation about the Python pro-
gramming language may be found at its website [4].

Due to the growing popularity of this programming lan-
guage, the use of Python has been spread to many areas of ap-
plication. Precisely, Python has a library to access the COM-
SOL API (Application Programming Interface). This library
enables operations such as loading a model from file, reading
and modifying parameters, solving the model and running the
simulation, evaluating the results and exporting them. The
library is namedMPh. Information about this library and
the way how to use its diverse functions is found in Ref. [5].
The relation between the MPh library of Python and COM-
SOL Multiphysics is depicted in Fig. 1. The physical model
to solve is created in the COMSOL graphical user interface.
The model and all its settings and parameters are saved in a
*.mph file. This file may be manipulated either by COMSOL
or Python. If we intend to solve the model using Python, the

2 M. A. ORTIZ VILLICA ÑA, Y. Y. HUAMANI TAPIA, AND C. GUERRERO-MENDEZ

FIGURE 1. Relation between the MPh library of Python and COM-
SOL Multiphysics.

MPh library interacts with the COMSOL API to execute the
numerical methods to yield the solution.

On the one hand, COMSOL comes with a modern graph-
ical user interface to set up simulation models and visualize
the results of the computations in a rich variety of 1D, 2D
and 3D graphs. On the other hand, Python loads a file cre-
ated by COMSOL containing all the parameters, information,
and mathematical equations that describe the model, and also
the type of analysis or solution we are looking for. Stationary,
time-dependent, and parametric sweep studies are three such
examples. All the manipulations to the model in Python, in-
cluding the operations to load and solve it, are done through
instructions typed in the Python interpreter. Obviously, this
is an advantage of Python over COMSOL with regard to the
demand of computer resources from the point of view of the
user interface. We remark that the MPh library of Python
does not replace the use of COMSOL Multiphysics, as this
is just a bridge to the core that solves the mathematical equa-
tions. The creation and setting up of a model must be done
in COMSOL, and additionally its powerful graphical user in-
terface and features facilitates the visualization, manipulation
and exporting of the data resulting from the simulation.

In this study we aim to determine which of these two
software tools is more efficient for solving models of phys-
ical phenomena in terms of performance and computer re-
source usage. We focus on a specific physical phenomenon,
the generation of magnetic field from a distribution of cur-
rents and ferromagnetic materials, to maintain the same con-
ditions necessary for a correct comparison. Notwithstanding,
it is very feasible that the results obtained can be extrapolated
to the general solution of physical models. By comparing
these two software tools, we hope to provide insights into the
strengths and weaknesses of each one and help researchers
and engineers to choose the most appropriate tool for their
needs. The rest of the article describes the metrics used to
compare the demands of computer resources when both soft-
ware solve the same mathematical model, the characteristics
of the computer equipment employed, the technique to scan
the performance of the programs at solving, and the results
obtained out of the comparison. Additionally, it is included a

brief description of the physical phenomenon to simulate and
its associated mathematical model to be solved.

2. Metrics for the comparison, its implemen-
tation, and the computer equipment

There are several software tools to monitor and record the
performance and usage of the resources in a computer, and to
scan the computer resources consumption by a specific pro-
cess or program. Each one of these tools has its own features;
features that allow to select, measure or record among some
of the computer resources we want to monitor. In conduct-
ing this research, we decided to program our own process
monitoring tools. These are two programs that conform to
the measurement of the metrics defined below. The programs
were coded in Python.

2.1. The metrics and its implementation in the
monitoring-process program

Generally speaking, metrics are simply quantitative measures
used for comparing, tracking, and understanding the perfor-
mance of a specific process. The metrics considered in this
work areCPU (Central Processing Unit) usage, RAM (Ran-
dom Access Memory) usage, total execution time, and thesize
of the fileswith the solution data included. In addition, we
consider the accuracy of the solutions provided by COMSOL
and Python contrasted against each other, and with a known
solution provided by the theory of electromagnetism. Before
to define precisely each one of the metrics and how we imple-
mented the measurement of them, we make a short digression
about the library of Python namedpsutil (Python system and
process utilities).

