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Qualitative evaluation of a parabolic mirror with substructured Ronchi gratings
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In this work, we propose to qualitatively test a concave parabolic mirror by means of the Ronchi interferometric test using substructured
gratings to increase the sharpness of the fringes. The substructured gratings are designed considering that the grating period is divided into
several stripes of equal width that can be transparent or opaque; the transmission coefficients of the stripes along the grating period are not
periodic, but a previously chosen binary sequence. Equations were derived to obtain the corresponding intensity profiles and an analysis
of these profiles was performed for different sequences and positions of the substructured gratings with respect to the test mirror. It was
experimentally verified that the fringes are sharper at the Rayleigh distance inside and outside the mirror focus.
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1. Introduction

The Ronchi test is an optical test widely used in the opti-
cal workshop to test concave mirrors [1]. Normally, the test
is performed qualitatively, providing a subjective evaluation
of the surface under test. However, quantitative information
on local surface manufacturing errors can also be obtained.
During the manufacturing process of an optical surface, it is
necessary to verify its quality. As a result, several analytic
techniques and methods have been developed. Among them,
the Ronchi test stands out as one of the preferred techniques
in the optics workshop, as it is one of the simplest and widely
used methods to qualitatively measure the wavefront of an
optical system when observed at the pupil exit; this test has
been the subject of numerous publications and extensive re-
views [2]. Recently, a new approach has been developed
to describe Ronchi’s non-paraxial geometric test for evaluat-
ing spherical mirrors using an inverse ray tracing procedure
[3]. This procedure allows the evaluation of geometrical pa-
rameters such as radius of curvature, source coordinates, and
positions and orientation of the detection and grating planes
from the Ronchigrams.

The simple Ronchi test setup consists of using a grating,
which is a set of equally spaced transparent and opaque slits,
and a point or extended light source. The grating is placed

near the center of curvature of the test surface, as schema-
tized in Fig. 1.The source is located off-axis, so that fringe
images are formed at the exit pupil of the optical system. The
shape of the fringes observed at the pupil of the optical sys-
tem, and recorded by a camera, depends on the aberrations
of the optical system and can be explained using the inter-
pretation of geometrical optics, where the black fringes are
shadows of the black stripes of the grating; it can also be
explained from the point of view of physical optics, inter-
preting the fringes as produced by the lateral shear interfer-
ence of the light diffracted by the gratings, considered as a
diffractive grating [4, 5]. Recently, a phase-shifted Ronchi
test procedure has been developed to obtain the figure of a
parabolic mirror using a bi-Ronchi grating [6]. Similarly,
another procedure uses two mutually perpendicular classical
Ronchi gratings to perform the test accurately [7,8].

The main advantage of the geometric Ronchi test is its
simplicity since it requires only the grating and the light
source; it does not require a special optical system. Its main
disadvantage is that the intensity profiles cannot be calculated
in the geometrical optics regime. However, it is possible to
perform an interference-based analysis to obtain fringe inten-
sity profiles [1,3,9]. On the other hand, to increase the sharp-
ness of the fringes observed in the interference patterns in
Ronchi test, a configuration of unequal widths of the opaque
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and transparent slits of the grating is used [10]. In this case,
the widths of the stripes (transparent or opaque) are unequal;
they can be considered positive if the width of the transpar-
ent stripes is greater than that of the opaque stripes, and neg-
ative if the width of the opaque stripes is greater than that
of the transparent stripes. On the other hand, the use of liq-
uid crystal display (LCD) for Ronchi grid display has been
widely used due to its versatility in strip display; however,
the LCD must be properly calibrated as discussed in some
references where LCD is used for Ronchi grid display [6,11-
14]. In Ref. [11] a variable frequency grating and LCD were
used to test optical surfaces. Here a combination of several
Ronchi gratings was used to create the substructure of the
variable frequency grating. Examples of such substructured
gratings are generalized Moirè gratings called Katyl gratings
[15]. Here, each grating period is divided into several stripes
of equal width that can be transparent or opaque; the trans-
mission coefficients for the stripes along the grating period
are not periodic, but a previously chosen binary sequence.

According to previous works [16,17], to perform the test
of a concave parabolic mirror we must evaluate the position
where the Talbot images appear. This position is related to the
Rayleigh distance and gives us the position where we should
place the grating to obtain an image that is a perfect replica of
the object’s grating. We performed a numerical analysis for
a parabolic mirror, and obtained the intensity profiles for the
proposed substructured grating and found that the sharpness
of the fringes is high when the defocus of the Ronchi grating
is equal to Rayleigh distance, and half of the Rayleigh dis-
tance. Furthermore, we found that for positions Ronchi grat-
ing equal to one-quarter and three-quarters of the Rayleigh
distance the fringe contrast is completely lost.

