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Coherent superposition of states in degenerate systems using zero-area pulses
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The coherent superposition of states in degenerate quantum systems is investigated using detuned laser pulses in which the Rabi frequencies
are time-dependent, and the pulse area is zero. In this study, a quantum system with an arbitrary number of degenerate states in the ground
set as well as an arbitrary number of degenerate states in the exciting set is considered. We assume that all states in the ground set are coupled
to the excited states using laser pulses such that the pulse area of Rabi frequency is zero, and all of them have the same time dependence.
It is also assumed that all laser pulses are in a non-resonant condition with Bohr transitions, and all detunings are the same. We show that
by applying the appropriate temporal dependence for the pulses and the appropriate rate for the detunings, the population can be transferred
from an arbitrary superposition from the ground states to a desired superposition from the excited states.
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1. Introduction

According to advances in laser fabrication, the coherent
transmission of atomic states using laser pulses has been
considered in recent decades. The most prominent quan-
tum optics techniques to create coherent population trans-
fer are stimulated Raman adiabatic passage (STIRAP) [1–6],
Stark-chirped rapid adiabatic passage (SCRAP) [7–9], and
π-pulse [10, 11] techniques. The most straightforward sys-
tem to study the laser-atom systems is the interaction of a
two-level atom with a laser field [10], and also the crucial
technique for population transfer in this system isπ-pulse
method. In this technique, the frequency of laser pulses must
be in exact resonance with the corresponding Bohr transition
frequency. This technique has been used for many years in
various branches of quantum physics such as nuclear mag-
netic resonance [12], atomic coherence excitation [13], quan-
tum information theory [14], and recently in nuclear-state
population transfer [15–17]. The main problem ofπ-pulse
method is that this technique is sensitive to the exact reso-
nance conditions as well as the exact pulse area (exact inten-
sity of the laser pulse). In order to solve this problem, the
composite pulse method [18–27] has recently been used for
population transfer in two-level systems, in which a series of
pulses with specific phases are used for optimal population
transfer. In this method, along with increasing the number
of pulses, the system’s sensitivity to changes in laboratory
parameters decreases.

In recent years, the creation of coherent superposition of
states due to its application in the field of quantum infor-
mation has been attracted [28–31]. In Ref. [32], a series of
pulses with an average2π area is used to create a coherent su-
perposition of states in multi-lambda quantum systems. The
method used in Ref. [32] is employed for theN -pod sys-
tem and coupled Hilbert space in [33, 34], respectively. In

Ref. [35], a tangent-hyperbolic pulse is used to create a co-
herent superposition of states in theN -pod quantum system.
Recently, the digital adiabatic passage technique (DAP) [36]
has been used to create a coherent superposition of states in
multi-lambda and the N-pod systems [37].

In order to transfer the population in two-level systems by
π-pulse method, the pulse area must be a specific value(A =
π) so that the population is completely transferred from the
ground state to the excited state. In theπ-pulse method, the
exact resonance condition is one of the main conditions for
population transfer, but non-resonant systems are the clos-
est to real systems, so the study of non-resonant systems in
quantum optics is critical [38]. In Ref. [39], coherent ex-
citation of a two-state quantum system by pulses of coher-
ent radiation with zero pulse area has been studied, which
originally are studied in the context of self-induced trans-
parency [40]. Zero-area pulse belongs to such pulses whose
an integral over the time duration of the pulse reaches to
a null value, that implies the pulse shape is an odd func-
tion, so because of antisymmetric, acting on a two-state sys-
tem, will produce temporary excitation but will, upon con-
clusion of the pulse, return all population to the initial state.
However, for off-resonant cases, such pulses do have an ef-
fect. It has been shown that when a zero-area pulse is com-
bined with a time-varying detuning, it is possible to produce
complete population transfer in a robust manner for suffi-
ciently large peak Rabi frequency. In recent years, much
research has been done in this field that can be referred to
as the study of adiabatic speedup in cutting a spin chain via
a zero-area pulse control [41], quantum dynamics of a two-
state system induced by a chirped zero-area pulse [42], and
time-dependent two-level, models and zero-area pulses [43].
Since such pulse models become an efficient tool for quan-
tum control, researchers are attracted to investigate the prop-
erties of this model. Zero-area pulses can be produced by
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many techniques, including ultrashort-shaped pulses, beam
splitting and recombination, self-induced transparency, and
quasistatic magnetic fields [40]. In recent years, Quantum
dynamics of a two-state system induced by a chirped zero-
area pulse and single-photon hologram of a zero-area pulse
have been studied experimentally [42,44].