Psutil is a cross-platform library for retrieving informa-
tion on running processes and system utilization (CPU, mem-
ory, disks, network, sensors) in Python. It is useful mainly for
system monitoring, profiling, limiting process resources and
the management of running processes. The documentation
related to the characteristics and functionality of this library
may be consulted in Ref. [6]. Several functions of this library
were employed to measure the different metrics.

CPU (Central Processing Unit) usage. This refers to
the amount of work that is being handled by the CPU, or
how much of the computer processing resources are being
used. This is usually measured as the amount of time a
CPU spends processing the task of interest in a specified
time length. We implement the measurement of the CPU
usage with the functionpsutil.cpu percent() which
returns a float number representing the current system-wide
CPU utilization as a percentage. An interesting fact about
psutil.cpu percent() is that the number returned by
this function may be greater than 100. The reason is that the
function sums up the CPU usage percentage of each individ-
ual core in a multiprocessor CPU. In order to obtain a number
less than or equals to 100 (hence a true percentage), we have
to divide by the number of logical processors of the computer

Rev. Mex. Fis.70061003

COMPARATIVE ANALYSIS OF PERFORMANCE, EFFICIENCY, AND RESOURCE USAGE BETWEEN COMSOL . . . 3

equipment. In this article, we show the number returned by
psutil.cpu percent() directly.

Just as a remark, although the use of GPUs (Graphics
Processing Units) was originally designed to accelerate the
rendering of 3D graphics, over time they became more flexi-
ble and programmable, improving their capabilities this way.
Now, GPUs are being used in a broad range of applications,
like artificial intelligence, deep learning, and to accelerate ad-
ditional workloads in high performance computing, besides
graphics and video rendering [7]. However, in this article we
only deal with CPU usage and not with GPU usage. This is
due to the fact that COMSOL Multiphysics does not support
the use of GPUs [8].

Memory usage. The term stands for the amount
of memory that an application uses while running. In
this case, the methodmemory info().rss of the
classpsutil.Process returns the non-swapped physi-
cal memory (RAM) a process has used in bytes. At this
point, it is important to highlight that the most important
factor in COMSOL Multiphysics to solve large models is to
have enough physical memory (RAM), and that the RAM is
correctly installed. If there is not enough RAM, then there
will be significant slowdown, regardless of all other hardware
choices [8]. For this reason, it is very relevant to monitor the
RAM memory usage for COMSOL and Python.

Total execution time. It is the time interval that lasts
the computation of the solution of a mathematical model.
We measure this magnitude in seconds. In COMSOL, af-
ter the running of a simulation or computation has finished,
the execution time, in seconds, is displayed. We took di-
rectly this value. With respect to Python, we used the func-
tion time.time() twice, once to record the beginning and
the other to record the ending of the process. The function
time.time() returns the time as a floating point number
expressed in seconds since theepoch, in Coordinated Univer-
sal Time (UTC). The epoch is the point where the time starts;
it is January 1, 1970, 00:00:00 (UTC) on all platforms.

Size of the saved files. This is the size of the files in bytes
after solving the mathematical model and saving the solu-
tions. File sizes are displayed by the operating system. At the
beginning, a model is created in COMSOL and saved in a file
without being solved. The file just contains the model, and
the configuration needed to execute the numerical methods in
a later step. Then, we make a copy from this original file to
obtain two identical files with the same size on the file sys-
tem. We solve one in COMSOL and the other one in Python.
Both files are saved and their new sizes are compared. This
metric allows to see how efficiently each software stores the
final data.

