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Coherent superposition of states in degenerate systems using zero-area pulses
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The coherent superposition of states in degenerate quantum systems is investigated using detuned laser pulses in which the Rabi frequenci
are time-dependent, and the pulse area is zero. In this study, a quantum system with an arbitrary number of degenerate states in the grour
set as well as an arbitrary number of degenerate states in the exciting set is considered. We assume that all states in the ground set are coup!
to the excited states using laser pulses such that the pulse area of Rabi frequency is zero, and all of them have the same time dependenc
It is also assumed that all laser pulses are in a non-resonant condition with Bohr transitions, and all detunings are the same. We show tha
by applying the appropriate temporal dependence for the pulses and the appropriate rate for the detunings, the population can be transferre
from an arbitrary superposition from the ground states to a desired superposition from the excited states.
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1. Introduction Ref. [35], a tangent-hyperbolic pulse is used to create a co-
herent superposition of states in tNepod quantum system.

] ] o Recently, the digital adiabatic passage technique (DAP) [36]
According to advances in laser fabrication, the coherenfag peen used to create a coherent superposition of states in
transmission of atomic states using laser pulses has begRiti-lambda and the N-pod systems [37].
considered in recent decades. The most prominent quan-
tum optics techniques to create coherent population trans- In order to transfer the population in two-level systems by
fer are stimulated Raman adiabatic passage (STIRAP) [1-6 o

g‘—pulse method, the pulse area must be a specific valae(

Stark-chirped rapid adiabatic passage (SCRAP) [7-9], an N
=-pulse [10, 11] techniques. The most straightforward syszr) so that the population is completely transferred from the

. . . round state to the excited state. In th@ulse method, the
tem to study the laser-atom systems is the interaction of o . I
: . . éxact resonance condition is one of the main conditions for
two-level atom with a laser field [10], and also the crucial

technique for population transfer in this systemrisulse population transfer, but non-resonant systems are the clos-

. : st to real systems, so the study of non-resonant systems in
method. In this technique, the frequency of laser pulses mus?t Y y y

. : . . rquantum optics is critical [38]. In Ref. [39], coherent ex-
be in exact resonance with the corresponding Bohr transition.. _..
citation of a two-state quantum system by pulses of coher-

frequency. This technique has been used for many years Cnt radiation with zero pulse area has been studied, which

various branches of quantum physics such as nuclear mage o :
. . o riginally are studied in the context of self-induced trans-
netic resonance [12], atomic coherence excitation [13], quan-

tum information theory [14], and recently in nuc:Iear—statepar(.ency [40] Zero—arga pulse b_elongs to such pulses whose
; : an integral over the time duration of the pulse reaches to
population transfer [15-17]. The main problemmpulse

. : : . o a null value, that implies the pulse shape is an odd func-
method is that this technique is sensitive to the exact resq- : : :
s .~ 1ion, so because of antisymmetric, acting on a two-state sys-
nance conditions as well as the exact pulse area (exact int

e{'l- . L .
. . em, will produce temporary excitation but will, upon con-
sity of the laser pulse). In order to solve this problem, theclusion of the pulse, return all population to the initial state.

composite pulse method [18-27] has recently been used fqr
. : ; . . owever, for off-resonant cases, such pulses do have an ef-
population transfer in two-level systems, in which a series o ;
ect. It has been shown that when a zero-area pulse is com-

pulses with specific phases are used for optimal population. ; . . o .
transfer. In this method, along with increasing the numbeereO| with a time-varying detuning, itis possible to produce