In this study, we will investigate population transfer from
a superposition of ground state to a superposition of excited
state in the non-resonant condition using zero-pulse lasers.
Our goal is to explore the extension of the zero pulse tech-
nique for complex systems, such as four-level systems. Dif-
ferent types of four-level systems such as diamond, tripod, or
ladder systems have been considered by researchers [45], and
we will examine the diamond system because of its applica-
tions. This kind of system shows rich quantum interference
and coherence features; for example, when the symmetry
of the system is broken, single and double-dark resonances
can be observed [46], and also it can be applied as a model
for observing pressure-induced resonances [47] alternatively,
at reaching the quantum degeneracy regime by all-optical
means [48]. In quantum information literature, we can apply
this system in two-qubit quantum logic gates [49]. In order to
use the zero-area pulse technique in the mentioned complex
systems, the system must first be converted to an equivalent
two-state system. For simplification of the system, we have
used step-by-step Morris-Shore (MS) [50–52] transformation
as the complex system is reduced to a two-level system and
several uncoupled states [34]. Moreover, in Ref. [53], MS
transformation is used to investigate the degenerate Landau-
Zener model, which consists of two degenerate energy levels
whose energies vary with time and in the existence of interac-
tions that couple the states of the two levels in the presence of
quantum noise. By converting the complex system to a two-
level system, the zero-area pulse technique can be applied to
the system, and the population can be transferred from an ar-
bitrary coherent superposition of ground states to an arbitrary
coherent superposition of excited states. We will show that
the coherent superposition of states in a detuned degenerate
system using zero-area pulses is possible, and the results in
the fidelity study indicate the appropriateness. We also shall
demonstrate that the efficiency of population transfer is not
sensitive to small changes in laser parameters, including the
maximum value of Rabi frequencies and detunings which re-
sults in reasonable robustness.

This paper is organized as follows: Population transfer in
non-resonant two-level systems is introduced in Sec. 2. In
Sec. 3 the coupling pattern, reduction of the primary system
to a two-level system using the MS transformation, the design
of laser pulses to use zero pulse area technique, and numer-
ical study are described. In Sec. 4, the implementation of
proposed model in real physical systems is investigated, and
finally the conclusion is summarized in Sec. 5.

FIGURE 1. Linkage diagram for the two-state system.Ω(t) is Rabi
frequency, the pulse is detuned by∆ from exact resonance and also
the Hamiltonian of the system is Eq. (2).

2. Population transfer in non-resonant two-
level systems using zero-pulse technique

In order to provide basic concepts in population transfer us-
ing zero-area pulses, we provide a summary of the Ref. [39].
According to this reference, we consider the excitation link-
age shown in Fig. 1. Coherent excitation of this two-level sys-
tem is described by the Schrödinger equation, which is men-
tioned in rotating wave approximation(RWA) as follows [39]:

i~
d

dt
C(t) = Ĥ(t)C(t), (1)

whereC(t) = [c1(t), c2(t)]T is a vector with the amplitude
of c1(t) andc2(t) that|c1(t)|2 and|c2(t)|2 describe the prob-
ability of presence in the|ψ1〉 and |ψ2〉 states respectively,
andĤ(t) is the Hamiltonian of system, which is defined as
follows [39]:

Ĥ(t) =
~
2

[ −∆(t) Ω(t)

Ω(t) ∆(t)