Accuracy of the solutions. In order to validate the mod-
els and simulations, it is a common practice to contrast the
result of the numerical solutions and calculated parameters
against analytic known solutions and values also known from
direct experimentation. All results computed by the MPh li-
brary are returned asNumPyarrays. NumPy is another li-
brary of Python employed for scientific computing. Informa-

tion about NumPy can be found in its website [9]. We opened
the data files to check and compare the contents of these files
regarding the precision, and quantity of data saved in them.
The MPh library of Python also allows the direct evaluation
of a parameter if we know the name given to the parameter by
COMSOL. In this work, we compared the magnetic force be-
tween two current-carrying wires calculated numerically by
both software against the value known from the electromag-
netic theory.

2.2. The computer equipment

The computer equipment employed in the present analysis is
a Dell Inspiron 15 3501 laptop. The CPU inside the com-
puter is a 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40
GHz 2.42 GHz. This CPU contains 4 cores or independent
CPUs and an 8 MB Intel Smart Cache [10]. It is possible to
consider 8 logical CPUs in the equipment. “Logical CPUs”
means the number of physical cores multiplied by the number
of threads that can run on each core (this is known as Hyper
Threading) [6,10].

Regarding the RAM, the laptop has two memory slots for
inserting the cards. In one slot, there is an 8 GB memory
card, and a 16 GB card in the other. In this way, the com-
puter has a total of 24 GB RAM memory. The type of RAM
cards is DDR4. The memory controller frequency is 6 MHz
approximately.

The computer employed has the Microsoft Windows 11
Home Single Language operating system, the 10.0.22621
version. In addition, the COMSOL Multiphysics version
used in this study was 5.6 version.

3. Methodology

Once established the metrics for the comparison, and the rele-
vant characteristics of the computer used to run the programs,
we explain the procedure followed to generate the informa-
tion for the analysis. We investigated the demands of com-
puter resources by COMSOL and Python through the execu-
tion of four different models saved in eight files. Initially, two
identical files per model. The physical problem to solve and
its associated mathematical model will be described in the
Sec. 4. The first two files, containing the model 1, compute
the magnetic field of a distribution of current due to a couple
of solenoids and within the presence of ferromagnetic mate-
rial. The second pair of files, containing the model 2, also in-
clude a magnetic sextupole defined by the ferromagnetic ma-
terial and excited by additional current-carrying wires. These
four files allow to monitor the demands of CPU and of RAM
memory because the execution of the numerical solver takes
a time of about 10 min and 2 h, for model 1 and model 2
respectively. As stated in the Sec. 2, the measurement of the
CPU usage is defined employing a established time length for
observation. The time interval between successive calls to
the monitoring function of the CPU usage is 1 second. This

Rev. Mex. Fis.70061003

4 M. A. ORTIZ VILLICA ÑA, Y. Y. HUAMANI TAPIA, AND C. GUERRERO-MENDEZ

is also the time interval between calls to the memory usage
function.

The execution of the remaining four files lasts only a cou-
ple of seconds, being useless for the performance compari-
son. However, these files enable us to check the accuracy of
the solutions. The first two files, corresponding to model 3,
compute the magnetic field of a single solenoid. This model
is useful in order to compare the accuracy of the solutions
provided by both programs. The last two files model two
parallel current-carrying wires separated by a given distance.
In this model, apart from the field computation, the magnetic
force computation between the wires is performed. The force
between the wires is known from the theory of electromag-
netism, hence we have a value to compare with the numerical
solutions.

4. Physical problem and mathematical model

In this section, we briefly describe the mathematical model
to be solved using numerical methods. The four models
employed in this work all deal with the calculation of the
magnetic fieldB due to a current distribution and within the
presence of ferromagnetic materials. Model 4 also provides
the value of the total magnetic force between two conduc-
tors one meter apart. Strictly speaking, the magnetic field is
represented by the variableH, andB is known as the mag-
netic flux density.H andB are related by the so-called con-
stitutive relations. Through these constitutive relations, the
macroscopic electric and magnetic properties of the medium
are described. The equation that allows to compute the mag-
netic field as a consequence of the presence of distributions
of electric current, magnetic materials and electric fields is
Ampère’s law:

~∇×H = J +
∂D
∂t

, (1)

whereJ is the electric current density, andD is the electric
displacement field. Just asH andB are related by a constitu-
tive relation, in the same wayD andE, the electric field, are
related by their respective constitutive relation that determine
the electrical properties of the medium. Usually, in the pres-
ence of materials with isotropic linear electric and magnetic
properties, the constitutive relations are

D = ε0εrE = εE, B = µ0µrH = µH. (2)

ε0, εr andε are three scalar quantities, the electric permittivity
of vacuum, the relative permittivity, and the electric permit-
tivity of the medium, respectively. Similarly,µ0, µr andµ
are scalars and are known as magnetic permeability of vac-
uum, relative permeability, and magnetic permeability of the
medium, respectively. Most of the region in which the mag-
netic field is calculated contains linear and isotropic magnetic
materials; therefore, they are described by giving the value of
µ. The ferromagnetic material used in the simulation has a
nonlinear behaviour, and is modeled according to

B = f(||H||) Ĥ. (3)

The form of the functionf(||H||) must be entered into the
model. Finally, the current densityJ is given by

J = σE + Je, (4)

with σ the electrical conductivity of the medium, andJe an
externally generated current density.

The specific problem we dealt with in the COMSOL
models comes from magnetostatics. In the magnetostatic
case, and without electric fields present, we have∂D/∂t = 0,
E = 0. Thus, Amp̀ere’s law Eq. (1) and the current density
Eq. (4) take the form

~∇×H = J, J = Je ⇒ ~∇×H = Je. (5)

Equation (5) represents the physical situation to be analyzed.
Most of the solution methods, and this is the case in COM-
SOL Multiphysics, solve Eq. (5) putting it in terms of the
magnetic vector potentialA. This is done through the change
of variables:H → B → A. The change of variableH → B
is done via the constitutive relations like Eqs. (2) and (3). The
definition of the vector potential provides the missing relation

B = ~∇×A. (6)

Using the definition of vector potential Eq. (6) and the con-
stitutive relationship Eq. (2), we rewrite Amp̀ere’s law as

1
µ

~∇×
(

~∇×A
)

= Je. (7)

Equation (7) is the mathematical model that COMSOL solves
using numerical methods. Once the solution forA is ob-
tained, it is easy to get the solution ofB, it is just a matter to
use Eq. (6).

The method to obtain the force between two current-
carrying conductors implies no more heavy calculations. The
force is calculated via

f = J×B, (8)

f is the volume force density,J is given by the user when the
model is configured, andB is computed via Eqs. (7) and (6),
which is the time-consuming and hard part of the computa-
tions. In order to obtain the total force a wire experiences by
the other wire, it is necessary to perform a numerical volume
integral in the region defined as part of the wire.

A more detailed explanation of the physical meaning of
the magnitudes appearing in Eqs. (1)-(8), and of the Eqs. (1) –
(8) themselves and their consequences, may be found in texts
about electromagnetism. Two classical books areIntroduc-
tion to electrodynamicsby David J. Griffiths [11] andClassi-
cal electrodynamicsby John D. Jackson [12]. The first book
has an undergraduate level, while the second one is intended
for graduate studies. Table I summarizes the electromagnetic
quantities appearing in this section with their respective SI
units.

Rev. Mex. Fis.70061003

COMPARATIVE ANALYSIS OF PERFORMANCE, EFFICIENCY, AND RESOURCE USAGE BETWEEN COMSOL . . . 5

TABLE I. Electromagnetic magnitudes involved in the mathemat-
ical model to be solved for finding the values ofB in a region of
space and their SI units.