In this paper, we propose the use two 8-bit substructured
gratings, one positive and one negative, to increase the sharp-
ness of the fringes. Additionally, we develop a theoreti-
cal framework to obtain the intensity profile of the Ronchi
test using these substructured gratings. For this purpose, in
Sec. 2, we develop analytical expressions to obtain the cor-
responding intensity profiles. Then, in Sec. 3 we propose
substructured a Katyl-type gratings to perform an analysis of
these profiles and of the sharpness of the fringes for some se-
quences and positions of the gratings. Section 4 describes the
procedure for calculating the distances at which the Ronchi
grating should be placed to increase the fringe sharpness con-
sidering a parabolic wavefront at the exit pupil of the optical
system. In Sec. 5 we present experimental results related to
the testing of a parabolic mirror. Finally, in Sec. 6 we present
our conclusions.

2. Interference pattern in the Ronchi test

To calculate the intensity pattern in the interferometric
Ronchi test in the detection plane we must consider the
schematic diagram of a Ronchi test for a converging wave-
front, as shown in Fig. 1. Thus, in the far-field regime, the

FIGURE 1. Typical arrangement for the Ronchi test considering
convergent wavefronts.

diffracted fielda(xr, yr) in the plane of the grating is given
by

a(xr, yr) =

∞∫ ∫

−∞
A(xo, yo)e

−i2π(xrxo+yrxo)
λr dxodyo, (1)

wherer is the radius of curvature of the reference spherical
wavefront, and the functionA(xo, yo) is the pupil function,
given by

A (xo, yo)

=
{

Ao (xo, yo) e
i2πW (xo,yo)

λ xo,yo ∈ aperture,
0 xo,yo /∈ aperture,

(2)

hereAo(xo, yo) represents the amplitude distribution over
the emerging wavefront at the aperture andW (xo, yo) is the
aberration function of the wavefront.

On the other hand, the amplitude field in the exit pupil im-
age is given by the Fourier transform of Eq. (1) and is written
as

G (x, y) =

∞∫ ∫

−∞
a (xr, yy)

×M (xr, yy) e
2π
λr (xrx+yrx)dxrdyr, (3)

whereM(xr, yr) is the substructured grating function that
acts as a filtering or modulating device.

If we assume that the stripes of the substructured grid are
parallel to they-axis, we can represent the substructured grat-
ing function by a complex Fourier series, given by

M (xr) =
∞∑

n=−∞
Bne

i2πnxr
d , (4)

whered is the ruling period and the coefficientsBn determine
the transverse structure of the grating.

Then, substituting Eqs. (1) and (4) in Eq. (3), and per-
forming the integration, the amplitude in the image plane
gives

G (x, y) =
∞∑

n−∞
BnA (x + nS, y) , (5)
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where S represents the lateral shear for the first order
diffracted wavefrontWn, which is given by

S =
λ (r − l)

d
, (6)

wherel represents the distance from the center of curvature
of the mirror to the Ronchi grating, andn is the diffraction
order for the diffracted wavefront under consideration. As
discussed extensively in Ref. [7], Eq. (5) is a complicated
function because repeated convolutions of the apertures lead
to complex interactions between the terms of the series. But,
if we consider that the intensity distribution over the exit
pupil is constant, from the pupil functionA(xo, yo) given by
Eq. (2), the perturbation in the image plane of the exit pupil,
Eq. (5) could be written as

G (x, y) =
∞∑

n−∞
Bneiφ(x+nS,y), (7)

where the phaseφ = (x + nS, y) is given by

φ(x + nS, y) =
2π

λ
W (x + nS, y) , (8)

and W (x + nS, y) is the laterally sheared wavefront for
diffraction ordern. Without loss of generality, the phaseφ
given by Eq. (8) can be conveniently decomposed as [4]

φ(x + nS, y) = φi + φo + φe, (9)

whereφi does not depend ofn, φe contains even powers of
n, andφo contains odd powers ofn. Substituting Eq. (9) in
Eq. (7) we obtain the amplitude profile of the fringes

G(x, y) = eiφi

{
B0 + 2

∞∑
n=1

Re
{
Bneiφo

}
eiφe

}
, (10)

where we have used the fact thatφe(n) = φe(−n), φo(n) =
−φo(−n), andB−n = B∗

n. This a general expression for the
amplitude field and is valid for any wavefront.