]
, (2)

whereΩ(t) is Rabi frequency, indicates the coupling between
laser field and states, and∆(t) is the offset of the field car-
rier frequencyω(t) from the Bohr transition frequencyω0,
∆(t) = ω(t)−ω0. We assume that the initial state of the sys-
tem is|ψ1〉, and we are interested in transferring the popula-
tion to the final state|ψ2〉. In the case of resonance (∆ = 0)
Schr̈odinger equation can be solved simply, and the proba-
bility of transition isP = sin2(A/2) which A =

∫
Ω(t)dt

called pulse area. Complete population transfer occurs when
A = (2n+1)π, whichn is a natural number (n=1,2,3,...). Ac-
cording to the transition probability relation, if the pulse area
is zero and the system is in exact resonance status, there will
be no change in the initial state of the system, at the end of the
interaction. In order to implementation of zero-area pulses in
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two-level systems, we assume that the Rabi frequencyΩ(x)
is an odd function of time as follows [39]:

Ω(x) = −Ω(−x) = Ω0f(x), (3)

wherex = t/T represents dimensionless time andf(x) is an
odd slow varying and non-oscillating function which is con-
sidered as follows [39]:

f(x) =
tanh(x)
cosh(x)

. (4)

The parameters,Ω0, ∆ andT are assumed to be positive since
the transition probability does not depend on their signs. To
apply the zero pulse area method in a two-level system, the
system is considered in non-resonance condition, and the de-
tuning of the system is constant. First, we calculate the eigen-
states of the system, which are called adiabatic states, as fol-
lows [39]:

|φ−(x)〉 = cos υ(x)|ψ1〉 − sin υ(x)|ψ2〉, (5a)

|φ+(x)〉 = sin υ(x)|ψ1〉+ cos υ(x)|ψ2〉, (5b)

where mixing angle isυ(x) = 1/2 arctan(Ω(x)/∆). It can
be represented that|φ−(±∞)〉 = |ψ1〉 and |φ+(±∞)〉 =
|ψ2〉, which means initial and final states are equal in the dia-
batic and adiabatic bases, so a transition in the adiabatic basis
describes a transition in the diabatic basis. The Hamiltonian
in the basis of adiabatic states can be written as [39]:

Ĥ(x) =
~
2

[ −ξ(x) −iϑ(x)

iϑ(x) ξ(x)

]
, (6)

whereξ(x) = T
√

Ω2(x) + ∆2 andϑ(x) = 2(d/dx)υ(x) is
nonadiabatic coupling that can be written as follows [39]:

ϑ(x) =
∆Ω0f

′(x)
∆2 + Ω2

0f
2(x)

. (7)

FIGURE 2. Normalized nonadiabatic coupling (ϑ̃(x) =
ϑ(x)/(Ω0/∆)) vs the dimensionless time (x = t/T ) for differ-
ent values ofΩ0/∆ = 1, 3, 10, 30. AsΩ0/∆ increases, the central
part ofϑ(x) approachesδ-function behavior.

FIGURE 3. Pulse shapef(x) a), the time evolution of the transi-
tion probability in diabatic basis b), for the pulse shape (4) with
Ω0T = 250 and∆T = 2.

Investigating into nonadiabatic coupling pulse shape in
the limit of Ω0/∆ → ∞, shows that the central part of the
nonadiabatic coupling Eq. (7) indeed behaves as aδ function
with an area ofπ (see Fig. 2). In the adiabatic basis, the inter-
action is reduced to the textbook problem of excitation of a
two-state system by aδ-function with a peak value ofΩ0/∆
and a pulse area ofπ. It is observed that in non-resonant
condition, population transfer is possible whenΩ0 > ∆ is
fulfilled. Figure 3 illustrates the time evolution of the tran-
sition probability in a two-level system for the pulse shape
mentioned in Eq. (4), whereΩ0T = 250 and∆T = 2.

3. Population transfer in coupled Hilbert
space

3.1. The model

A quantum system withNa states in the lower set|ψm〉
(m = 1, 2, ..., Na) andNb states in the upper set|ψNa+n〉
(n = 1, 2, ..., Nb) is considered. Each of the states in the
lower set is coupled to all states in the upper set using time-
dependent pulsesΩmn(x) as displayed in Fig. 4. It should
be emphasized that our desired system is the same degener-
ate system introduced in Ref. [34], with the difference that
in Ref. [34], the final reduced system will be a three-level
Λ-like system, in which the population will be transferred
from a ground state to an arbitrary superposition of other
ground states without populating the intermediate states (ex-
cited state) by coincident pulses and/or STIRAP techniques.
But in this study, the reduced system will be a two-level sys-
tem that couples the superposition of several ground states to
an arbitrary superposition of excited states. Also, in the sys-
tem introduced in this paper, we consider the non-resonant
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FIGURE 4. A coupled Hilbert system consisting ofNa levels in the
ground (a set) andNb levels in the excited states (b set).

mode and create the desired superposition using zero-area
pulses. Also, in the linkage pattern that we have con-
sidered in this paper, in order to reduce the initial sys-
tem to a two-level system, all pulses should have the same
time dependence, while in Ref. [34], the time dependence
of Ω1

c(x) could be different from the time dependence of
Ω2

c(x), Ω3
c(x), ..., ΩNa

c (x) pulses. The Hamiltonian of this
system is described as:

Ĥ(x) =
~
2

[ −∆INa V

V † ∆INb

]
, (8)

whereINa
andINb

are identity matrices inNa andNb dimen-
sion respectively, and alsoV is an(Na × Nb)-dimensional
interaction matrix with time-dependent Rabi frequencies ele-
ments,

V̂ =




Ω11(x) Ω12(x) · · · Ω1Nb
(x)

Ω21(x) Ω22(x) · · · Ω2Nb
(x)

...
... · · · ...

ΩNa1(x) ΩNa2(x) · · · ΩNaNb
(x)




. (9)

The initial state of the system is considered as|ψ(xi)〉 =∑N
i=1 ci|i〉 whereci satisfies

∑Na

i=1 | ci |2= 1. We aim to
transfer the initial state of the system to an arbitrary coherent
superposition of the upper set|ψ(xf )〉 =

∑Nb

j=1 c′j |j〉 where∑Nb

j=1 | c′i |2= 1 [34].

3.2. Reduction to the two-level system

Since the zero-area pulse technique is used in two-level sys-
tems, using two steps of MS transformation, the system intro-
duced in the previous section can be reduced to a two-level
system. In the first step, considering time-independent mix-
ing anglesθj as follows [34]:

Ω12(x)
Ω11(x)

=
Ω22(x)
Ω21(x)

= · · · = ΩNa2(x)
ΩNa1(x)

= tan θ1, (10a)

Ω13(x)√∑2
j=1 Ω2

1j(x)
=

Ω23(x)√∑2
j=1 Ω2

2j(x)
= · · · = ΩNa3(x)√∑2

j=1 Ω2
Naj(x)

= tan θ2, (10b)

...

Ω1Nb
(x)√∑Nb−1

j=1 Ω2
1j(x)

=
Ω2Nb

(x)√∑Nb−1
j=1 Ω2

2j(x)
= · · · = ΩNaNb

(x)√∑Nb−1
j=1 Ω2

Naj(x)
= tan θNb−1 . (10c)

Considering [34]:

ζ1 =
Nb−1∏

j=1

cos θj , (11a)

ζ2 = sin θ1

Nb−1∏

j=2

cos θj , (11b)

...

ζNb
= sin θNb−1, (11c)

we can write the corresponding time-independent transformation as [34]:

T̂ =

[
Ia O

Ot Tb

]
, (12)
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where O is the(Na ×Nb)-dimensional zero matrix andTb is given by [34]:

T̂b =




ζ1
−ζ2
X2

ζ1ζ3
X2X3

· · · ζ1ζNb

XNb−1XNb

ζ2
ζ1
X2

ζ2ζ3
X2X3

· · · ζ2ζNb

XNb−1XNb

ζ3 0 −X2
2

X2X3
· · · ζ3ζNb

XNb−1XNb

...
...

...
.. .

...

ζNb
0 0 0

−X2
Nb−1

XNb−1XNb




, (13)

whereXj =
√

Σj
k=1ζ

2
k (j = 2, 3, ..., Nb) and the transformed Hamiltonian (T̂ †Ĥ(x)T̂ ) is informed in the MS basis as [34]:

Ĥ
(1)
T (x) =

~
2




−∆ 0 · · · 0 Ω(1)
c (x)

0 −∆ · · · 0 Ω(2)
c (x)

...
...

...
.. .

...

0 0 · · · −∆ Ω(Na)
c (x)

Ω(1)
c (x) Ω(2)

c (x) · · · Ω(Na)
c (x) ∆




, (14)

with Ω(i)
c (x) = Ωj1(x)/ζ1. The linkage pattern of Hamilto-

nian Eq. (14) is anNa-pod system (see Fig. 5) [34].
In the second step, we want to replaceNa-pod system

with a two-level system. To produce this simplification,
we define new time-independent mixing angles (ϕj) where
< ϕj < π/2:

Ω(2)
C (x)

Ω(1)
C (x)

= tan ϕ1, (15a)

Ω(3)
C (x)√∑2

j=1 Ω(j)
C (x)2

= tan ϕ2, (15b)

...

Ω(Na)
C (x)√∑Na−1

j=1 Ω(j)
C (x)2

= tan ϕNa−1, (15c)

taking:

η1 =
Na−1∏

j=1

cos ϕj , (16a)

η2 = sin ϕ1

Na−1∏

j=2

cos ϕj , (16b)

...

ηNb
= sin ϕNa−1, (16c)

FIGURE 5. Linkage pattern of the multistate system consisting of
two coupled sets of levels in the first step MS transformation basis.

following the first step, the corresponding time-independent
transformation can be written as:

T̂ 2 =

[
TNa O

Ot 1

]
, (17)

where TNa is an Na-dimensional square matrix that can
be obtained by replacingζi with ηi and Nb with Na in
Eq. (13). Finally, corresponding transformed Hamiltonian in
{φC , ψC} subspace is:

Ĥ
(2)
T (x) = (T (2))†H(1)

T T (2)

=
~
2

[ −∆ Ω′c(x)

Ω′c(x) ∆

]
, (18)
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FIGURE 6. Linkage pattern of the multistate system consisting of
two coupled sets of levels in the second step MS transformation
basis.

whereΩ′c(x) = Ω(1)
c (x)/η1. Linkage pattern of the multi-

state system consisting of two coupled sets of levels in the
second step MS transformation basis is represented in Fig. 6.

3.3. Example

We consider a quantum diamond system with two states in
the ground set and two states in the excited set (see Fig. 7).
For this set, the Hamiltonian matrix will be as follows:

Ĥ(x)=
1
2




−∆ 0 Ω11(x) Ω12(x)

0 −∆ Ω21(x) Ω22(x)

Ω11(x) Ω21(x) ∆ 0

Ω12(x) Ω22(x) 0 ∆




. (19)

In order to simplify the system, two MS transformation
steps will be used. For this purpose, in the first step, the uni-
tary transformation matrix can be obtained using Eq. (13) as
follows:

FIGURE 7. The linkage pattern of coupled Hilbert space with two
states in the ground and excited levels.

T̂ =




1 0 0 0

0 1 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ




. (20)

where:

cos θ =
Ω11(x)√

Ω2
11(x) + Ω2

12(x)

=
Ω21(x)√

Ω2
21(x) + Ω2

22(x)
, (21a)

sin θ =
Ω12(x)√

Ω2
11(x) + Ω2

12(x)

=
Ω22(x)√

Ω2
21(x) + Ω2

22(x)
. (21b)

The transformed Hamiltonian in the new space is constructed
as follows:

Ĥ
(1)
T =

1
2




−∆ 0 Ω(1)
c (x)

0 −∆ Ω(2)
c (x)

Ω(1)
c (x) Ω(2)

c (x) ∆


 . (22)

where Ω(1)
c (x) =

√
Ω2

11(x) + Ω2
12(x) and Ω(2)

c (x) =√
Ω2

21(x) + Ω2
22(x). In the second step, in order to use

the MS transform, we consider the transformation matrix for
transformed Hamiltonian in Eq. (22) as follows:

T̂ (2) =




cosϕ sin ϕ 0

− sin ϕ cosϕ 0

0 0 1


 , (23)

where the mixing angle isϕ = arctan(Ω(2)
c (x)/Ω(2)

c (x)). In
this case, as in the previous step, we will have a new Hamil-
tonian matrix definition:

Ĥ
(2)
T =

1
2

[ −∆ Ω′c(x)

Ω′c(x) ∆

]
. (24)

The coupling parameters will be in the formΩ′c(x) =√
(Ω(1)

c )2 + (Ω(2)
c )2.

3.4. Pulse design

As previously explained, in order to design the convenient
pulse, we consider the initial state of the system as follows:

|ψ(xi)〉 =
Na∑

i=1

ci|i〉, (25)

and the final state of the system is

|ψ(xf )〉 =
Nb∑

j=1

c′j |j〉. (26)
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In order to establish the MS conditions, the Rabi frequencies
are considered as follows:

Ω1j(x) = c1c
′
jΩ0g(x), (27a)

Ω2j(x) = c2c
′
jΩ0g(x), (27b)

...

ΩNaj(x) = cNa
c
′
jΩ0g(x), (27c)

wherej = 1, 2, ..., Nb andg(x) is described as:

g(x) =
tanh(x)
cosh(x)

, (28)

or

g(x) =
x

(x2 + 1)2
. (29)

3.5. Numerical study and robustness

In order to numerical study, we consider a coupled Hilbert
space withNa = 2 state in the lower level andNb = 2 in the
excited level and impose that the initial state of the system is

|ψ(ti)〉 =
1√
3
|1〉+

√
2
3
|2〉. (30)

We aim to transfer the population to the desired state as fol-
lows:

|ψ(tf )〉 = |ψdesired〉 =
1√
3
|3〉+

√
2
3
|4〉. (31)

Figure 8 shows the time evolution of Rabi frequencies, the
population, and the fidelity (F = |〈ψ(t)|ψdesired〉|2) of the de-
sired state. Comparing the final fidelity for the two mentioned
type of pulse shapes, it is observed that the final value of the
fidelity for the pulse shape, Eq. (28) is 0.9545, and for the
pulse shape, Eq. (29) is 0.9755. Figure 7 shows another ex-
ample for a coupled Hilbert space withNa = 2 andNb = 3
so that the initial state of the system is:

|ψ(ti)〉 =
1√
2
(|1〉+ |2〉). (32)

and the desired state is:

|ψ(tf )〉 = |ψdesired〉 =
1√
3
(|3〉+ |4〉+ |5〉). (33)

For this example, we also compared the final fidelity val-
ues for the two pulse shapes, and it is observed that this value
is 0.9438 for pulse Eq. (28), and 0.9466 for pulse Eq. (29).
In order to study the robustness of the zero pulse technique
in coupled Hilbert space, we assume that the peak value of
Rabi frequencies and detuning deviate from considered val-
ues in Fig. 9. Figure 10 shows the contour plot of the final
fidelity againstΩ0 and∆. As observed, if the values of Rabi
frequencies and detuning are smaller or more extensive than
the considered values, the final fidelity is not significantly af-
fected. We emphasize that in Figs. 8 and 9 we transfer the
population from a single ground-state to an arbitrary coherent
superposition of excited-states using zero pulse area, which
is different from a two-level system where the population is

FIGURE 8. Pulse shape a) and b), the time evolution of the population of states c) and d), and final fidelity e) and f) for pulse Eq. (28) and
Eq. (29) respectively with the same initial conditions:Ω0T = 250 and∆T = 2.
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FIGURE 9. Pulse shape a) and b), the time evolution of the population of states c) and d), and final fidelity e) and f) for pulse Eq. (28) and
Eq. (29) respectively with the same initial conditions:Ω0T = 250 and∆T = 2.

FIGURE 10. Contour plots of the final fidelity as a function of the peak Rabi frequency (Ω0) and detuning (∆) for the pulse shape a) Eq. (29),
b) Eq. (28).

transferred from a single ground-state to a single excited-
state. Coherent superposition of states can be used in various
cases, such as the construction of entangled states, quantum
gates and quantum algorithms.

4. Implementation in real physical systems

The proposed scheme in this article can be used not only in
the case of degenerate systems, but also in the case of non-
degenerate systems. For example, considerJ = 0 ↔ J =

1 ↔ J = 0 transition in atomic systems, that is displayed in
Fig. 11.

In Fig. 11 The states related toJ = 0 can be consid-
ered as set a and the states related toJ = 1 considered as
the states of set b, and after simplifying the system by us-
ing the Morris-Shore transformation, the population from an
arbitrary superposition ofJ = 0 states transferred to an arbi-
trary superposition ofJ = 1 states using zero-area pulses.

Also, our proposed method can be used in nuclear sys-
tems as well. Recently, with the progress that has been made
in the construction of X-ray lasers, the engineering of nuclear
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FIGURE 11. Linkage pattern for a three-level ladder involving a
degenerate middle level. The two ends of the chain, magnetic sub-
levels withJ = 0 have the same detuning from the three interme-
diate sublevels ofJ = 1.

FIGURE 12. Linkage pattern of154Gd with four X-ray laser pulses
in laboratory frame.Ei indicates the energy of the levels andE1
indicates the type of electric dipole transition.

states as well as the engineering, of atomic states has been
considered [15–17, 54–57]. In nuclear state engineering it is
assumed that the accelerated nuclear beam interacts with X-
ray laser pulses. Figure 12 shows a linkage pattern of154Gd
nuclei with X-ray laser pulses, which our proposed scheme
for zero pulse area can be implemented in this system. In
this linkage, all the transitions are related to gamma radiation
and each of|1〉 and|2〉 states are coupled to|3〉 and|4〉 states
with two laser pulses. If the system is initially in an arbitrary
coherent superposition of|1〉 and |2〉 states using the zero-

area pulse technique, the population can be transferred to an
arbitrary coherent superposition of|3〉 and|4〉 states.

Rabi frequenciesΩi(i = 1, 2, 3, 4) in nuclear systems de-
pend on the intensity of laser pulses and also the parameters
of the nuclei, and considering that the parameters of the nu-
clei are constant, it is possible to design the Rabi frequencies
necessary to use the zero pulse area in nuclear systems by
adjusting the shape and intensity of the laser pulses.

5. Conclusion

In this paper, we have studied the coherent superposition
of states in a degenerate system using zero-area pulses. To
do this, we considered a linkage pattern called the coupled
Hilbert space. In the interaction of the laser pulses with the
mentioned system, we assumed that all the laser pulses are
off-resonance with their corresponding transitions. Besides
that, we assumed that all the detunings have the same val-
ues. To simplify the Hamiltonian complexity of the system,
we used the step-by-step MS transformation to reduce the
initial complex system to a two-level system, in which the
lower-level and upper-level in MS bases are a superposition
of degenerate ground states and degenerate excited states in
the original system, respectively. Then we implemented the
zero pulse area technique on the reduced two-level system
and showed that using this technique in an MS basis, the pop-
ulation can be transferred from one state to another state ef-
ficiently, which leads to population transfer from an arbitrary
superposition of ground states to an arbitrary superposition of
excited states in the original system. In the numerical study
of the system’s robustness, we showed that the efficiency of
population transfer is not sensitive to small changes in laser
parameters, including the maximum value of Rabi frequen-
cies and detunings which results in reasonable robustness.
Furthermore, we showed that the shape of the pulse does not
efficiently influence the final fidelity, although it affects the
robustness. The method which is employed in this study can
be used to create quantum qudit gates, entangled states, and
also to create quantum algorithms that are important in the
construction of quantum computers and quantum information
theory. Also, our investigation may contribute to the spec-
troscopy of these systems and the development of new and
efficient methods of laser cooling.
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