Variable Magnitude SI unit

B Magnetic flux density Tesla (T)

H Magnetic field strength Amp̀ere/meter (A/m)

E Electric field strength Volt/meter =

Newton/Coulomb

(V/m = N/C)

D Electric displacement C/m2

J Current density A/m2

A Magnetic vector potential Weber/meter (W/m)

t Time Second (s)

µ, (µ0) Magnetic permeability Henry/meter (H/m)

(of vacuum) 4π × 10−7 H/m

ε, (ε0) Electric permittivity Farad/meter (F/m)

(of vacuum) 8.85×10−12 F/m

µr, εr Relative permeability Dimensionless

and permittivity

σ Electrical conductivity Siemens/meter (S/m)

f Volume force density N/m3

Regarding the form of how the COMSOL kernel is pro-
grammed to solve the systems of differential equations result-
ing from the physical models, and the numerical solvers the
kernel uses for this purpose, there is information available on
the COMSOL Multiphysics website [1]. Some good starting
points are [13-16]. The principal reference that describes all
the aspects of COMSOL Multiphysics is the COMSOL Mul-
tiphysics reference manual. The manual is also available on
the COMSOL website.

5. Results

The data recorded from the execution of COMSOL and
Python when solving the mathematical models described in
Sec. 3 are shown in the next graphs. Figures 2 and 3 show
the performance of the CPU and memory demand at solving
the model 1. Figure 2 shows that the CPU demand is lower in
Python than in COMSOL most of the time. The mean CPU
usage throughout the execution of the programs is 324.0% by
COMSOL and 303.6% by Python. It is also possible to appre-
ciate that the distribution of the data obtained from each soft-
ware, displayed in the graph of Fig. 2, is quite similar. The
standard deviation confirms this assumption:σcom = 46.9
andσmph = 47.5. σcom, σmph stand for the standard devia-
tion of the data obtained by running COMSOL and Python,
respectively. We continue with the analysis of the next met-
ric, the RAM memory demand. Likewise to the CPU usage,
Python employs less RAM memory than COMSOL. Despite

FIGURE 2. Relation between the MPh library of Python and COM-
SOL Multiphysics.

FIGURE 3. Relation between the MPh library of Python and COM-
SOL Multiphysics.

the lower memory consumption by Python, the RAM
presents the same usage patterns by COMSOL and Python,
confirming effectively that the same algorithms are executed
in both programs. Note that the horizontal axis of the graphs
in Figs. 2 and 3 do not represent the execution time of the
programs. What is represented by this axis is the number
of times a system call has been made to read both CPU and
memory usage. We call this operation an iteration. The al-
gorithm of the monitoring program includes a routine to wait
for one second before performing the next iteration. Despite
the above, we can not expect the time interval between two
iterations to last precisely 1 s. Between two iterations the
program performs various tasks with the data obtained from
the system calls, and even worse, the monitoring program
creates two threads that run at the same time and only one
of them makes the system calls. It depends on the operating
system how long each thread is executed by the CPUs before

Rev. Mex. Fis.70061003

6 M. A. ORTIZ VILLICA ÑA, Y. Y. HUAMANI TAPIA, AND C. GUERRERO-MENDEZ

TABLE II. Summary of the metrics of the 4 models. The upper data in each entry is from the model solved by COMSOL. The initial file size
is the same for both.

