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Solution of the fractional diffusion equation by using Caputo-Fabrizio derivative:
application to intrinsic arsenic diffusion in germanium
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In this work, we focused on solving the space-time fractional diffusion equation with an application on the intrinsic arsenic diffusion in
germanium. At first we have treated the differential equation in a semi-infinite medium by using Caputo-Fabrizio fractional derivative. We
have introduced the Laplace transform to solve this type of equations. Secondly, Based on the obtained solution, we have simulated an profile
of arsenic diffusion in germanium under intrinsic conditions. Accurate simulations have been achieved showing that the fractional derivative
orders affect on the estimation of the diffusion coefficient, where increasing the time fractional derivative orderα reduces the value of the
diffusion coefficient, while increasing the space fractional derivative orderβ increases the value of the diffusion coefficient.
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1. Introduction

In recent decades, researchers have paid great attention to
fractional calculus and its applications. It has been used suc-
cessfully for modelling many phenomena in different areas
of sciences and engineering as quantum physics, continuum
mechanics, viscoelastic and viscoplastic flow, electrical cir-
cuits, control theory, image processing, viscoelasticity, biol-
ogy and hydrodynamics (see, for example, [1-13]). Histori-
cally, the emergence of this type of calculus was at the end of
the seventeenth century, when Gottfried Leibniz sent a letter
to L’Hospital which he raised a question about the possibility
of the meaning of derivatives with integer order in which be
generalized to derivatives with non-integer orders [14]. He
then developed this calculus through several approaches, in-
cluding Riemann, Liouville [15, 16], Caputo [8, 17, 18], and
others, see references [19-21]. In several papers, authors
have used the Caputo or Riemann–Liouville (RL) derivatives
to describe the models. However, these derivative has an
weakness because of singular kernel. To handle this weak-
ness, Caputo and Fabrizio [22, 23] has proposed a non-local
derivative. This indicates that the Caputo–Fabrizio deriva-
tive has a non-singular exponential kernel. One of the advan-
tages of using non-singular kernels in fractional calculus is
that they provide a more well-behaved behavior than singu-
lar kernels, which can lead to better convergence properties
and more precise solutions. Additionally, non-singular ker-
nels can provide a more natural and physically relevant de-
scription of certain physical phenomena, such as diffusion.
This is what motivated many researchers to use it to solving

many equations and modelling many phenomena in various
branches of science, for instance, analysis of logistic equa-
tion [24], Korteweg-de Vries-Burgers Equation [25], nonlin-
ear Fisher’s reaction diffusion equation [26], Heat transfer
analysis of Walters’-B fluid with Newtonian heating through
an oscillating vertical plate [27], Bose-Einstein condensa-
tion [28] and other works see [29-32].

For a functionc(q) ( q > 0) belongs to the Sobolev space,
Caputo and Fabrizio [22, 23] proposed the following frac-
tional derivative:

Dν
q c(q) =

(2− ν) M(ν)
2 (1− ν)

q∫

0

c′(p) exp
[
−ν

q − p

1− ν

]
dp, (1)

whereM(ν) is a normalization constant depending onν(0 <
ν < 1) andc′(p) is the derivative ofc(p).

Nieto and Losada [23], suggested a particular method that
enables to find the normalized function. This method de-
pends on that the fractional integral in Eq. (1) is the aver-
age of the function and its anti-derivative for0 < ν < 1.
Therefore the normalized function by using this way, takes
the following form:

M(ν) =
2

(2− ν)
, 0 < ν < 1. (2)

So that the fractional Caputo-Fabrizio derivative of a function
c(q) can redefined as:

Dν
q c(q) =

1
(1− ν)

q∫

0

c′(p) exp
[
−ν

q − p

1− ν

]
dp. (3)
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From the Eq. (3) the solution, by using new fractional deriva-
tive, of the following fractional differential equation,

Dν
q c(q) = u(q), (4)

is given by Losada as follows [23]:

c(q) = (1− ν)(u(q)− u(0)) + ν

q∫

0

u(s)ds + u(0). (5)

The main objective of our work is to solve space-time
fractional diffusion equation by using Caputo-Fabrizio frac-
tional derivative in a semi-infinite medium with an applica-
tion exaample of this solution, it is represented by the dif-
fusion of arsenic in germanium under intrinsic conditions,
where the diffusion coefficient is concentration-independent
and remains constant.

So, our paper is organized as the following : in the next
section we present the theoretical model and the associated
mathematical calculation of the fractional partial differential
equation. In particular, we have introduced the Laplace trans-
form to solve this type of equations. In Sec. 3, we take the
diffusion of arsenic in germanium as an application of our
obtained solution and we will give our results summarizing
some numerical simulations and discuss the different cases
corresponding to different values of the fractionality degrees
α andβ. The conclusion is reported in Sec. 4.

2. Theoretical implementation and calcula-
tions

The transport phenomena in the material, can be modeled by
the space-time fractional diffusion equation, this equation is
referred to as:

Dα
t c(x, t) = λα,βD2β

x c(x, t), (6)

where the positiveλα,β is the diffusion coefficient,0 < α <
1 and0 < β < 1andx and t are dimensionless variables,
whereasλα,β can be assimilated to a diffusion coefficient and
is also dimensionless parameter. At the same time, the mod-
eling parameterλα,β is related to the flow-flow correlation
function [33] and describes the mechanisms of particle diffu-
sion processes. The parametersλα,β can also be associated

with the nature of the interaction of particles and their dis-
tribution. For example ”x” can be asx = X/L whereX is
the spatial location andL a characteristic length, like a small
depth in the diffusion medium, whereas ”t” can be ast = T/τ
whereT is the real time andτ a characteristic time, as a short
period in the temporal range of the studied phenomenon.

We consider diffusion in a semi-infinite medium,x > 0,
when the surface is kept at a constant concentrationCs. We
need a solution of the space-time fractional diffusion equa-
tion satisfying the following initial condition and the bound-
ary condition:

c(x, 0) = 0, x > 0, (7)

c(0, t) = Cs, t > 0. (8)

By multiplying both sides of Eq. (6) by exp(−st) and inte-
grating, we obtain:

∞∫

0

e−st [Dα
t c(x, t)] dt = λα,βD2β

x

∞∫

0

e−stc(x, t)dt, (9)

then,

L [Dα
t c(x, t)] = λα,βD2β

x C(x, s) (10)

sC(x, s)− c(x, 0)
s + α(1− s)

= λα,βD2β
x C(x, s). (11)

From the initial condition we havec(x, 0) = 0 therefore, the
last equation write as:

D2β
x C(x, s) =

sC(x, s)
λα,β (s + α(1− s))

. (12)

We put

Dβ
xC(x, s) = ϕ(x, s), (13)

therefore

Dβ
xϕ(x, s) =

sC(x, s)
λα,β (s + α(1− s))

. (14)

The solutions of the Eqs. (13) and (14) are given by
(Losada) as [22]:

C(x, s) = (1− β)(ϕ(x, s)− ϕ(0, s)) + β

x∫

0

ϕ(p, s)dp + C(0, s), (15)

ϕ(x, s) =
s(1− β)

λα,β (s + α(1− s))
(C(x, s)− C(0, s)) +

βs

λα,β (s + α(1− s))

x∫

0

C(p, s)dp + ϕ(0, s). (16)

The first and second derivatives of the last two equations give:

dC(x, s)
dx

= (1− β)
dϕ(x, s)

dx
+ βϕ(x, s), (17)
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d2C(x, s)
dx2

= (1− β)
d2ϕ(x, s)

dx2
+ β

dϕ(x, s)
dx

, (18)

and

dϕ(x, s)
dx

=
s(1− β)

λα,β (s + α(1− s))
dC(x, s)

dx
+

βs

λα,β (s + α(1− s))
C(x, s) (19)

d2ϕ(x, s)
dx2

=
s(1− β)

λα,β (s + α(1− s))
d2C(x, s)

dx2
+

βs

λα,β (s + α(1− s))
dC(x, s)

dx
. (20)

From the Eqs. (17), (18), (19) and (20) we have the following ordinary differential equation:

[
(1− β)2s− λα,β (s + α(1− s))

] d2C(x, s)
dx2

+ 2β(1− β)s
dC(x, s)

dx
+ β2sC(x, s) = 0. (21)

Then, the solution of the Eq. (21) which is finite asx →∞ whateverα andβ is:

C(x, s) = A exp

(
− βs

(1− β)s +
√

λα,βs (s + α(1− s))
x

)
. (22)

As mentioned before the Eq. (1) and becquse the factor in front ofx is negative in the last expresion, the spatial variablex must
be positive , else, ifx goes to+∞, the concentrationc(x, s) diverges what has no physical sense.

Using the boundary condition we observe that:

C(0, s) =

∞∫

0

e−stc(0, t)dt =
Cs

s
. (23)

From the equation (22), we get:

A =
Cs

s
. (24)

Then, the solution is giving by the following expression:

C(x, s) =
Cs

s
exp

(
− βs

(1− β)s +
√

λα,βs (s + α(1− s))
x

)
, (25)

therefore

c(x, t) = L−1

[
Cs

s
exp

(
− βs

(1− β)s +
√

λα,βs (s + α(1− s))
x

)]
, (26)

whereL−1 denoted the inverse Laplace transform. In the case ofα = 1 andβ = 1(corresponding to the standard case), we
get:

c(x, t) = L−1

[
Cs

s
exp

(
−

√
s

λ
x

)]
. (27)

Reference to a table of Laplace transforms [34] shows that the function whose transform is given by Eq. (28) is the comple-
mentary error function:

c(x, t) = CsErfc

(
x

2
√

λt

)
, (28)

which is the solution of the standard diffusion equationD1
t c(x, t) = λD2

xc(x, t) in a semi-infinite medium, with the given
boundary and intial conditions see Ref. [35]. Erfc(.) is the complementary error function.
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3. Application to intrinsic arsenic diffusion in
germanium

Recently germanium (Ge) has emerged as a promising can-
didate in order to improve the complementary metal oxide
semiconductors (CMOS) devices, because of its distinctive
physical characteristics such as high intrinsic carrier mobil-
ity, small band gap and possible monolithic integration with
silicon (Si) based devices [36-38]. To create (Ge) based de-
vices, P-type and N-type germanium are brought into direct
contact with each other. P-type germanium is doped with
elements such as boron and gallium, while N-type germa-
nium is doped with elements such as phosphorus and arsenic.
Germanium can be doped using various methods, including
dopant diffusion and ion implantation. The basis of diffusion
doping way is the injection of a dopants by thermal diffu-
sion [38, 39]. We are concerned with the intrinsic arsenic
diffusion in germanium, which we present as an example ap-
plied to our mathematical treatment of diffusion equation. In
this section, we simulate an profile of arsenic diffusion in
germanium taken from experimental data of Brotzmann and
Bracht [40] througt the obtained solution. The diffusion sat-
isfies same the initial condition and the boundary condition
shown in the two Eqs. (7) and (8) above.

The arsenic intrinsic diffusion in germanium, can be
modelled by the Eq. (6), then the simulated profiles we can
get from the solution that we got in the Eq. (26).

We have accomplished a program by FORTRAN lan-
guage, where we relied on the numerical method of Gaver-
Stehfest to find the inverse Laplace transform in the Eq. (26).

This method was developed in the late 1960s. It is very
simple numerical inverse Laplace transform method which
has been used in such diverse areas as chemistry, economics,
mathematics, computational physics and engineering. For a
functionf : (0 ,∞) → R , such that its Laplace transform:

F (s) =

∞∫

0

e−stf(t)dt, (29)

the Gaver-Stehfest method, transformed the Laplace space
into the time domain as follows [41–43]:

f(t) =
ln 2
t

n=M∑
n=1

KnF

(
n ln 2

t

)
, (30)

whereF (.) is the Laplace transform off(t).
Applying this method to Eq. (26), we get

c(x, t) =
ln 2
t

n=M∑
n=1

KnC

(
x,

n ln 2
t

)
, (31)

whereC(x, n ln 2/t) is given by Eq. (25). The coefficients
Kn depends only on the (necessarily even) number of expan-
sion terms,M , given by:

Kn = (−1)n+M/2
min(n,M/2)∑

k=(n+1
2 )

kM/2(2k)!
(M/2− k)! (k − 1)! (n− k)! (2k − n)!

. (32)

The parameterM is the number of terms used in Eq. (31).
M must be an even integer and should be choosen by trial and
error method.

The parameterM plays an important role in the accuracy
of the obtained results. In our study, we evaluated it with
10 on the basis of a convergence test that we conducted by
comparing an analytical curve obtained from the standard so-
lution in Eq. (28). and the solution obtained by using the
Gaver-Stehfest method forα = 1, β = 1 in Eq. (31).

The Fig. 1 shows a comparison of the curve obtained
through the numerical solution with the curve of the analyti-
cal solution shown in Eq. (28) for (α = 1, β = 1).

We choose the values ofλα,β for different orders of frac-
tional derivation (α, β), indicated in the table.1. which bring
the coincidence of simulated profile and experimental profile.

The way we fit the data is to give a certain expected value
of λα,β and compare the obtained data with the experimental
data. We change the value each time until we reach the best
fit between them. All profiles, we have plotted with dimen-
sionless parameters. We took the dimensionless concentra-

FIGURE 1. Comparing the numerical solution with the analyt-
ical solution, where(α = 1, β = 1), t = 18000, (λ1,1 =
3.35× 10−11).
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TABLE I. The parameters used for simulations of arsenic diffusion in germanium for different orders of fractional derivation.

α β λα,β Cs t

0.2 1.0 1.68×10−10 8.9×1017 18000

0.4 1.0 8.38×10−11 8.9×1017 18000

0.6 1.0 5.58×10−11 8.9×1017 18000

0.8 1.0 4.17×10−11 8.9×1017 18000

1.0 1.0 3.35×10−11 8.9×1017 18000

1.0 0.2 2.31×10−11 8.9×1017 18000

1.0 0.4 2.55×10−11 8.9×1017 18000

1.0 0.6 2.79×10−11 8.9×1017 18000

1.0 0.8 3.07×10−11 8.9×1017 18000

FIGURE 2. Simulated profiles C(x, t = 18000) (solid line) for
α = {0.2, 0.4, 0.6, 0.8, 1} , β = 1 and experimental profile (sym-
bol) of arsenic diffusion in Ge.

FIGURE 3. Simulated profiles C(x, t = 18000) (solid line) for
α = 1, β = {0.2, 0.4, 0.6, 0.8, 1} and experimental profile (sym-
bol) of arsenic diffusion in Ge.

tion c(x, t) = C(x, t)/C whereC(x, t) is concentration and
C = 1 cm−3. For dimensionless variables,x = X/L and
t = T/τ and we tookL = 1 µm andτ = 1 s.

FIGURE 4. The effect of fractional derivative orderα on the esti-
mation of the diffusion coefficient forβ = 1.

Figures 2 and 3 show the simulated profiles (line) we have
obtained, at the indicated parametersλα,β and for different
space and time Fractional-order and compare them with the
experimental profile(symbol) of arsenic diffusion in Ge. The
simulation profile (line) shown in Fig. 2, represents the dif-
ferent simulation profiles, which were completely identical
according to the different derivation orders and according to
the corresponding diffusion coefficient value that we choose,
which leads to the best concordance with the experimental
profile.

The simulated profiles and the experimental profile con-
cordance,for different space and time fractional-order, in
Figs. 2 and 3 confirm that the fractional derivative orders af-
fect on the estimation of the diffusion coefficient.

We see from Figs. 2 and 3 for every binary combination
(α, β), there exists a diffusion coefficient that shows a satis-
factory agreement with the experimental diffusion profile.

Figures 4 and 5 show that the fractional derivative order
α andβ, respectively, affects the estimation of the diffusion
coefficient.

It is clear that increasingα reduces the value of the diffu-
sion coefficient, while increasing the space fractional deriva-
tive orderβ increases the value of the diffusion coefficient.
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FIGURE 5. The effect of fractional derivative orderβ on the esti-
mation of the diffusion coefficient forα = 1.

4. Conclusion

In this work, we have treated the space-time fractional dif-
fusion equation in a semi-infinite medium by using the frac-
tional derivative of Caputo-Fabrizio. We have introduced the
Laplace transform to solve this type of equations. Based on
the obtained solution, we have simulated an profile of ar-
senic diffusion in germanium. Accurate simulations have
been achieved showing that the fractional derivative orders
affect on the estimation of the diffusion coefficient, where
increasing the time fractional derivative orderα reduces the
value of the diffusion coefficient, while increasing the space
fractional derivative orderβ increases the value of the diffu-
sion coefficient. This result opens research perspectives to
find a model for calculating the diffusion coefficient if frac-
tional derivation is used.
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