On the other hand, if the coefficientBn is a real number,
Eq. (10) can be written as

G(x, y) = eiφi

{
B0 + 2

∞∑
n=1

Bn cos(iφo)eiφe

}
, (11)

which is the same result obtained by Malacara [4] for the
amplitude profile.

Finally, from Eq. (10) we obtain the intensity profile,
which is given by

I(x, y) = G(x, y)G∗(x, y)

=

{
B0 + 2

∞∑
n=1

Re
{
Bneiφo e

}
eiφe

}

×
{

B0 + 2
∞∑

n=1

Re
{
Bneiφo

}
e−iφe

}
, (12)

this expression gives the intensity distribution in the interfer-
ometric Ronchi test and is perfectly general for any wavefront
and any substructured periodic grating.

FIGURE 2. Transmittances in the substructured Ronchi gratings, a)
positive 8-bit, b) negative 8-bit.

3. Substructured gratings

In this section, we design the substructure a negative and pos-
itive grating function given by Eq. (4).The substructured grat-
ings will be Katyl-type gratings with pseudo-random Barker
sequences [15]. Each substructured grating with periodd,
is composed of a sequence ofm constituent strips of equal
width h, and a transmittancetm. Each strip is either trans-
parent or opaque depending on the pseudo-random coding
sequence used. In Fig. 2, we show the transmittances for
two substructured Ronchi gratings both negative and positive.
Here we consider binary sequences for lengthsm = 8. The
transmittance coefficientsBn of these substructured Ronchi
gratings can be calculated using Fourier theory according to
Eq. (4).

Thus, we consider an 8-bit grid with different binary se-
quences depending on whether the grid is positive or nega-
tive, see Fig. 2. For the positive 8-bit grid with the pseudo-
random sequencetm = 8+ = 11100110 [see, Fig. 2a)], we
obtain that the substructured grating function can be written
as

M8+ (xr) =
5h

d
+

i

2π

∞∑
n=1

B8+
n e

i2πnxr
d

n
, (13)

where the coefficientsB8+
n are given by

B8+
n = e

−i6πnh
d − 1 + e

−i14πnh
d − e

−i10πnh
d . (14)

On the other hand, for the 8-bit negative grating with
transmittancetm = 8− = 00011001 [Fig. 2b)] we have that
the substructured grating function is given by

M8− (xr) =
3h

d
+

i

2π

∞∑
n=1

B8−
n e

i2πnxr
d

n
, (15)

and,

B8−
n = e

−i10πnh
d − e

−i6πnh
d

+ e
−i16πnh

d − e
−i14πnh

d , (16)

in both cases, the width of the strips ish = d/8.
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4. Parabolic wavefront

For the qualitative testing of a concave parabolic mirror we
will assume thatW (x + nS, y) is the aberration function
of the wavefront by a perfect parabolic mirror which can be
written as

W (x + nS, y) = D
[
(x + nS)2 + y2

]

+ E
[
(x + nS)2 + y2

]2

, (17)

where for simplicity in the calculations only spherical aberra-
tion E, and defocusingD terms are considered in the aberra-
tion function [4], more general wavefronts can be considered
following the same idea. Settingy equal to zero, and assum-
ing that the power inx is less or equal to 2 (here it is assumed
that the fringe considered is near the center of the wavefront
under test), Eq. (17) is given approximately by

W (x + nS, y) = 2DSxn + DS2n2

+ 4ES3xn3 + ES4n4. (18)

From Eqs. (8), (9) and (18), the phasesφe and φo are
given by

φe =
2π

λ
n2S2

(
D + En2S2

)
,

φo =
4π

λ
nS

(
D + 2En2S2

)
x. (19)

Here the defocusing coefficientD depends on the position
of the grating and is given by

D =
l

2r (r − l)
. (20)

On the other hand, for a wavefront reflected from a
parabolic mirror illuminated with a point source, the spher-
ical aberration coefficient can be written

E =
1

4r3
. (21)

Substituting Eqs. (20) and (21) into (19), we obtain for
the phase

φe =
πλl (r − l)n2

rd2

{
1 +

n2λ2(r − l)3

2r2d2l

}
,

φo =
2πnl

rd

(
1 +

n2λ2(r − l)3

r2d2l

)
x, (22)

these expressions are used in Eq. (12) to calculate the fringe
intensity profiles for a wavefront reflected by a parabolic mir-
ror.

Finally, to obtain sharp fringes in the interferometric
Ronchi test we have considered the Talbot effect since if a
Ronchi grating is illuminated with coherent waves a self-
image is obtained at a characteristic distanceL = 2d2/λ

called Rayleigh distance or Talbot length [18]. For the test
of a concave parabolic mirror the Talbot fringes appear when
the phaseφe is an integer multiplem of 2π [4]

l (r − l) = 2mrd2/λ, (23)

solving forl results,

l = r/2−
{

(r/2)2 −mrL
}1/2

, (24)

which is the distance from the center of curvature of the
parabolic mirror to the Ronchi grating characterized by the
Rayleigh distanceL. In this position the images observed in
the image plane, in the Ronchi configuration, are self-images
of the Ronchi grating and give us sharp fringes.

5. Experimental results

To apply our theoretical results to an experimental case, we
consider a parabolic mirror, which has a design radius of
curvature ofr = 3000 mm and 57.27 mm in diameter. The
parabolic mirror was mounted in two linear stages to facilitate
centering along thex andy directions. From the experimen-
tal point of view, we have considered the advantage of using
an LCD display that allows to easily change the structure of
the binary pattern of the ruling [6]. The LCD is a spatial
light modulator (XGA2) that displays the substructured bi-
nary patterns with a spatial resolution of1024 × 768 pixels,
the dimensions of the active pixels are23× 16 mm.

The LCD was mounted in three linear stages to facilitate
centering along thex, y, andz directions; this allows the de-
focus of the grating to be changed. The light source is an
LED with a dominant wavelength of 700 nm. Images were
captured with a black-and-white CCD camera (Sony Model
XC-ST70), with an8.8 × 6.6 mm CCD sensor, and an 8-
mm focal length video lens, the experimental setup is shown
in Fig. 3a). According to Section 3, we designed and con-
structed the substructured positive and negative gratings to
perform the experiments. The period of the substructured
Ronchi gratings isd = 78 µm. In Figs. 3b) and 3c) we
show the substructured positive and negative gratings used,
respectively. These substructured gratings were displayed on
the LCD.

In Figs. 4-7, we show the resulting Ronchigrams with the
8-bit gratings at the Rayleigh distance in and out of focus, and
at other distances and their corresponding intensity profiles.
In these cases, we perform the interference with two diffrac-
tion orders,n = 2. For comparison, we calculated the theoret-
ical intensity patterns for substructured positive and negative
gratings by substituting Eqs. (13), (16) and (22) in Eq. (12) at
different grating positions according to Eq. (24). As before,
to appreciate the details of the interference patterns, for the
numerical calculations we consideredn = 2 in the diffraction
order for the diffracted wavefront. Note that the experimental
and calculated intensity profiles are very similar to the corre-
sponding Ronchigrams, as expected.

Rev. Mex. Fis.70031303
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FIGURE 3. a) Experimental configuration for testing qualitatively a
parabolic mirror using the Ronchi test. Substructured 8-bit Ronchi
grating: b) positive, c) negative.

FIGURE 4. Ronchigrams images obtained with the 8-bit gratings:
a) positive, b) negative. Experimental intensity profile: c) positive,
d) negative. Theoretical intensity profile: e) positive, f) negative.
In-focus at the Rayleigh distance atl = 17.28 mm.

In Figs. 4a) and 4b) we see the Ronchigrams images ob-
tained for the 8-bit positive and negative gratings, respec-
tively. These Ronchigrams were taken when the Ronchi
gratings are placed in-focus at the Rayleigh distancel =
17.28 mm measured from the center of curvature of the
parabolic mirror, this distance is calculated with Eq. (24).

To give an approximate quantitative value for fringe con-
trast, we must consider that contrast is nothing more than a
measure of the difference between the maximum and mini-
mum gray level of a fringe measured in pixels [19,20]. Thus,

if the contrast is given byC = (Pmax − Pmin)/(Pmax +
Pmin)Pmax with Pmax being the maximum gray value and
Pmin the minimum gray value for a fringe, then for a fringe in
Figs. 4a) and 4b), the contrast isC = 53.23 andC = 98.82,
respectively. Therefore, the negative grating provides bet-
ter fringe contrast than the positive grating. Figures 4c) and
4d) show the experimental intensity profiles obtained from
Figs. 4a) and 4b), respectively withy = 0. From these plots
is easy to see that the negative grating gives better fringe con-
trast than the positive grating. Conversely, Figs. 4e) and 4f)
show the corresponding theoretical fringe intensity profile for
the 8-bit for the positive and negative grating calculated from
Eq. (21), respectively. A detailed qualitative analysis of these
plots shows how the calculated intensity patterns correspond
with those obtained experimentally, for both substructured
gratings, Figs. 4a) and 4b).