Model 1 Model 2 Model 3 Model 4

Minimum 83.6% 60.6% 28.1% 114.9%

CPU usage 43.3% 22.2% 165.2% 131.9%

Maximum 372.8% 423.9% 432.6% 498.6%

CPU usage 366.0% 372.8% 346.7% 363.8%

Mean 324.0% 320.3% 228.4% 275.8%

CPU usage 303.6% 298.7% 250.5% 240.4%

Minimum 0.96 GB 1.04 GB 843.04 MB 813.15 MB

RAM usage 0.60 GB 0.78 GB 683.37 MB 750.86 MB

Maximum 2.91 GB 12.17 GB 1020.76 MB 1014.32 MB

RAM usage 2.54 GB 12.41 GB 868.88 MB 1084.95 MB

Mean 2.54 GB 9.09 GB 932.33 MB 926.83 MB

RAM usage 2.20 GB 9.08 GB 795.12 MB 961.33 MB

Execution 698 s 6344 s 3 s 2 s

time 714 s 6105 s 6 s 5 s

Initial file 13.86 MB 142.95 GB 0.90 MB 0.19 MB

size

Final file 94.83 MB 418.95 MB 4.38 MB 1.45 MB

size 50.55 MB 185.69 MB 1.58 MB 0.18 MB

FIGURE 4. Relation between the MPh library of Python and COM-
SOL Multiphysics.

switching to the other or to another process, and therefore,
the execution times between iterations is variable. Anyway,
the iteration number gives an estimation of the execution time
of the program. In order to solve the model 1, COMSOL took
a time of 698 s. The time spent by Python to fulfill the same
task was 714 s. The last metric we consider in this work is the
file size of the model generated after solving it. The file gen-
erated by COMSOL has a size of 99,438,907 bytes≈ 94.8
MB, the one generated by Python, 53,002,007 bytes≈ 50.5
MB. The file generated by Python has almost the half of the

FIGURE 5. Relation between the MPh library of Python and COM-
SOL Multiphysics.

size of the file obtained with COMSOL. Table II summarizes
the values of the metrics obtained from monitoring the four
models.

Now, we proceed to carry out a similar analysis to that of
model 1 with model 2. Figures 4 and 5 show the CPU and
memory performance when solving the model 2. Figure 4
shows again that Python demands less CPU usage. On av-
erage, Python uses 298.7% of the CPU and COMSOL uses
320.3%. Dispersions of the data given by their respective
standard deviations areσcom = 43.6 andσmph = 41.5. A

Rev. Mex. Fis.70061003

COMPARATIVE ANALYSIS OF PERFORMANCE, EFFICIENCY, AND RESOURCE USAGE BETWEEN COMSOL . . . 7

dispersion of data quite similar in both cases. Figure 5 shows
a consumption of RAM very similar between the two pro-
grams. First, as in the previous case, RAM usage behaviour
patterns are almost identical, confirming once again the exe-
cution of the same numerical methods. Second, in this model
the amount of RAM used by Python and COMSOL is almost
the same. Even Python had a slightly higher maximum mem-
ory consumption than COMSOL. Despite the above, most of
the time Python consumed less RAM. In summary, the obser-
vations made to the execution of model 2 reinforce the thesis
that Python makes a better use of CPU and RAM. We now
continue with the next metric, the execution time. In this
case, the execution of COMSOL solving the model is longer
than that of Python. COMSOL employed 6344 s to complete
the task, whereas Python used 6105 s. Finally, the sizes of the
resultant files are 439,303,098 bytes≈ 419.0 MB the COM-
SOL file and 194,712,992 bytes≈ 185.7 MB the Python file.
The Python file has approximately the half of the size than
the COMSOL file. The values of the metrics for the model 2
appear in Table II.

In Sec. 3, it was explained that models 3 and 4 are not
appropriate for the analysis of CPU and RAM usage due to
the very short execution time of the programs when solving
the models. However, the metrics of these models appear on
Table II. One of the two metrics considered for the analysis
in these two cases was the file sizes. In both models, mod-
els 3 and 4, COMSOL final file sizes are much larger than
the equivalent Pyhton file sizes. In model 4, even the Python
final size is smaller than the original file size. Therefore, an-
other conclusion we can make is that Python has a greater
performance in the storage of data.

