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We explore the geodesic hypothesis of orbital trajectories of the electrons in hydrogenoid atoms, in the frame of de Broglie-Bohm quantum
theory. It is intended that the space-time can be curved, at very short distances, by the effect of the joint action of the energy content of the
atomic system and the contribution of the electric and quantum potentials. The geodesic hypothesis would explain the non-lose of energy
in the electron orbital trajectories. So we explore a conception where particles and waves interact in a closed system: the waves guide the
particles and the particles generate the space-time perturbation that acts as a wave, beyond the pilot-wave theory.

We establish the equivalence, in a local neighborhood, between the electron trajectory of an hydrogenoid atom in the Minkowskian space
where the de Broglie-Bohm can be cast with its movement in a Lorentzian manifold, according to the concept of tangential metric. Through
the geodesic condition and the invariance of the elemental length, we establish a relationship between some components of the metrics. Bl
as the particles in microphysics do not follow the Einstein’s field equation, we consider the 3+1 decomposition according to ADM and the
quantization in the Wheeler De Witt theory and with a so-called quantum Einstein field equation, with a decomposition of spacetime into
three-dimensional sheets of a spatial character. Then we derive from the moment-energy tensor a further equation between the componen
of the metrics. It opens the avenue to characterize the metric by an exact solution of the Einstein’s field equations.
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1. Introduction gate the conditions for the orbital electronic motion described
in it to be interpretable as a geodesic of a curved spacetime,
The relationship between the de Broglie-Bohm Quantumyithin the framework of a local limit situation that allows us
Theory and the Canonical Quantum Gravity seems a promisop approach from the properties of a pseudo-Euclidean space
ing bridge between Quantum Mechanics and General Relap a Lorentzian manifold. Then we obtained a relationship
tivity for particles with low velocity. between certain components of the Lorentzian metric, so a
The de Broglie-Bohm Quantum theory (dBB), also family of possible metrics that fullfill our purposes.
known as Pilot-Wave theory or Causal Quantum Mechanics g, s 4 this geometrical consideration could not be added
Interpretation, appears in the period between 1923 t0 192¢ o1 physical results in the framework of the Classical
by the work of de Broglie [4,5]. In 1951 Bohm dgveloped General Relativity. In particular, the Einstein’s Field Equa-
further the theory [1,2]. (See Ref. [12] for a treatise of thetions are not extensible to microphysics. To delve into this
theory). _ _ _ research, we come to quantize the equations of the General
Our approach is based in the de Broglie-Bohm theory buhelativity, which addresses quantum gravity.
goes beyond it because, instead of consider that the wave Among the three branches that divide this theoretical

only guides the particle and the particle does not influence th . ! .
wave, we consider a co-determination between wave and palme' starte_d in the 1930s [17].’ our purpose finds support in
ticle, where the deformation of the space-time by the eIeCtri:[h_e anonlcal Quantum Gravity, initiated by Bergmann and
cal and quantum potentials plays an essential role. And theR irac in the 1950s.
the particle’s trajectory in stationary systems is considered as It should be mentioned that there is a point of general in-
a geodesic of this perturbed space-time. terest with others lines of investigation in these approaches,
The study of the hydrogenoid atom has the particularityespecially with regard to cosmological aspects. An impor-
of providing a framework with analytic functions, which fa- tant argument consists of basing the quantum conception on
cilitates the purpose of delving into the theory dBB. Further-2 theory that, unlike the conventional or Copenhagen, does
more, the stationary and symmetric character of its movenot require outside observers or ignore the isolated systems,
ment eases to go deeper in the essential physical issues of it that it can spread throughout the universe.
purposals. An exponent of the de Broglie-Bohm integration in cos-
In earlier works [9,8,11] we considered the hydrogenoidmological research is its use in the frame of Canonical Quan-
atom according to de Broglie-Bohm theory, trying to investi-tum Cosmology. Its introduction on the study of scalar po-
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tentials open the door to it, [10] and this line extended mainlyBoth real and imaginary parts must be nul. For the real part
to the relationship with the inflation scenario by means of ave have:

scalar field as origin of space-time structure. To model this 2 R
inflation phenomenon, the de Broglie-Bohm formalism has ~ —R8:S+ 5 <V2R - FLQ(VS)2> - VR =0,
been used in order to restrict the possibles potentials in quan-
tum cosmology [20-22]. that can be expressed as:
: 2 2 2
~ Coming back to ourapproa}ch, we refer to thg 3+1forma|- 8,5 + (VS) V@) - V'R 0. 3)
ism in the form ADM [16] and its Wheeler-DeWitt quantiza- 2m 2m R
tion [6], which can lead to the so-calld&instein’s Quantum  and with the de Broglie’s equation that relate the linear mo-
Field Equations. mentumg with the gradient of the wave’s phagé= V.S we
According to our knowledge, the first approximation to arrive to the equation:
the definition of an Einstein’s Quantum Field Equation is per- P B2 V2R
formed by F. Shojai and A. Shojai [19,20], based in the de oS + o + V() - TR 0. 4)

Broglie-Bohm (dBB) theory and on algebraic considerations
that have driven them to a quantum gravity model.
Later, the group in which among others we can cite the . h = = 2 _
recently failed D. Dirr [7], S. Goldstein and N. Zangh ! {hatR+ 2m (QVR'VSJFRV S)} =0
and followed by other investigator; as Tumulka [23] and\ye multiply by 2R and get:
Struyve [15] has elaborated a consistent theory that allows 1
us to move in that direction. 9RO,R + — (gRﬁR VS + R2V25) —0,
In this study, we seek to apply the geodesic hypothesis of om
the hydrogenoid atom to this context of the Canonical Quanthat can be written as:
tum Gravity, especially with relation to the definition of the R + 1 (ﬁRz VS 4 R2V25) —0,
energy-moment tensor, in order to raise the situation in which m
Einstein’s Quantum Field Equations can be solved within theand taking into account the divergence of the product of a
framework of our hypotheses, thus opening the way to idenscalar 2?) by a vector ¥ S) the previous equation reads:
tify the metric of space-time. RS
The outline of this article is as follows: firstly, we set R+ V- < ) =0.
out the fundamental lines of the approach to the geodesic hy- m
pothesis applied to hydrogenoid atoms in the framework ofNow we introduce the density of probability according
de Broglie-Bohm theory. Then we recall Einstein’s Quan-with the principle of quantum equilibriu® = |U|? = R?

tum Field Equations following their genesis from the ADM and the linear moment that allows define the velocity as
formulation of the General Relativity to their quantization by i — ﬁg/m and we come to:

Wheeler-DeWitt theory and its particle adaptation. We then

For the imaginary part of the ER)we get:

proceed to adapt our previous results to the theory particu- %P +V-(Pv)=0.
larly exposed to the energy-momentum tensor. This expression is interpreted as a continuity equation of
Finally, the results obtained are discussed. the density of probability.

The Eq. 4) is interpreted as a Hamilton-Jacobi equation,
) with an additional potential to the classical one that is called
2. The de Broglie-Bohm Theory and the hy-  guantum potential:
drogenoid atoms B2 V2R

Q) =55 (5)

We start from the de Broglie-Bohm theory of hydrogenoid . m ) o
atoms. The Sclidinger Equation : N In the case of stationary statésS in Eq. @) is the quan-
tizied energy of the system corresponding to the levgiven

2 by E, = —mq?/8eph?n?. So, replacing values in Eq#)(
. [ e
o ¥ + 5 VU - V¥ =0, (1) (5) can be written in cylindrical coordinates:
. . 5 mge  ulh? a
when applied to a wave equatidn = Re'# ,with R and S Q= 8eoh?n? Imp? + dreo/ 2 £ 22
0

real functions of position and time, leads to: _
the force derived from the quantum potentie) = —VQ

can be decomposed into the sum of two vecters which

opposes the force derived from the electric potential Bad

centripetal force which conditions the rotation of the electron

(v5)2] - VR) eih = 0. (2) inacircular orbitin a plane, which perpendicular through its
center crosses the positive nucleus.

2

ih |:R+ RY9,S| + ~— |V2R+ 2 VR-VS
h 2m h

pveg_ B
+ 2 RV?S —
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then be obtained from the gradient®find the quantum po-
tential from the quantum Hamilton-Jacobi equation or from
its definition and the probability density #&3.

3. Geodesic hypothesis on a Lorentzian mani-
fold

In dBB theory, the electron’s trajectory is described in an
orthonormal-based pseudo-Euclidean space as a periodic cir-
cular motion governed by a centripetal force.

The geodesic hypothesis is to interpret this trajectory as a
geodesic of a Riemannian (Lorentzian) manifold, which the
electron would follow in the absence of forces and thus with-

pt out loss of energy. Of course, we will stay in a simplified
model without considering spin or small fluctuations of or-
bit [24].

3.1. Local correspondence between a Riemannian ma-
nifold and an Euclidean space.

FIGURE 1. Forces acting on the hidrogen electron in the constant| . the e Broglie-Bohm theory,

the wave guides the parti-
phase plane passing through the spin axis, according to dBB theoryC 9 P

le; so it is very important the structure of the space-time
in neighborhood of the particle. Let's consider a hydrogen
atom and in it the electron. We will suppose that it moves
Quantum potential in y2,1 along the direction of azimutal angle 8 in a Lorentzial manifold),, located at the poinfiZ, with
2= ' ' ' ' T coordinateyy® and endowed by a metric that will satisfy a
60 —— condition that the movement of the electron will constitute a
e geodesic on it.
As we know, a Lorentzial manifold locally appears as a
. pseudo euclidian spacg. We will show that this tangent
pseudo-euclidean space-tifigy, V can admit the same met-
ric tensor as the manifold, in this point, that is locally, and
7 admit an image pointyg in the pseudo-euclidean space-time,
_ endowed with the same metric and signature.
Furthermore, we consider a reference system in the cen-
ter of mass of the atom with ortogonal unit vectors and the
g o ' ' ! ' L ! same signature of the tangent pseudo euclidean space previ-
8 X by 2 2% 3 3% 4 ously mentioned. In it, we can describe the dynamics of the
Rcleuselectron dlsiance(1g7<180m) electron in the frame of the dBB theory.
FIGURE 2. Quantum potential versys distance to the nucleus at Then, we can establish a relationship between the ten-
constant angle in a hydrogenoid atom. sors and invariants described in the tangent pseudo-Euclidean
system and the reference system by the equations of tensor
Figure 1 illustrates, in a hydrogenoid atom, the compo-analysis. By this correspondence between these two pseudo-
sition of the electrostatic force F'y and the quantum force Euclidean spaces, we can reléeally the dynamics of the
Fg, derived from the quantum potential, which are in a con-electron in the dBB theory and in the manifold.
stant phase plane. The legitimation of a correspondence between a pseudo
Figure 2 shows how the quantum potential varies in radiaEuclidean space and a Riemann (Lorentzian) differential
directions, depending on the azimuth an@leThe strongly  manifold,at local scope, so in the neighborhood of the ppint
repulsive character of the quantum force is observed in smatksts on the concept @ifst-order representationorrespond-
values ofp, evidenced by the growing character of e ing to thetangent Euclidean metrid4].
graph, to become attractive for values greater fhan Although the theory is general for any Riemann manifold
A very convenient approach to describe the quantum sysand any dimension, we will refer here for the sake of brevity
tem by the dBB theory is to define its Hamiltonian operatoronly to a Lorentzian manifold with dimension 4 and signature
(generally starting from the classical equivalent) and to solvé— + + +).
the Schibdinger equation. Then we obtain the eigen functions  Let V), be a Lorentzian manifold with a metric tensgy,
¥ and from there thé&k and theS functions. The velocity can in its point M, with coordinates(y/)’. Let also&, be a

Potential Q(10™-8 )
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pseudo-Euclidean space of the same dimension and signature Furthermore, the elemental distance between two points
as the manifold, so the tangent spacéip endowed with a of the neighborhood considered in the Lorentzial manifold
reference systerfmy, €,,) with the condition: and the pseudo- Euclidean space is the same:

g,u,-éL = (g,u,y)O~ (6)

We can put into correspondence the pdify of the man-
ifold and a pointm of the tangent pseudo-Euclidean space,
therefore with the same signature of the Lorentzial manifold. ) ]
This fact makes not necessary the use of complex transforma- 1 herefore, the elemental distande” is conserved be-
tions like the Wick rotation, to relate both the manifold and 'Ween the Lorentzian manifold and the pseudo-Euclidean
the pseudo-euclidean space. Every pdihof the neighbor- ~ SPace. Sp, this cqrrespondence of first order allows to |d¢nt|fy
hood of M, can be mapped to a point of the neighborhood the manifold metrics and the metrics of the pseudo-Euclidean

of mo, using second-degree functions,, of the difference tangent space and conserve the elemental distéice

mom> = (g )o dy*dy”
_—2
= (g )o dyt'dy” = MoM". 9

of coordinateg/” — ! at the point of the manifold, Now, we can use the coordinate$ = y — yg for the
sake of brevity. The coordinates® will be used in the refer-
mom = [(y" — i) + Aoy (7 — 45|y (7)  ence system. Both tensors and coordinates are related by the

From [7), passing to the limit, it follows that: equation:

@ _z B ox'® ox'P
o)y~ " v = o

Thus, the pointn in this pseudo-Euclidean space is defined

by the coordinates of the manifolg'; the valuesy” — ¥

act as curvilinear coordinates of the pointin the tangent

space. It must be highlighted that the signatures of both th

manifold and the Euclidean tangent space are the same.
Let us now consideg,, the metric of the tangent space,

defined by:

The ds? as invariant will have the same value in both
reference systems. And beingg the orthogonal pseudo-
Euclidean metric of the cylindrical reference system ard
ﬁs coordinates, we can write this equivalence as:

ds® = g, dz"de” = nepds “dz’®.

ds® = Guvdytdy”. For the left hand side of this equation, according with the

. . orthogonal system of reference with the cylindrical metric we
Then fory* = y} the pseudo-Euclidean and Lorentzian can V\E/;rite' Y y

metrics have the same values, and both metrics are said to be
tangentat this point. ds? = — @220 4+ @221 + (x’1)2d2$/2 + dzl’/g,

Juv = Guv-
. ' _u . i and for the central member:
The pseudo-Euclidean point is called the image of the

point M of the m_anifold_ and the relation between they is ds® = —good?a® + 2goada®da®
calledrepresentation of first order
Now we must relate this metric and coordinates with + gud*z' + goad®a® + gszd®a®. (10)

those of the reference system at the atom’s mass center. For
our purpose, we need only the relations at local level, so be- Now, we can establish a relation between both tangent

tween variables’ derivates and differentials. and reference systems. We can make the approximation of
The tensor, has, in cilindrical coordinates, the following identify the differentials at both tangent and reference sys-
value: tem, as we will detail later on. By equalling the elemental
1 0 0 0 interval in the tangent space and the space in the reference
0 g2 0 0 system, runs:
f=10 0 1 0 |- , ,
0 0 0 —1 2g02d2’da? + good®a? = (x )?d?x 2,

Concerning the tensay,,, since general cylindrical and gq
axially space-time allows the following metric's structure

[13]: gn = () - 202, (11)
g 0 0 0 00
Guw = 0 g2 0 g2 ' @
! 0 0 g 0 Let be the reference system where we represent the
0 g2 0 goo atomic system in the dBB theory, endowed with cylindrical

Rev. Mex. Fis70060701
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coordinates with origin in the mass center of the atomic sys- By substitutingw in Eq. (14) we get:
tem. Consider the motion of the electron around the pro-

ton in the pseudo-Euclidean space and absolute time as a ) 2
Minkowskian spacetime with time equations: 922 = Po <1 - uf902> ‘ 17
" 19 uht
L= po, TT=0= mp2’ This relation is very important in our purpose; we will see
" " that is a particular geodesic of the Lorentzian manifold. Ob-
v =z z =d. (12)  viously, we must haveg, < (u f/2).
Indeed, in the frame of the above-mentioned hypothesis S0, We have defined a coherent first-order correspondence
we can establish that approximation: that justifies our transit from the Lorentzial manifold to the

, pseudo- Euclidean reference space-time at the (local) differ-
o d2¥ = dz ° = cdt, because we work with velocities ential level.

little respectc.

e dz' = dz'! = 0 because the electron has a circular o _ _
trajectory in the dBB theory, so with constant radius. 3.2. Geodesics in the Lorentzian manifold
2 _ /2 _ . .
o dr” = dr” = ¢ because symmetry considerations. We will impose now to the metric the condition that the elec-
e dz3 = dz'3 = z because the trajectory is planefin tron trajectory be a geodesic of the manifold.
The geodesics of spacetime represented by the manifold
will be given by taking as parameter the proper time that,
since its velocity is of the order dfd—2c, we assimilate to

So we can writelz® instead oflz . Then we can estab-
lish thequadri-velocity as:

dzt . dz? . uh the time of the inertial observer:
P ik ey
mPo 2 A
d=x* dx¥ dx
da3 dx® +I ——=0 (18)
= = i 13 dt? vA dt  dt '
7 = 4= pTale (13)
Then the Eq.[11) simply runs: where thel”, are the Levi-Civita affine connectors. The
2 above equation has the physical meaning of imposing a zero
2 Jdo2 . . . .
922 =P0 — — - (14)  acceleration on the particle, calculated as a covariant deriva-

i ) . tive of the quadrivelocity. Quadrivector velocity experiences
We must now introduce a physical condition to go deeper, parallel transportalong the trajectory.

in the previous equation: the quantum condition that all elec- The “ " in the directi d d h lociti
trons that may belong to the same quantum state correspond- € torce"in the directiory, depends on the velocities

i i ici °
ing to the same atomic orbital must possess the same angul reach direction and)\. The coefficientt', , thus represent

or kinetic moment. That is, it must be accomplished: the influence of combinations of velocities on the force.

) We have previously evaluated the dBB quadrivelocity in
mwpy = uh, (13). So, replacing the velocitied ) to (18) we get:

whereh is the reduced Planck constant,is the magnetic ) )

quantum number ang, is the radius of the orbit, whilg is wTy + 2welfy + ¢ TGy = 0. (19)

the generic coordinate of spacetimvehich matcheg in the

electron’s trajectory. Sy is aparticle coordinate angh a Connectors can be expressed with respect to the metric
field coordinate in the particle’s neighborhood. The follow- 1onsor as follows:

ing relation is thus established:

uh

1
w=—j, Iy = 59“6(&/%5 + OrGvs — Osgun)-
mpg
and we introduce a constant to simplify notatiofy:the re-

We now hypothesize that the components of the metric
duced Compton length:

do not depend on the angl¢,= =2, thez = =3 or the time

_h 15 ct = 2°. In the components of the metrics, we will only
f= me’ (15) consider variation with respect to the= ! coordinate as
with which we can express: possible. o _
Replacing in the equation that expresses the connector de-
W= LJ;C (16)  pending on the metrig;; we can write the non-zero connec-
Po tors:

Rev. Mex. Fis70060701
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contracted form of 4 equations with= 1,2, 3, 0.

1 . . . A
Ity = 59“6(32925 + 02952 — 05922) To simplify these equgtlons b_y d|V|d[ng wl we make
sure that the values of this equation which interest us are not
_ 1 18 g _ 1 uly (20) null. That is, we need to evaluate the contravariant metric
g 0892 g o922, tensorg””. We know that ifo” is the adjoint ofg"”, we
u 1 s have:
Loy = 59” (92905 + ogs2 — Osgoz)
1 1 o
= *59”635902 = *59”131902, (21) g = g’
L s
Lo = 59" (9005 + Jogso — Dsgoo) whereyg is the determinant of its matriy,,.

1 1 As we have adopted the metric structu8p (ve evaluate
_ 2P — ) 22 . . . . . .
= 759 Ygoo = —59° 1900 (22) s determinany, which will be # 0 (Lorentzian metric):

We now replace the calculated connectors at the four tra-
jectory/geodesic Eqsl8):

w?g" 01922 + 2wegh D1 gos + 9" 01900 =0, (23)
|  and consequently tensgt” has the form:

g = det(gu,) = 911933(922900 — 9o2) # 0,

L 0 0 0
g11

0 goo 0 go2

wo o 922900 — 982 922900 —9352)
g = 0 0 S — 0
)
933(922900 —902)
go2 go2
933(!]22900—952) 933(922900—982)

We replacey'! in Eq. (23) and we are interested jn= 1

as the four equations are reduced to one: and with the reduced Compton length
w? 2cw c?
— 01922 + ——01go2 + — 01900 = 0. (24) " ufc 26)
g11 g11 g11 p% .

Simplify with g;; # 0, and replace partial derivatives by
totals with respect tp, that we will indicate by. We have: Let us now enter thkinetic moment constancy condition
in the congruence of trajectorigspresented by the equation
obtained in the previous paragraj#¥g), obtaining:

This equation is the condition of the geodesic equation if 50 5 .
the metric only depends om but does not yet assume the u” [ gaa + 2uf pj goz2 + Po Yoo = 0 (27)
condition of constant kinetic moment of quantum states. It
is therefore a necessary condition, but not sufficient to im-  In our stationary and cylindrical symmetric cagg = 0
plement the above hypothesis when considering the quantugnd we can write:
condition that all electrons that may belong to the same quan-

w?ghy + 2cwgly + gy = 0. (25)

tum state corresponding to the atomic orbital: all of them uf g + 205902 = 0, (28)
must possess the same angular or kinetic moment. That is, it
must be accomplished: which constitutes a corollary of the geodesic condition.

mwpg = uh, ) N
3.3. dBB Geodesic condition
where pg is the radius of the orbit, while is the generic
coordinate of spacetime, which matchegsin the electron’s  The general conditions for the metric of the previous para-
trajectory. Sopy is aparticle coordinate ang a field co-  graph allow us to state the following condition on the metric:
ordinate in the proximity of the particle. As was previously A | orentzian metrig;; compatible with de Broglie-Bohm

established: theory for hydrogenoid atoms, of the for8) &nd with the de-
_uh pendence of the components of the metric only on the cylin-
w= mp2’ drical coordinatep, fulfills the following equation on the

geodesic, in cylindrical coordinates:

Rev. Mex. Fis70060701
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4.1. 3+1 formalism, ADM

22 1 2 7 47
u” [ 950 + 2uf P02 + Pogoo = 0 (29) " 341 formalism was initiated by Darmois in the 1920s, fol-
Sinceg)), = 0 we can finally write: lowed by Lichnerowitz in the 1930s and by Mesmer and other
authors in the 50s (ADM formalism). It involves decompos-
Gy = _;pj(;)gé? (30) ing the Lorentzian variety of spacetime into a family of 3-

dimensional hypersurfaces each according to a time value.
The metric of the manifold we are looking for must meetso’ hypersurfaces have a spatial character: all points in each

the above equation for each valuesgfas well as the deriva- YPersurface have the same time coordinate value.

tives of the metric must be evaluated at this value. Let a coordinate pointt,z*(t)) be in theX, hypersur-
We must remark again that the coordinat@ays there face that has;;(¢) three-dimensional metric and the coor-

a twofold role: in the metrics component is a field variable,dinate point(t + d¢,«") in the £,.4; hypersurface that has

while with 0 subindex is a particle trajectory variable. But at hij (t + dt) metric. Theproper timebetween the two events

local level, ap andpo have very close values, we can repre- will not Usua”y bedt, but Ndt, where N will be a function

sent it by the same symbol. that is calledlapse function The space coordinates of the
This approximation isocally valid, as we want, because POINt of £, 4 will not be just eitherz*, butz* + N*dt with

our study only has local scope. But it shall be taken into!V" @s functions that determine the displacement vector.

account in operations as derive or integrate againsss pg So we can put the differential line element, according to

must be considered then as a constant. Furthermore, it déie Fig. 3:

fines a geodesic condition for all trajectories of the electron

for any value ofp, i.e. for all corresponding orbital, defined ds? = N2dt2 — hij(dl'i + Nidt)(da? + Ndt),

by ¥;;,. We indeed achieve this through the equation:

) uf or explicitly, downloading index witl, ; in the hypersurface:
o2 = _ﬁgzw (31)
. . ds®* = (N? — N;N%) dt* — 2N;dz'dt — hy;dz'd’. (34
Therefore the integral oBQ) is: 5 ( ) * Jer (34)
Goz = _uf goo + K. (32) In matrix form, the covariant and contravariant metric
204 tensors can be expressed as follows:
The above equation is a condition on the metrics that meet ) ,
the relativistic geodesic hypothesis with de Broglie-Bohm Gy = < N*—N;N' —N; )
theory. Coming back to the conditiofi®) derived of the in- ! —N; —hij
variance of the elemental distance between the tangent space 1 Ni
at the manifold and the reference space-time, expressed as: g = ( _N& NiNjN_Z i ) )
2 2
uf g22 o v
go2=—(1—=%), (33)
2 Po

Our purpose is to express the dynamic equations and the
that we see that is a particular case ®@®)(for K = uf/2. moment energy tensor based on canonical variables, so that
So the Eq.[83) is, between the bundle of solutions given by
(32), the particular that fulfill the both conditions of geodesic

and invariance of the elemental distance. B g \ .
. St bdi
4. Quantum gravity and quantum field equa- \.a — Nidt
tion of Einstein 5 :

The three-plus-one (ADM) formulation of relativity, separat-
ing time from spatial coordinates is cast, from its parametric d x Ndt
form to the Hamiltonian to allow its quantization and thus
to define the equivalent of the Einstein field equations in the
guantum scope. Quantization takes place according to the
Wheeler-DeWitt formulation.

In this section and the following we will adopt the metric

(+ - - -) and units according th = ¢ = 1, as the refer-
ence authors do [3,7,15]. Greek indices vary from 0 to 3 andricure 3. Dynamics of a point between two hypersurfaces sepa-
Latins from 1 to 3. rated by a time differential (S. Carlip, 2019).
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we can quantize later. The Hamiltonian formulation can beso we can express the action based on conjugate variables:
derived from the actio¥, which is an additive magnitude; in

our case: Sy = /dt/ dBxhiym +/thiPi —/dtH.
>

§=5a+5q, To calculate the Hamiltonian we need to define the De-

whereS,; is the classical action anst, the quantum action, Witt metric:
which also allows additive solutions, particularly the energy- oo hijhji + hithjk — hijhi
momentum tensor. ijkl = o/ )

We consider non-relativistic particles [15] instead of _ _
scalar fields as is commonly done. the potential density”:

It must be noted that the phase variables are not only the

. . . — R® (3)

coordinates of a particle but the functions that make up the Y= Vh(2A = RY) ~ _\/ER ,
metric matrix in the hypersurfacg;;. To formulate the equa- k k
tions in Hamiltonian form, one must determine their conju-and the total potential as a function of time:
gate moments from the Lagrangian.

(35)

V(t) = / d*zN(t, Z)V(h(t, Z)).
4.2. Classical relativistic approach in the ADM theory 5

In a classical relativistic approach, the action of a partitle Then we can describe the equations of motion according

(extension to more particles is immediate) can be consideret ADM theory:

as an addition of the Einstein-Hilbert actidf; and that of ) N(X) . ,

a non-relativistic particle in a gravitational field (relativistic Xi=——P' = N'(X),
case limit)Sy,:

. 1
1 g P, =-0;N (m + PkPk)
Set =Sa +Su = *;/ R\/fgd‘lem/th 2m

N X
Mol hij s e — 5 0ih" PP+ OiN" P,
+5 / ﬁ(xz + N)(X? + NY)dt, 2m
hij = QKNGijklﬂ'kl + DiNj + DjNi,
whereR is the scalar curvature of the manifolf and N*¢ i okl
are functions of; xk = 167G. T = = N&Opy; Grngam ™"
The above expression allows the identification of total 3 Xl
classical Lagrangians. Because: = Onyy VA4 20n,, /2d yNi Dy
S = /Lcldt = /Ecld4x, + 0z — X)Mpipj,
2m
then identifying the integrand of the above equation: H =0,
1 e
Ly = —f/R\/—gdgac —mN Hi=0.
K
_— From the Einstein’s field equations so defined or directly
I N (4 V) fom Sy
Let be D; the covariant derivative operator with respect T — 05 )
to theh;; metric of the hypersurface. This allows us to define Jom
Its extrinsic curvature: can directly derive the equation of the energy-momentum ten-
1 sor, the energy component of which is:

Kij = 5 (DZ-N]- + D;N; — h;j) :
g + 5= Py (t) P*(t)

— K. hii 700 = "7 3m S(x — X(1)).

K = Kijh. & N ) (X =X(1))

Using the above equations, we can define the conjugate

. 400
canonical moments: The energy density describifi)’ becomes total energy

if we integrate into a volume. Specifically, integrating over
(Xi 4 Ni(X)> 7 hypersurfac& gets:

/ &t = " + 5 (8, X) PR (2, X)
s ‘ N2(t, X)\/h(t, X)

m

P = 8XiLcl = WX)

1 - -
i = 0, Lo = —;\/E(Kw — Kh').
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The remaining components of the tengdf” are:
Pi(t)
N(t,z)\/h(t, z)
x §(X — X(t)) — N“(¢,x) T,
1 Pi(t)Pi(t)

that could be used to modify the dBB guide equation. But we
_ will not follow this approach here.
T%(t,2) =

4.4. Einstein’s quantum field equations.
momentum tensor

Energy-

ij _
() = h(t,X) m Theadditivity of the actionn the hamiltonian formulation al-
. . ) _ lows us to consider the total action as the sum of the classical
_ PONI(E, X)) + P (#)N'(t, X)) and quantum action:
N(t,x

X 8(x — X(t)) + N (t,X) N (t,x) T(¢, x). S =Su+ Sq,

Until here, we have considered the classical relativis—Where
tic approach. Additional physical concept of the quantum
condition must be introduced, which we shall do following

Wheeler-DeWitt theory. Sq = —/dtQ = —/dt/zd?’wNQ.
From the action, we can derive the EinsteirGuantum

The quantization of the ADM theory is performed by provid- Field Equations, which will be applied to classical and quan-
ing Hamiltonian prime derivatives with respect to canonicaltum action. Varying action to the metrig,, we get, with the

4.3. Quantum approach:Wheeler-DeWitt Quantization

variables and their moments, which can be replaced by theosmological constant = 0:

corresponding operators.

In Wheeler-DeWitt theory the “state” of the system is a

functional of particle coordinates and 3-metrie( X, h;;);
the Wheeler-Dewitt equation holds:

HY = HeU + Hu 0,

where
. 52
Ha = —HGz‘jklm +V(h,z),
R V2
Har 25($—X)(m—%)7

with V(h, z) as effective potential density ané};; the De-
Witt metrics B5). Also, note the diffeomorphic constraint:
H; ¥ = ,}:(Gi\I] + 7:{Mi‘1’7
with the operatorsip; covariant derivation):
- 0
Hai = thijT’
hjk
Hari = 6(x — X)V,.
Writing the wave equation in polar forng, = |+|e*® and

entering the conditions:

P, =V,S,
iV _ 08 .
Shij
We get the particle guide equations like:

X' = wvis — N{(X),

. 08
hij = 2I€NGijk176h + DZNJ -+ DjNi,
ij

Gy = Ry — 9“7”3 = 87G(Tep + Tow)-

The first member is covariantly conserved; so must hap-
pen in the second member. The energy moment tensor ap-
pears with two summands, the classie; G T¢,,, and the
quantum8r G' T, in correspondence with both parts of
Hamiltonian. We will focus first on the energy density com-
ponent of the tensofT?’, as the other components derive
from it.

The quantum contribution to the momentum tensor is in-
ferred from:

v _ 2 0Sg

@ _\/—g(:c) 8guw(x)’

providing the following expressions. For the energy density
of quantum origin:

Q(t, x)
N2(t,z)\/h(t,z)

For temporary space components:

TO() —

TY = —N'(tx) T,
and for the fully spacial ones:

2

TY = N'(tz) N7 (tz) TY —
@ (t2) N7 (t) T N(z,t)\/h(z,t)

x d*yN (y,1)Q(y, 1).

ohij Js
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Thus, in both the temporal and fully space componentg'6f is the expression dfgo. We intend to calculate this
component to refer to our geodesic hypothesis.
The quantum potential densi(¢, x) has a gravitational component and another massive one:

Q= Q¢+ 9,
the gravitational component is given by:

1 &%

Q¢ = 7HGijklm75hij5hkl.
For the mass quantum potential density we have:
Iavald

= (X — X)———.

Qur o ) 2m| |

That is:

1 1 82y R2V2[y|
TY = <HG,. X )
© 7 N2(t,2) /At 2) TMI0] 6hijohu ( ) 2m| V|

The general expression for a particle is:

1 63|
) 50X = X(0) ~ KGuuigr ‘|6th[ . (36)
()

2v\72
700 — ! (m + ka (t)P*(t) — Ve
N2(t,2)\/h(t, ) 2m 2m| Y|

The energy density allows the calculation of the total energy by integrating it into a hypersurface, which we assume is

closed:
1 , R2V2 || 1 82|y
i ) 2l _ _ 3 o
K(OPH) — =5 > “/Ed TG ST

1
Et:/deTOO: (m—l—
b N2(t,x)\/h(t, x) 2m

For various particles, the formulation is additive. In particular, for the hydrogenoid atoms the mass of the first term of the
parentheses should include the sum of the proton and electron.

5. Applying the quantum field equation to hy-

drogenoid atoms according to geodesic hy-
pothesis 5.1. Lapse and vector shift function

Consider a reference system with origin in the centre of mass
of the hydrogenoid atom:

We are now going to apply the above theory to the geodesic 20—y 2 =p 2 =6 P S
hypothesis, which we have previously proposed [8,9,11] and ’ ’ ’ ’
in previous points of this work. We are looking to determine a metric tensor of the type:
In two-particle systems such as the hydrogen atom, in goo 0 —hoy 0
which one particle is much heavier than the other one, the ¢, — 2 ~hu 0 0 : (37)
—ho2 0 —haa 0

Schibdinger wave function coincides with that of Wheeler-
DeWitt, [7], which allows us to use atomic orbitals as such. 0 0 0 —hss
As we have advance@4), the metricg,,, allows the fol-
In a stationary atomic system such as a hydrogenoigowing expression:
atom, the formulation of the above paragraph is additive as o
stated and the covariance of the energy-impulse tensor is en-guw dz" dz”=(N?—Ny N*)dt* —2Nyda* dt—hyjdz' da.
sured. Additionally, the spatial metrfc;; remains constant

o . Expressing the differential elemef#? based on37) and
intime: h;; = 0.

matching the above equation yields:

The geodesic hypothesis links the derivatives of the com- goodt? = (N? — N, N*)dt?
ponents of the metrigs, andgs,. This relationship is a re-

2 0 __ k
striction to be taken into account. — 2hgedx”dz” = —2Nydz"dt,
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where the displacement vector has components:

N; =0 Ny = hge N3 =0.
For calculating theV lapse function, we do:
goodt® = (N? — N N*)dt?

00 = N2 — N, N*
and considering owj,p = 1 hypothesis, we can write:
N2 — NyN? =1.

Note that to downloadV’ index we must use the three-

dimensional metric matrig® which is simply g;;¢" = §;;):
1
ij P O1 0
g7 = 0 - 01 )
0 0 — T
where hgah"? = —(h3,/h22)1 and we can replace in the

above equation the value &f depending on the metric ten-
sor:

2
h02

N=4/1-— .
hao

6. The Energy-moment tensor

6.1. Non-energy components of the energy impulsion

tensor

The components of the energy-momentum tensor are given,_oq
by a classical and a quantum part. Components with a time

index will be:
TOi _ Pi NiTOO TOi _ NiTOO
cd — N\/E - cl » - Q
Then fori # 0:
0i _ i _ N0
NvVh ’

which gives the values:

T =0
1
T02 = —73 < + mh02> — hQQTOO,
h11h22
=0.

Components with both spatial indexes:

o 1[PPEo
de:h[ m _N(P1N1+PJN7)}7
TY = —N'N'TY — Li/ dPyNQ.
Q Q N\/E(Shij =

11

Thenfori A0y j # 0:

1[PPI 1 L L
TV = - - (PN + PJNl)]
m
~ NINITY / d*yN.
? féhw

The component with both temporal indexes is associated
with the energy density of the system and is considerated sep-
arately.

6.2. The density of energy component of the energy-
moment tensor

In the hydrogenoid atom we have two particles and motion is
constant in time. For two particles the whole process is ad-
ditive and one must count in the expression of the energy of
the mass continent, the two massés= m, + m, beingm,,

the mass of the proton and the mas of the electron. On the
other hand, we can replace the valuédf)? and the function

h is the value of the determinant ff;, product of the three
diagonal components of the spatial metric; assuming in our
caseyss = g11 in a tetradimensional matrix, we can write:

1 1
Vi hivhe
The Eg. B6) becomes:
- 2v72
= # M + ipkpk _RVEY|
(h22 — hoz)hll 2m le‘l"
sV
- X
6()( (t)) '%szkl ‘\IJ| 5h1j§hkl

The interior of the parentheses contains four terms. The
first three have energy character multiplied by factor —
X(t)), which has the valu¢ when the general coordinaie
coincides with a value of the particle’s trajectory and in the
nucleous position.

The total energy valu&; can then be calculated as a hy-
persurfaced containing both the electron and the nucleus.
Then, we get:

Er = /d3mT00 __ Vha
(ha2 — hia)hi

1 h2V2 ||
M+—ppr—-— - 1

( * o2m’ " 2m|J|

sV
o / PaGijh g 0| Shiy0hs |
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6.2.1. Kinetical term and taking into account the diagonal charactef,gfand the

definition of G;;1; (35), then B9) is expressed as follows:
The term(1/2m) P, P* is much lower in value than the mass

term M ; it contains only the mass of the electron and the ve- o 1 62|y %
L O ) . —kGlyip —— - _
locity is of the order o), 1 - ¢; that is abouﬂQ times less gkl 0| 8hi;0hs 2/h[ Y|
than the mass term. On the other hand, linear moments are
time-independent. Explicitly putting the coordinate depen- 2 62| B 62|
dency on the trajectory remains: " Shiibhi Y Shiidh; |

5 PP ().

Notice that the momen®; is given by:

m

P(p) = 0xiLa = i (Xk: +Nk) ,

and P* = P,/gi,. On the other handX, = w = up?.
Therefore, this term keeps:

ipk(p)P’“(p) -1 ( 1) %Pz(P)Pz(P)

2m o 2m _h22
2
+h02) .

B m ( u
Q(h(Q)Q — h22) mp2

6.2.2. dBB quantum potential term

The h2V2| | /2m| V| term is the quantum potential of dBB

theory, which we have evaluated for the orbial,;, of hy-
drogenoid atoms [11].

with i7 # jj in the second term. Considering that the func-
tional derivation is expressible as the partial and substituing
the general coordinates of the space for those of the trajec-
tory and the assumed equality of; andhs3, we can write

the term like this:

kG i (52|\If| o H\/hgg
TR Shijohy |V
2 haz oo
X 2ah11}122|\:[j| - 8h22h22‘\11| :

2h11
This term is affected by the coefficient~ 10730, We

can assume that it has a negligible value with respect to the
rest.

6.2.5. Final expression

Putting all terms together, without the gravitational tefPf
remains:

In cylindrical coordinates and in the above units it has the

following expression: [11]

2
u e

+ .
dmegr/ p? + 22

In atomic systems, the quantum potential is closely linked
to the energy deficit of the atom, caused by its formation from

2
TOO _ /hgg o N m (W + h02)
(ha2 — hiy)h1a 2(hgy — ha2)
u? 2
—E,+ - ¢ S(x—X). (40
2mp?  Ameg/p? +z2> ( ). (40)

the component particles. In our case, the energy level, corre-

sponding to ionisation energy.

6.2.3. Geodesic condition

7. New conditions on the metric tensor

We can add a new condition for the metric tensor, concern-
ing also to the componert;. In our treatment of the hy-

To the aforementioned constraints must be added th@rogenoid atom we can come back to the expressigh?8f
geodesic conditioril(7), that in the formulation of this sec- (40)  that allows the calculation of the total integral energy

tion it should be expressed:
_uf hao
hoa = 5 (1 2 ) (38)
It should be remarked thaf; = g;;.

6.2.4. Gravitational quantum potential term
Computing the term

1 82|0l

_—— 39
|U| 8h;johy’ (39)

—kGijk

on a hypersurface. Th&z — X) in the mentioned refer-
ence indicates that the integral can be done in a very reduced
neighborhood op as the energy of the system is reduced to
the nucleus and the electron. This energy must be, for low
particle momentum, simply/ — En. Therefore, we get:

Er=M—-E, = / da0 — V92 [M
b (922 — 982)911
“ 2
+@_E + u2 _ qg
2(952—922) " 2mp? dmeg/p? + 22 |
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allowing g1; to be defined as a function g2 andggs, pre-  that we are able to find geometries of the Lorentzial manifold

viously defined. where our hypothesys are coherent.
9 To progress in the physical significance, we go to the
N m (#pg + 902) Wheeler-de Witt formulation of the Einstein’s quantum field
gi1 = 2 M+ ——— equations, applied for particles. We conserve in it the val-
(922 — 952) (M — Ej) 2(952 — 922) s .
ues of two components of the metrics, in order to prevail the

w q geodesic character of the trajectory and the invariance of the
- < . elemental distance, and we focus on the energy conservation.
2mp? 2 + 22 ) L .
Pt Ameoy/p® + 2 With that, we arrive to a further relation between the met-

Finally, we would indicate that a direct consequencefic’s components that finally relate all the independent com-
of the quantum Einstein equation is that the total energy ponents. Furthermore, an additional relationship can be de-
momentum tensor is covariantly conserved. Therefore, it§ived from the null divergence of the energy-moment tensor.
divergence must be null. That will supply a further relation It all opens the way to look for an appropriate metric that,

within the metric components. These items and their impli-being a solution of the Einstein’s quantum field equations,
cations will be treated in future works. could be adapted to the relations that we expressed, concern-

ing the geodesic trajectory and the conservation of the ele-
mental distance. The results obtained make it possible to see
their continuation in subsequent research.

The geodesic hypothesis of dBB theory for hydrogenoid We must once.again remarl_< that our conception goes be-
atoms, advanced by us in earlier works [8,9,11], is to suppos¥ond the de Broglie Bohm or pilot wave. In dBB theory, the
that the trajectory of the electron described by dBB theory inVave guides t_he part!cle, but the particle does not play any
an pseudo-Euclidean space can be interpreted as a geode@l€ Of determination in the wave. Its ontology have two dif-
on a Lorentzian manifold,e. a curved spacetime, therefore ferentiated elements: wave, as a real field, and particle, that
without energy emission. The curvature of the space-timéS guided by the field. In our conception, still we have two
should be produced by theint action of the quantum and elements, particle and fields, represented by a perturbation of

the electromagnetical fieldshe field contribution from the the Space time that surrounds the particle; but this perturba-
mass atraction could be ignored. tion is created by the particles that form the quantum system.

In this work, we established the relations between the/Ve have, then, an active and a passive part if we can speak
pseudo-Euclidean de Broglie-Bohm representation of th&0: that, together, form a closed system and that are in mutual

electron trajectory and this trajectory in a Lorentzian mani-"téraction.

fold. The mathematical foundation of these equivalences has

been based on the concept of first-order representation anficknowledgements

tangent metric abcal neighborhood. We defined the condi-
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