On the other hand, by placing the Ronchi substructured
grating out of focus at the Rayleigh distance atl = −17.48
mm from the center of curvature of the mirror, we obtain the
Ronchigrams show in Figs. 5a) and 5b) for the positive and
negative 8-bit gratings, respectively. Figs. 5c) and 5d) show
the experimental intensity profiles obtained from Figs. 5a)
and 5b), respectively withy = 0. Figs. 5e) and 5f) show the
corresponding theoretical fringe intensity profile for the 8-
bit gratings: 5e) Positive, and 5f) negative calculated with
Eq. (4). As before, for a fringe in Figs. 5a) and 5b), the con-
trast isC = 51.17 andC = 95.23, respectively. Therefore,
the fringes of the negative grating are sharper than those of
the positive grating.

In addition, in Figs. 6a) and 6b) we show the correspond-
ing Ronchigrams of the substructured grating at an arbitrary

FIGURE 5. Ronchigrams images obtained with the 8-bit gratings:
a) positive, b) negative. Experimental intensity profile: c) positive,
d) negative. Theoretical intensity profile: e) positive, f) negative.
Out of focus at the Rayleigh distance atl = −17.48 mm.
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FIGURE 6. Ronchigrams images obtained with the 8-bit gratings:
a) positive, (b) negative. Experimental intensity profile: c) positive,
d) negative. Theoretical intensity profile: e) positive, f) negative.
Out of focus atl = −17.28 mm.

FIGURE 7. Ronchigrams images obtained with the 8-bit gratings:
a) positive, b) negative. Experimental intensity profile: c) positive,
d) negative. Theoretical intensity profile: e) positive, f) negative.
In-focus atl = 17.48 mm.

out of focus distance atl = −17.28 mm for the 8-bit positive
and negative grating, respectively. In this case, the contrast in
Fig. 6a) is 56.06 and the contrast in Fig. 6b) is 72.97. From
these contrast values and the experimental plots [Figs. 6c)
and 6d)] and the theoretical plots [Figs. 6e) and 6f)] we con-
clude that the fringes are not sharp enough for this distance.
Similarly, Fig. 7 shows the Ronchigrams results obtained for
in-focus positive and negative substructured grating placed at

FIGURE 8. Ronchigrams images obtained with: a) classical grat-
ing, b) substructured 8-bit negative grating. Fringe intensity profile
for: c) classical grating, d) substructured 8-bit negative grating.

a distancel = 17.48 mm. Here, the contrast in Fig. 7a) is
62.76 and that of Fig. 7b) is 92.42. In these instances, we can
see that the fringes for these substructured grid positions are
not as sharp.

Finally, to show that the use of substructured gratings in
the Ronchi test provides better contrast and that the strips re-
flected by the test surface are sharper, in Figs. 8a) and 8b), we
show Ronchigrams corresponding to a classical grating and
a substructured grating, respectively. The classical grating
was placed at the paraxial focus, and the substructured grat-
ing was placed inside the focus at the Rayleigh distance. The
image of the substructured grating corresponds to an 8-bit
negative grating Figs. 8c) and 8d) show the intensity profiles
corresponding to the classical grating and the 8-bit substruc-
tured grating, respectively. In this case, the fringe contrast is
78.83 for Fig. 8a) and 92.03 for Fig. 8b), indicating that the
fringes corresponding to the 8-bit substructured grating are
sharper than those of the classical grating.

6. Conclusions

In this work, we proposed to use substructured gratings to
increase the sharpness of the fringes. Each grating period is
divided into several stripes of equal width that can be trans-
parent or opaque; the transmission coefficients of the stripes
along the grating period are not periodic, but a previously
chosen binary sequence.

The experimental results are presented for qualitative
testing of a parabolic mirror of 3000 mm radius of curva-
ture and 57.27 mm diameter. Experimentally we find that the
fringes are sharper at the Rayleigh distance inside and out-
side the mirror focus for the negative substructured grating.
These results agree with the numerically obtained profiles.
We find that if the Ronchi grating is placed inside focus at
Rayleigh distance inl = -17.48 mm and outside the focus at
distancel = 17.28 mm, we have a high fringe contrast. On the
other hand, fringe contrast is low with defocus magnitudes of

Rev. Mex. Fis.70031303
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Ronchi grating axial position equal tol = 17.48 mm andl =
-17.28 mm.

The results show that, in order to obtain sharper stripes in
the Ronchi test, the structure of the Ronchi grating and its po-
sition play a crucial role. Furthermore, these results provide
specific positions for the grating that must be reached during
the experiments; otherwise, the fringes will be as coarse as
with classical Ronchi gratings. This approach is simple to
apply and can facilitate work in the optics shop during the
fabrication process of an optical surface.
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