In COMSOL Multiphysics, the solution dataset may be
exported into a text file. Similarly, Python handles the so-
lution dataset as a NumPy array, and this array may also be
stored in a text file. In a later step, text files can be opened
and compared. The results of the inspection of the files are
described next. The solution dataset of model 3 consists in
15,600 nodes in both files. The numerical data stored in the
files are exactly the same. Nevertheless, the inspection result
of the files corresponding to model 4 was unexpected. In this
case, the number of nodes stored in the COMSOL dataset is
452, in contrast to the 6323 nodes in the Python dataset. It
turns out that the COMSOL dataset is a subset of the Python
dataset. The numerical precision employed in both datasets

is the same. This results reinforce the picture illustrated in
Fig. 1, the MPh library of Python employs the kernel of
COMSOL to solve the models. In order to appreciate the ac-
curacy of the solutions provided by the software, in the model
4, the force exerted by one cable on the other according to the
electromagnetic theory is2.0 × 10−7 N/m. The value pro-
vided by both software is1.9966301423761032×10−7 N/m.

6. Conclusions

Table II shows that Python is more efficient in each and every
one of the metrics employed for the comparison. The CPU
mean usage difference between COMSOL and Python was
40%. Figures 2 and 4 and the consideration of the standard
deviation of CPU usage data highlight a similar pattern of
CPU consumption. Analogously to the CPU case, the use of
RAM memory follows the same behaviour pattern as shown
in Figs. 3 and 5. The overall demand of RAM by Python was
less than by COMSOL, though in model 2 the difference is
very small.

The size of the files containing the solved models was
smaller in Python in all the cases. In three of the four mod-
els, the Python files were about the half of large than COM-
SOL files. Regarding the execution time of the programs,
the behaviour of the programs is not clear. Sometimes the
execution time is smaller in COMSOL, some other times in
Python. Either way, the time length is similar when measur-
ing in seconds. Finally, the precision of the solutions given
by both programs is exactly the same. In the case of model 3,
the amount of data was also the same. At the other hand, the
amount of data exported by COMSOL for model 4 was only
the 7.15% of that of Python.

In conclusion, we remark that when using the MPh li-
brary of Python we can not omit the use of COMSOL. In
the first place, the creation of the models with their adequate
adjustments to solve them are done in COMSOL. Secondly,
Python employs the COMSOL kernel to solve the models nu-
merically. Despite the above reasons, Python is more effi-
cient at solving the models. As a result, we can also conclude
that the most efficient way to perform the simulations created
with COMSOL Multiphysics is to solve them in Python. Fi-
nally, with the solutions at hand, we can manipulate the data
in whichever tool we prefer, or according to our needs.

1. COMSOL Multiphysics website.https://www.comsol.
com/

2. R.W. Pryor. Multiphysics Modeling Using COMSOL: A First
Principles Approach. Engineering Pro collection.Jones &
Bartlett Learning, (2009).

3. G. Ciaburro. Hands-On Simulation Modeling with Python: De-
velop simulation models to get accurate results and enhance
decision-making processes. (Packt Publishing, 2020).

4. Python website.https://www.python.org.

5. Website with the information about the MPh library of Python.
https://mph.readthedocs.io/en/stable/ .

6. Website with the information about the MPh library of Python.
https://psutil.readthedocs.io/en/latest/ .

7. What is a GPU? Document found athttps://www.
intel.com/content/www/us/en/products/
docs/processors/what-is-a-gpu.html#: ∼:

Rev. Mex. Fis.70061003

https://www.comsol.com/ �
https://www.comsol.com/ �
https://www.python.org.�
https://mph.readthedocs.io/en/stable/ �
https://psutil.readthedocs.io/en/latest/ �
 https://www.intel.com/content/www/us/en/ products/docs/processors/what-is-a-gpu.html #:~:text=Graphics%20processing%20unit%2C%20 a%20specialized,video%20editing%2C%20and%20 gaming%20applications�
 https://www.intel.com/content/www/us/en/ products/docs/processors/what-is-a-gpu.html #:~:text=Graphics%20processing%20unit%2C%20 a%20specialized,video%20editing%2C%20and%20 gaming%20applications�
 https://www.intel.com/content/www/us/en/ products/docs/processors/what-is-a-gpu.html #:~:text=Graphics%20processing%20unit%2C%20 a%20specialized,video%20editing%2C%20and%20 gaming%20applications�

8 M. A. ORTIZ VILLICA ÑA, Y. Y. HUAMANI TAPIA, AND C. GUERRERO-MENDEZ

text=Graphics%20processing%20unit%2C%20a%
20specialized,video%20editing%2C%20and%
20gaming%20applications

8. What hardware do you recommend for COMSOL Multi-
physics? Document found athttps://www.comsol.
com/support/knowledgebase/866 .