; S . complete population transfer in a robust manner for suffi-
of pulses, the system'’s sensitivity to changes in Iaborator)éiemly large peak Rabi frequency. In recent years, much
parameters decreases. T '
research has been done in this field that can be referred to
In recent years, the creation of coherent superposition adis the study of adiabatic speedup in cutting a spin chain via
states due to its application in the field of quantum infor-a zero-area pulse control [41], quantum dynamics of a two-
mation has been attracted [28-31]. In Ref. [32], a series oftate system induced by a chirped zero-area pulse [42], and
pulses with an averager area is used to create a coherent sutime-dependent two-level, models and zero-area pulses [43].
perposition of states in multi-lambda quantum systems. Th&ince such pulse models become an efficient tool for quan-
method used in Ref. [32] is employed for t#é-pod sys- tum control, researchers are attracted to investigate the prop-
tem and coupled Hilbert space in [33, 34], respectively. Inerties of this model. Zero-area pulses can be produced by
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many techniques, including ultrashort-shaped pulses, beam | w >
splitting and recombination, self-induced transparency, and 2
guasistatic magnetic fields [40]. In recent years, Quantum
dynamics of a two-state system induced by a chirped zero- ____________
area pulse and single-photon hologram of a zero-area pulse
have been studied experimentally [42, 44].

In this study, we will investigate population transfer from Q(t)
a superposition of ground state to a superposition of excited
state in the non-resonant condition using zero-pulse lasers.
Our goal is to explore the extension of the zero pulse tech- 4
nigue for complex systems, such as four-level systems. Dif- = ------F-———-
ferent types of four-level systems such as diamond, tripod, or Af2
ladder systems have been considered by researchers [45], and
we will examine the diamond system because of its applica- | w1 >

tions. This kind of system shows rich quantum interference ) _ ) )
and coherence features; for example, when the Symmet;?GURE 1. Linkage diagram for the two-state systef¥(t) is Rabi

of the system is broken, single and double-dark resonanc %equency, the pulse is detuned hyfrom exact resonance and also
’ . . Hamiltoni f th temis E

can be observed [46], and also it can be applied as a mode e Hamiltonian of the system is E)(

for observing pressure-induced resonances [47] alternatively,

at reaching the quantum degeneracy regime by all-opticap Population transfer in non-resonant two-
means [48]. In quantum information literature, we can apply . .

this system in two-qubit quantum logic gates [49]. In order to level systems using zero-pulse technique
use the zero-area pulse technique in the mentioned complgx order to provide basic concepts in population transfer us-
systems, the system must first be converted to an equivaleffq zero-area pulses, we provide a summary of the Ref. [39].
two-state system. For simplification of the system, we havenccording to this reference, we consider the excitation link-
used step-by-step Morris-Shore (MS) [50-52] transformationyge shown in Fig. 1. Coherent excitation of this two-level sys-
as the complex system is reduced to a two-level system angdm, is described by the Sdidinger equation, which is men-

several uncoupled states [34]. Moreover, in Ref. [53], MStigned in rotating wave approximation(RWA) as follows [39]:
transformation is used to investigate the degenerate Landau-

Zener model, which consists of two degenerate energy levels ihiC(t) _ ﬁ(t)C(t) 1)
whose energies vary with time and in the existence of interac- dt '

tions that couple the states of the two levels in the presence Q\flhereC(t) = [e1(t), e2(8)]T is a vector with the amplitude
guantum noise. By converting the complex system to a twog¢ c1(t) andes (t) that|c, ()2 and|e2(t)|? describe the prob-
level system, the zero-area pulse technique can be applied %ility of presence in théy;) and [1»,) states respectively,

the system, and the population can be transferred from an ag; fI(t) is the Hamiltonian of system, which is defined as
bitrary coherent superposition of ground states to an arbitra%"OWS [39]:

coherent superposition of excited states. We will show that

the coherent superposition of states in a detuned degenerate ~ h

system using zero-area pulses is possible, and the results in (t) = 9

the fidelity study indicate the appropriateness. We also shall

demonstrate that the efficiency of population transfer is notvhere(2(¢) is Rabi frequency, indicates the coupling between

sensitive to small changes in laser parameters, including thaser field and states, amll(t) is the offset of the field car-

maximum value of Rabi frequencies and detunings which rerier frequencyw(t) from the Bohr transition frequenayy,

sults in reasonable robustness. A(t) = w(t) —wo. We assume that the initial state of the sys-
tem is|yy ), and we are interested in transferring the popula-
tion to the final statéy,). In the case of resonancé (= 0)

This paper is organized as follows: Population transfer inSchibdinger equation can be solved simply, and the proba-

non-resonant two-level systems is introduced in Sec. 2. Imility of transition is P = sin®(A/2) which A = [ Q(t)dt

Sec. 3 the coupling pattern, reduction of the primary systentalled pulse area. Complete population transfer occurs when

to a two-level system using the MS transformation, the desigml = (2n+1)7, whichn is a natural numbern&1,2,3,...). Ac-

of laser pulses to use zero pulse area technique, and numesrding to the transition probability relation, if the pulse area

ical study are described. In Sec. 4, the implementation ofs zero and the system is in exact resonance status, there will

proposed model in real physical systems is investigated, anlde no change in the initial state of the system, at the end of the

finally the conclusion is summarized in Sec. 5. interaction. In order to implementation of zero-area pulses in

Q@) AQ®) @

A1) Q) ]
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COHERENT SUPERPOSITION OF STATES IN DEGENERATE SYSTEMS USING ZERO-AREA PULSES 3

two-level systems, we assume that the Rabi frequélay)
is an odd function of time as follows [39]:

Qz) = —Q(—z) = Qo f (), ®3)

wherez = ¢/T represents dimensionless time gf{d) is an
odd slow varying and non-oscillating function which is con-
sidered as follows [39]:

fw) = t“ﬁ((j)) (4)

The parameters),, A andT are assumed to be positive since
the transition probability does not depend on their signs. To
apply the zero pulse area method in a two-level system, the
system is considered in non-resonance condition, and the de
tuning of the system is constant. First, we calculate the eigen-
states of the system, which are called adiabatic states, as fol
lows [39]:
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54 FIGURE 3. Pulse shapég(z) a), the time evolution of the transi-
(5a) tion probability in diabatic basis b), for the pulse shaggwith
QoT = 250 andAT = 2.

[¢—(2)) = cosv(x)[¢r) — sinv(z)|¢z),
¢+ (2)) = sinv(x)[yr) + cosv(x)]¢hz),  (Sb)

where mixing angle is () = 1/2arctan(Q(z)/A). It can Investigating into nonadiabatic coupling pulse shape in
be represented thap_(+o0)) = [¢1) and ¢4 (£00)) = the limit of Qy/A — oo, shows that the central part of the
|42), which means initial and final states are equal in the diaygnadiabatic coupling Eq7) indeed behaves assdunction
batic and adiabatic bases, so a transition in the adiabatic basjgh an area of: (see Fig. 2). In the adiabatic basis, the inter-

describes a transition in the diabatic basis. The Hamiltonian,tion is reduced to the textbook problem of excitation of a
in the basis of adiabatic states can be written as [39]: two-state system by &function with a peak value dbo/A

N [ =€) —id(x) and a pulse area of. It is observed that in non-resonant
H(zx) B [ . ] , (6)  condition, population transfer is possible wh@p > A is
W(x)  &(x) fulfilled. Figure 3 illustrates the time evolution of the tran-

sition probability in a two-level system for the pulse shape

= A / 2 2 = i
wheret (x) = T/$¥(x) + A® andi(z) = 2(d/dx)v(w) IS mentioned in Eq.4), whereQT" = 250 andAT = 2.

nonadiabatic coupling that can be written as follows [39]:

0(e) = ool ) @
A2 2 £2 : . . .

A+ f2(@) 3. Population transfer in coupled Hilbert

sSpace
1 7 ‘ Q, /A=30 P

- i &) ——
< o8l jiit - = = /A=10| | 3.1. The model
% i | Q,/A=3
8 06f jigit | Ffa=t |4 A quantum system withV, states in the lower sety,,)
= i il 4 (m = 1,2,...,N,) and N, states in the upper s@bx, 1)
D 04 HE \‘ 8 (n = 1,2,...,N}) is considered. Each of the states in the
§ HE | -‘ lower set is coupled to all states in the upper set using time-
g 02f [H bl 1 dependent pulse®,,,,,(z) as displayed in Fig. 4. It should
3 F h;\ be emphasized that our desired system is the same degener-
§ ) e 7 - el - ate system introduced in Ref. [34], with the difference that
B '\.\ 7 5\ o gl in Ref. [34], the final reduced system will be a three-level
£ a2 et g A-like system, in which the population will be transferred
= from a ground state to an arbitrary superposition of other

o
.,
~
Bk
o L
o e
N

ground states without populating the intermediate states (ex-
cited state) by coincident pulses and/or STIRAP techniques.
But in this study, the reduced system will be a two-level sys-
tem that couples the superposition of several ground states to
an arbitrary superposition of excited states. Also, in the sys-
tem introduced in this paper, we consider the non-resonant

Dimensionless Time x=t/T
FIGURE 2. Normalized nonadiabatic couplingd(z) =
¥(x)/(Qo/A)) vs the dimensionless time: (= ¢/T) for differ-

entvalues of2g /A = 1, 3,10, 30. AsQo/A increases, the central
part of ¢(x) approaches-function behavior.
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4 M. SAADATI-NIARI AND M. AMIRI

|1/)Na+1> |1/)Na+2> |1/)N61+Nb>

wherely, andly, are identity matrices itV,, and.V, dimen-
sion respectively, and alsd is an(N, x N;)-dimensional
interaction matrix with time-dependent Rabi frequencies ele-
ments,

tarn

Qui(z)  Qua(z) - n(z)
Qor(w)  Qoa(z) -+ Qan,(z)

<
I

©)

4 an

a Set -
l,) 1) ¥ Onva(@) Qua(e) - Qv (2)

FIGURE 4. A coupled Hilbert system consisting &f, levels in the

The initial state of the system is considered i) =
ground (a set) andV, levels in the excited states (b set). Y |@ke:))

Zf\’ 1 G|ty whereg; satisﬁesZiV:“1 | ¢; |?= 1. We aim to
mode and create the desired superposition using zero- _gr&ansfer the initial state of the system to aljwvarbitrary coherent
pulses. Also, in the linkage pattern that we have conSUPerposition of the upper sgt(zs)) = 332, ¢j|j) where
sidered in this paper, in order to reduce the initial sys->_ .1 | ¢ |?=1[34].

tem to a two-level system, all pulses should have the same

time dependence, while in Ref. [34], the time dependence

of Q!(z) could be different from the time dependence of3.2. Reduction to the two-level system

02(x), 2 (z), ..., QNe(x) pulses. The Hamiltonian of this

system is described as: Since the zero-area pulse technique is used in two-level sys-

R nl[ —Aly 14 tems, using two steps of MS transformation, the system intro-
H(z)= - ‘ (8) duced in the previous section can be reduced to a two-level
2 Vi Aly, system. In the first step, considering time-independent mix-
| ing angled); as follows [34]:
ng(x) QQQ(LE) QN 2(1‘)
= :~--:a7:tan9’ 10a
Qu(x) o) Q) (102
Bl Se) o Sl g, (10)
\/Zj:l Q%j (z) \/Zj:l Q%j (z) Zj:l Q?vaj(l')
Q Q Q
1, (%) Ny (®) NoN, (2) ~ tanfy, .. (100)
V@ T Y0}, (@)
Considering [34]:
Nbfl
(1= H cosb;, (11a)
Np—1
(o =sinfy ] cosb;, (11b)
j=2
CN}, = Sin oNb—la (11C)
we can write the corresponding time-independent transformation as [34]:
po| e © (12)
o' T
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COHERENT SUPERPOSITION OF STATES IN DEGENERATE SYSTEMS USING ZERO-AREA PULSES 5
where O is thé N, x N,)-dimensional zero matrix arifi, is given by [34]:
M ¢ —C2 ¢1¢3 (1l ]
1 X2 X2X3 XnNy_1 XNy
G C2Gs G20,
EHE A &5 @ XNy X,
~ —Xx2 18
T, = C?’ 0 X2X23 XN:_lN;(Nb ) (13)
X3, _
| v, 0 0 0 XNb_lejvb |
whereX; = /%7 _ ¢2 (j =2,3,..., N},) and the transformed Hamiltonianl {H (x)T) is informed in the MS basis as [34]:
[ —A 0 0 le)(x) T
0 —A 0 o (z)
H (@) =5 : (14)
0 0 —A 0N (g)
| 2 (@) 2 () Q@) A
with Qéi)(x) = Q;1(z)/¢. The linkage pattern of Hamilto- I
nian Eq. L4) is anN,-pod system (see Fig. 5) [34].
In the second step, we want to replabdg-pod system )
with a two-level system. To produce this simplification, b Set
we define new time-independent mixing angles)(where == g-csommmmmmmmmmmmm oo
<@j <m/2
Q(Q)
8)(x) = tan 1, (15a) M)
Qo' (x)
Q(S)
= < (;?) = tan (s, (15b) R SN SR
Zj:l QCJ‘ () a Set
l%,) [%,) [Ya)
FIGURE 5. Linkage pattern of the multistate system consisting of
Qo) two coupled sets of levels in the first step MS transformation basis.
o @) =tanyn,—1, (15¢)
SN QW) ()2 ' : : o
j=1 *°C following the first step, the corresponding time-independent
o transformation can be written as:
taking:
~ Tn, O
N,—1 T2 = " ) (17)
m= H COS @5, (16a) o 1
j=1 where Ty, is an N,-dimensional square matrix that can
No—1 be obtained by replacing; with n; and N, with N, in
12 = sin ¢y H cos pj, (16b)  Eq. {13). Finally, corresponding transformed Hamiltonian in
=2 {¢c, e} subspace is:
77(2 1
AP (z) = (T@) HPT®
) -A Q(x
TIN, = SIMYN, -1, (160) = E ( ) N (18)
2 Q(x) A

Rev. Mex. Fis70011303
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0 0 0
1 0 0

1
0
(20)
0 O cosf —siné
0

0 sinf cos O

¢ where:
Qll (CL’)

V(@) + ()

aset —M @ —— ... Em— = 21 (2) (21a)

|¢C) |¢NC,1> ’¢NC’Na-1) Q%l(l) + Q%Q (l’) 7

. le X
FIGURE 6. Linkage pattern of the multistate system consisting of sinf = > (z) =
two coupled sets of levels in the second step MS transformation Qf (z) + Qfy(2)

basis. _ 1C) (21b)

Y 03 () + Q35 (x) .

Jhe transformed Hamiltonian in the new space is constructed

cosf =

where®,(z) = Q" (x)/n;. Linkage pattern of the multi-
state system consisting of two coupled sets of levels in th

second step MS transformation basis is represented in Fig. 8 follows:
~A 0 oP(x)
gm _ 1
3.3. Example Hy' =3 0 A QP@) |- (2

| | | . 2@ @ A
We consider a qguantum diamond system with two states in

the ground set and two states in the excited set (see Fig. Ahere QM (z) = /QZ (z) + 2%, () and QP (z)
For this set, the Hamiltonian matrix will be as follows: Q3,(z) + Q3,(x). In the second step, in order to use
the MS transform, we consider the transformation matrix for
—A 0 Q1(z)  Q2(2) transformed Hamiltonian in Eq2P) as follows:
. 1 0 A Qoi(z) Qoa(w) cosp singp 0
H(x):* . (19) =) .
2 Qu(z) Qoi(x) A 0 T\% = | —sing cosp 0 |, (23)
912(33) QQQ (37) 0 A 0 0 1

o _ where the mixing angle ig = arctan(Qf) (x)/ng)(a:)). In
In order to simplify the system, two MS transformation tnjs case, as in the previous step, we will have a new Hamil-
steps will be used. For this purpose, in the first step, the uniggpian matrix definition:
tary transformation matrix can be obtained using H@) &s

_ /
follows: a2 = 1 8 &) . (24)
20 Q) A
[2+1)=|3) |2+2)=|4) The coupling parameters will be in the for®(z) =
bEgf ————— = | \/(Qﬁl))2+(§2£2))2.

3.4. Pulse design

As previously explained, in order to design the convenient
pulse, we consider the initial state of the system as follows:

Na
() = Zcili% (25)
S i=1
a Set and the final state of the system is
Ny
FIGURE 7. The linkage pattern of coupled Hilbert space with two [(xyp)) = Z C;' 7). (26)
j=1

states in the ground and excited levels.

Rev. Mex. Fis70011303



COHERENT SUPERPOSITION OF STATES IN DEGENERATE SYSTEMS USING ZERO-AREA PULSES 7

In order to establish the MS conditions, the Rabi frequencie&igure 8 shows the time evolution of Rabi frequencies, the
are considered as follows: population, and the fidelityl{ = |{1(t)|/qesired|%) Of the de-
sired state. Comparing the final fidelity for the two mentioned

Oj(2) = cr¢;Q09(2), (272)  type of pulse shapes, it is observed that the final value of the
N fidelity for the pulse shape, Ed28) is 0.9545, and for the
() = e2¢; g (@), (27b) pulse shape, Eq26) is 0.9755. Figure 7 shows another ex-
ample for a coupled Hilbert space witty, = 2 and N, = 3
so that the initial state of the system is:
Qn,j(z) = cNac;»Qog(:c), (27c) .
wherej = 1,2, ..., N, andg(x) is described as: hot)) = ﬁ(m +12)). (32)
g(z) = tanh(z) (28)  and the desired state is:
cosh(z)’
1
or [(ts)) = [Ydesied = ﬁ(l?ﬁ + |4) +[5)). (33)
(@) = 5 (29)
g @2+ 12

For this example, we also compared the final fidelity val-

3.5.  Numerical study and robustness ues for the two pulse shapes, and it is observed that this value
is 0.9438 for pulse Eq.28), and 0.9466 for pulse Eq29).

In order to numerical study, we consider a coupled Hilbertin order to study the robustness of the zero pulse technique
space withN, = 2 state in the lower level anli, = 2inthe iy coupled Hilbert space, we assume that the peak value of
excited level and impose that the initial state of the system iygpi frequencies and detuning deviate from considered val-

1 5 ues in Fig. 9. Figure 10 shows the contour plot of the final

[Y(t:)) = —=|1) + \/>|2>. (30) fidelity against2, andA. As observed, if the values of Rabi

V3 3 frequencies and detuning are smaller or more extensive than

We aim to transfer the population to the desired state as fothe considered values, the final fidelity is not significantly af-

lows: fected. We emphasize that in Figs. 8 and 9 we transfer the
population from a single ground-state to an arbitrary coherent
1(t7)) = |thdesired = i|3> + \F|4>. (31)  superposition of excited-states using zero pulse area, which

V3 3 is different from a two-level system where the population is

Pulse shape(MHz)

Pulse shape(MHz)

8,
g

Populations
o (=}
o
Populations

o
]
T

2
o
&y
=]
[=-]
[=:]
A
I‘\DA
(=]
I~}
i~
=3
[s-]
-
=

8,

Final fidelity
o
w

Final fidelity

>

e) Time (us)

Time (us)

FIGURE 8. Pulse shape a) and b), the time evolution of the population of states c) and d), and final fidelity e) and f) for pu8} &l (
Eq. (29) respectively with the same initial conditior@y7" = 250 andAT = 2.
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Pulse shape(MHz)

: o g
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(-1 o [=] (=]
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L Q
Pulse shape(MHz)

A
=]

2
5
&
(=]
ES
*
o
r
-
=
(=]
=
=]

e
e
=]
&
(=]
S
N
(=]
N
=
(=]
[==]
=]

04

=
A

2oal = o3t mS
9 4]
S S
g 021 & L:"’ 02 “
% 01 | g g. 01 |
a v o v
0 : 0
g ™ 8 6 4 2 0 2 4 6 8 0 g 8 6 4 2 0 2 4 6 8 1
1 1
z 2z
s 3
o kel
& 05) = 05
= T
£ £
w w
0 0
-10 0 8 - E
e Time (us) ) Time (ps)

FIGURE 9. Pulse shape a) and b), the time evolution of the population of states c) and d), and final fidelity e) and f) for pu@8} &l (
Eq. (29) respectively with the same initial condition@y,7" = 250 andAT = 2.

09

The peak Rabi frequency (MHz)

0 2 4 6 8 10

a) Detuning (MHz) b) Detuning (MHz)
FIGURE 10. Contour plots of the final fidelity as a function of the peak Rabi frequefigy énd detuning4\) for the pulse shape a) E®9),
b) Eq. 28).

transferred from a single ground-state to a single excitedi «— J = 0 transition in atomic systems, that is displayed in
state. Coherent superposition of states can be used in vario&fg. 11.
cases, such as the construction of entangled states, quantum In Fig. 11 The states related th = 0 can be consid-
gates and quantum algorithms. ered as set a and the states related te- 1 considered as
the states of set b, and after simplifying the system by us-
ing the Morris-Shore transformation, the population from an
4. Implementation in real physical systems arbitrary superposition of = 0 states transferred to an arbi-
trary superposition of = 1 states using zero-area pulses.
The proposed scheme in this article can be used not only in Also, our proposed method can be used in nuclear sys-
the case of degenerate systems, but also in the case of ndems as well. Recently, with the progress that has been made
degenerate systems. For example, consider 0 — J = inthe construction of X-ray lasers, the engineering of nuclear

Rev. Mex. Fis70011303



COHERENT SUPERPOSITION OF STATES IN DEGENERATE SYSTEMS USING ZERO-AREA PULSES 9

0 —— J=0

A) area pulse technique, the population can be transferred to an

arbitrary coherent superposition |8 and|4) states.

Rabi frequencie®; (i = 1,2, 3, 4) in nuclear systems de-
pend on the intensity of laser pulses and also the parameters
. of the nuclei, and considering that the parameters of the nu-
0 clei are constant, it is possible to design the Rabi frequencies
necessary to use the zero pulse area in nuclear systems by
adjusting the shape and intensity of the laser pulses.

Qg 5. Conclusion

In this paper, we have studied the coherent superposition
of states in a degenerate system using zero-area pulses. To
do this, we considered a linkage pattern called the coupled
~AE. Hilbert space. In the interaction of the laser pulses with the
FIGURE 11. Linkage pattern for a three-level ladder involving a Mentioned system, we assumed that all the laser pulses are
degenerate middle level. The two ends of the chain, magnetic subOff-resonance with their corresponding transitions. Besides
levels withJ = 0 have the same detuning from the three interme- that, we assumed that all the detunings have the same val-

0N | J=0

diate sublevels of = 1.

E,=1414.426

o

»12)

E1

E_=1241.291
I E1

Q

||

E,=123.0709

NP

E,=0.0

ues. To simplify the Hamiltonian complexity of the system,
we used the step-by-step MS transformation to reduce the
initial complex system to a two-level system, in which the
lower-level and upper-level in MS bases are a superposition
of degenerate ground states and degenerate excited states in
the original system, respectively. Then we implemented the
zero pulse area technique on the reduced two-level system
and showed that using this technique in an MS basis, the pop-
ulation can be transferred from one state to another state ef-
ficiently, which leads to population transfer from an arbitrary
superposition of ground states to an arbitrary superposition of
excited states in the original system. In the numerical study
of the system’s robustness, we showed that the efficiency of
population transfer is not sensitive to small changes in laser
parameters, including the maximum value of Rabi frequen-
cies and detunings which results in reasonable robustness.
Furthermore, we showed that the shape of the pulse does not

efficiently influence the final fidelity, although it affects the
robustness. The method which is employed in this study can
be used to create quantum qudit gates, entangled states, and
also to create quantum algorithms that are important in the

. . . construction of quantum computers and quantum information
states as well as the engineering, of atomic states has be?rﬂeory. Also, our investigation may contribute to the spec-

considered [15-17,54-57]. In nuclear state engineering it i?roscopy of these systems and the development of new and
assumed that the accelerated nuclear beam interacts with Xtficient methods of laser cooling.

ray laser pulses. Figure 12 shows a linkage patteri‘@d

nuclei with X-ray laser pulses, which our proposed scheme

for zero pulse area can be implemented in this system. Iw\cknowledgments
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FIGURE 12. Linkage pattern ot>*Gd with four X-ray laser pulses
in laboratory frame.E; indicates the energy of the levels ahd
indicates the type of electric dipole transition.
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