9. Website with the information about the NumPy library of
Python.https://numpy.org/ .

10. Specifications of Intel Core i5 1135G7 Processor.
Document found at https://www.intel.com/
content/www/us/en/products/sku/208658/
intel-core-i51135g7-processor-8m-cache-up
-to-4-20-ghz/specifications.html .

11. David J. Griffiths. Introduction to electrodynamics. (Pearson,
4th edition, 2013).

12. John D. Jackson. Classical electrodynamics. (John Wiley &
sons, Inc., 3rd edition, 1999).

13. Understanding the fully coupled vs. segregated ap-
proach and direct vs. iterative linear solvers. Document
found at https://www.comsol.com/support/
knowledgebase/1258#: ∼:text=The%20Direct%
20solvers%20available%20within,converge%
20to%20the%20same%20answer .

14. Solutions to linear systems of equations: Direct and iterative
solvers. Document found athttps://www.comsol.

com/blogs/solutionslinear-systems-equations

-direct-iterativesolvers/ .

15. The iterative solvers. Document found athttps:
//doc.comsol.com/5.5/doc/com.comsol.help.
comsol/comsol ref solver.27.123.html .

16. Direct (solvers). Document found athttps://doc.
comsol.com/5.5/doc/com.comsol.help.
comsol/comsol ref solver.27.141.html .

Rev. Mex. Fis.70061003

 https://www.comsol.com/support/knowledgebase/866�
 https://www.comsol.com/support/knowledgebase/866�
https://numpy.org/ �
https://www.intel.com/content/www/us/en/ products/sku/208658/intel-core-i51135g7- processor-8m-cache-up�
https://www.intel.com/content/www/us/en/ products/sku/208658/intel-core-i51135g7- processor-8m-cache-up�
https://www.intel.com/content/www/us/en/ products/sku/208658/intel-core-i51135g7- processor-8m-cache-up�
-to-4-20-ghz/ specifications.html �
 https://www.comsol.com/support/ knowledgebase/1258#:~:text=The%20Direct% 20solvers%20available%20within,converge%20 to%20the%20same%20answer �
 https://www.comsol.com/support/ knowledgebase/1258#:~:text=The%20Direct% 20solvers%20available%20within,converge%20 to%20the%20same%20answer �
 https://www.comsol.com/support/ knowledgebase/1258#:~:text=The%20Direct% 20solvers%20available%20within,converge%20 to%20the%20same%20answer �
 https://www.comsol.com/support/ knowledgebase/1258#:~:text=The%20Direct% 20solvers%20available%20within,converge%20 to%20the%20same%20answer �
https://www.comsol.�
com/blogs/solutionslinear-systems-equations�
-direct-iterativesolvers/ �
https://doc.comsol.com/5.5/doc/com.comsol.help. comsol/comsol_ref_solver.27.123.html�
https://doc.comsol.com/5.5/doc/com.comsol.help. comsol/comsol_ref_solver.27.123.html�
https://doc.comsol.com/5.5/doc/com.comsol.help. comsol/comsol_ref_solver.27.123.html�
 https://doc.comsol.com/5.5/doc/com.comsol.help. comsol/comsol_ref_solver.27.141.html�
 https://doc.comsol.com/5.5/doc/com.comsol.help. comsol/comsol_ref_solver.27.141.html�
 https://doc.comsol.com/5.5/doc/com.comsol.help. comsol/comsol_ref_solver.27.141.html�

