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Resonant scattering by a loop: the Wigner delay time and Poisson’s kernel
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The resonances of a loop pierced by a magnetic field are analized in terms of the scattering matrix phase, the Wigner delay time and its
relation to Poisson’s kernel. Except for specific values of the magnetic flux, the resonances appear overlapped by pairs due to the broker
degeneracy. Although it is well known that the Poisson kernel describes how the phase is distributed in the Argand plane, we demonstrate tha
Poisson’s kernel coincides with the reciprocal of the Wigner time delay, thus providing a novel interpretation of this quantity. The distribution
of the Wigner delay time is also determined, it exhibits explicitly the effect of the magnetic flux, contrary to what happens to the distribution
of the phase.
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1. Introduction In this paper we revisit this model, loop or ballistic ring
pierced by an Aharonov-Bohm flux, while being feed by

The study of scattering problems are very interesting andh€ans of a single mode ballistic wire. Our purpose is to ana-
have lead to important discoveries in many areas of physic¥Z€ the effect of the magnetic flux on the phase, the Wigner
such electrodynamics, classical mechanics and quantufif!ay time, and in the wave function in general. More pre-
physics [1]. In particular, resonant scattering of particles ociSely, we look for the effect of the magnetic flux on the dis-
waves allows the detailed understanding of the inner strucfiPution of the phase of the scattering matrix along the uni-
ture of a system through the analysis of their eigenmodes ar@" circle in the Argand plane, whether this distribution is

its distribution, as has been done in classical wave cavitiedVen by the so called Poisson kernel, as well as its relation

microwave graphs, quantum dots, optical microcavities, nulo the Wigner delay time; we also ask for the distribution in

cleus, atoms and molecules, to mention just a few. energy of the Wigner delay time and how it is affected by the

. ) magnetic flux.
A simple general model to study resonant scattering con-

sists of a one-mode single port terminal connected to a system . .

of arbitrary complexity; although simple, this general model2. ~ Scattering properties of a resonant system
serves well to explain the main physical features of resonant . . .

scattering of more complex systems. A particular case corf-"Y Scattering problem by a potential of finite range can be
siders an Aharonov-Bohm ring, a single loop that enclose§€Scribed by a scattering matrix, usually denoted byhich

a magnetic flux, that is connected to a reservoir through & obtained by solving the Sdbdinger equation. By deflm—.
straight terminal. This system preserves the simplicity oft|on,.S relates the outgoing plane wave amplitudes to the in-
one-dimensional problems since it enables a wide analyticdi°™nd ONes and, for a problem f open modes (or chan-

study but, in a very important manner, introduces the tuningfels)*s IS aN x N unitary matrix, unitarity being due to flux
of the scattering process in two ways, the interplay of the couonservation [11]. _ _
SinceS contains all the information about the system due

pling of the ring with the terminal, and the phase due to the _ _ _
Aharonov-Bohm effect. to the scattering potential, physical observables can be ob-

, tained from it; we restrict ourselves to two properties. For
The loop connected to a port has been considered frorg, s mpje, unitarity ofS implies that its determinantiet S,

several perspectives, many of them related to electronic trangs 5 complex number of modulus 1, which describes a circle

port in normal metal rings. In this way, it has been very usej, tne Argand plane when the energyof the incident par-

ful to understand the relations between the scattering matrix;cjes is varied. The phase of this complex number, denoted
persistent currents, and magnetoresonances [2-4], as well 85 is known as Friedel phase [12, 13]. In particular, for the
to analyze the effect of a reservoir [5], or the absorption by §,,a_channel cas&/ = 1, the complex number is exactly the

inductively coupled heat load that occurs during the measuréscattering matrix (we are interested in the single mode case),
ments of these currents [6]. More recently, technological adhamely

vances in the fabrication of nanostructures have renewed the
interest about magnetic properties of quantum rings, made of S(E) = e?(E), (1)
semiconductors or graphene [7-9], or by the advent of the
molecular elctronics [10]. in fact (F) is twice the phase shift plus [11]. Another
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important observable is the Wigner time delay (see Ref. [14]
and references there in), which fof = 1 is defined as the
derivative off with respect taF [11, 15],

00(E)

T(F) = haT 2

In the optical model [16, 17] the amplitude of the scat- B
tering wave consists of the sum of two contributions, one
coming from the prompt response, direct processes, while the
other leaves the system after a delay. The prompt responsi
corresponds to a smooth behavior of the scattering matrix that
is independent of the energ@_, &_md Itis quantlfled by the en- FIGURE 1. (Color online) Single mode Ballistic ring of radiu3
ergy average of over a sufficiently large interval, denoted i ceq by a Aharonov-Bohm flu, indicated by a filled circle
by (S) and referred to as the optic8tmatrix. ThereforeS  jnsige (red), feeded by a single mode ballistic wire. The coupling

can be splitted as [11] between ring and the wire is indicated by a T-junction in black,
whcih is described by a fixe8l x 3 scattering matrixs®. A; and
S(E) = (S) + Sa(E), ©) B; represent the amplitudes of the incoming and outgoing plane

waves in the wire, respectively, whild, and B represents the
where Sq(E) represents the delayed part. The absence o lane wave amplitudes into the ring, traveling counter clockwise

presence of direct processes has drastic consequences in SGaf clockwise direction, respectivelyis the angle in the counter
tering properties, in particular in how the scattering matriXcjockwise direction.

visits its available space dsis varied. This is what we will
refer to as a distribution, not associated to a random process

, . . “Where0 < e < (1/2), a = (1/2) (v/1—2¢—1), and
(although it could be by appealing an ergodic hypothesns)b ~ (1/2) (M+ 1)- This simple model for the junc-

In the former case$ visits its space in a uniform way, such . . . .
_ o . . tion is peculiar because couples the wire to both arms of the
that (S5)=0, while in latest one distributes according to the , L -
ring with the same transmission probability Fore = 0,

Poisson kernel. Forinstance, for = 1 tis given by [11,18] a = 0 andb = 1, such that the wire is decoupled and nothing

1 1-|9)? is transmitted into the ring; maximum coupling is obtained
Ps)(0) = % W' @ fore= (1/2), in which caser = —(1/2) andb = (1/2), and
no reflection occur into the wire as a first response.

An interesting feature of this distribution is that it is uni-
vocally determined once the parame{8h is given, unless
there is dissipation or gain [19]. [fS) = 0, p(s)(¢) reduces
to a constant, if not, the phadeloes not visit uniformly the
circumference of the unit circle. A demonstration of the Pois-" "
son kernel uses an analyticity condition which implies that/Vritten as [31
(S™ = (S)™, with n an integer. For many problem&s) is
obtained from experimental data, but in recent investigations 1 k(e R) h(a—R)
itis given by the problem itself [20,21]. Moreover, a physical Ui(2) = r {Al ¢ +Bie } , (6)
realization of the Poisson kernel is artificially constructed by
assuming a model for the coupling of the scattering region to
the external world [22, 23]. wherek is the wave numbe¥k; = /2M E/h? with E the en-
ergy of incidence of the quantum particle of mads Here,

Ay is the amplitude of the incoming plane wave, while is
the amplitude of the outgoing one. Along the ring, the solu-
tion can be written as [3]

Assuming that the ring is on they plane, the wire along
thez axis and the coordinate system at the center of the ring,
as shown in Fig. 1, the junction is placedrat= R such that
the solution of the Sckidinger equation along wire can be

3. Resonant scattering in a ring pierced by a
magnetic flux

The system consisting of a single mode ballistic ring of ra-

dius R, pierced by a magnetic flug, is shown in Fig. 1. 1 » .

The ring is coupled to a single mode ballistic wire through Va(¢) = \/TT% (A2 e " 4 Bye kR¢) ) (7)
a junction whose scattering potential is described by a fixed

scattering matrixs°. For simplicity, we assume th&t’ is a

real symmetric matrix, namely [24] where ¢ is the azimuthal angled, and B, are the clock-
wise and counterclockwise plane wave amplitudes, respec-
0 —(a+b) Ve e tively. (o) satisfies unusual boundary conditions [25]:
S°= Ve a b |, () yy(27) = 12(0)ei2™, wherey is the magnetic flux in units
Ve b a of the flux quantum or fluxony = ®/(h/e) (in Sl units).
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3.1. Solution of the scattering problem 3.3. Resonances

By definition, S° relates the outgoing amplitudes to the in- The1 x 1 scattering matrix of Eq(0) is just a complex num-

coming ones at the junction, as [3] ber of modulus 1, as in Ed1); explicitly, we have
By . Ay G0 _ blcos(2mp) — cos(kL)] +iasin(kL) (16)
Bs =S Ay (8 " blcos(2mp) — cos(kL)] — iasin(kL)’
AQe—l(kL+27r<p) B2el(kL—27T<p)

. ) ) . _that shows the dependence®bn ¢ andk explicitly. There-
where L = 2R, is the perimeter of the ring. This matrix fore due to flux conservation, the motion®in the Argand
equation can be solved fd#, in terms ofA, to give plane describes a circle of radius 1. This is shown Fig. 2,

B —SA ) panels (a) forp = 0 and (d) forp = 0.3.
! b It is convenient to writé = 26 + 7, whered is the phase
wheres is thel x 1 scattering matrix of the system. Using Shift given by

the model forS°, Eq. B), the resulting scattering matrix of

a sin (kL)

the system can be expressed as tand(k) = ( — . 17
y P an (k) (b) cos (2mp) — cos (kL) A7
1
S=5Spp+ S%Q I, —U,S0 U¢S%P7 (10)  From this expression we observe that an abrupt change in
rree 0(k), and hence i(k), occurs atk = ES) wherek( is
where I, stands for the2 x 2 unit matrix. Here,S%, = given by Eq.L5). Therefore, these values correspond to res-
—+/1 — 2¢, which is the reflection to the WireS%Q = onances of the system. We remark that this is a peculiarity

Ve ( 1 1 ) itis al x 2 matrix that represents the transmis- of the simple model we have adopted for the junction, which
sion to the ring through the junction, alﬁ%P = (S%Q)T, has no dependence on the energy. In a more general situa-
which is a2 x 1 matrix that gives the transmission from the tion the resonances do not coincide with those of the closed
ring to the wire. Finally,S%,, together withl/,, are responsi- ~ System (see Ref. [11], page 76). The behaviour of the phase
ble for the multiple scattering due to the junction in the ring; ¢(k) in the interval(0, 27) is also shown in Fig. 2, panels (b)

they are given by for ¢ = 0 and (e) forp = 0.3.
The resonances are also exhibited in the Wigner time de-
S%Q _ ( Z b ) 7 (11) lay; it is easily obtained from the definitio2)( namely [3]
a
€|l — cos(kL) cos(2m
and r = [ (kL) 2( <p)].2 . @a8)
b2 [cos(2mp) — cos(kL)]” + a? sin®(kL)
0 ei(kL+27rgp)
Uy = el(kL—27p) 0 (12)
- . S — 6F
Similarly, Eq. B8) can be solved for, y Bs in terms of ) k=023 . I
Aq; the resultis - Rl
%) ¥ b) |
Aq } 1 0 = OF w=r =0 0
W(kL—2r = ——>7—U,SopA1. 13 = ] :
{ BZe(kL 27¢p) IQ_UWS%Q PPQPAL (13) \ 904__ \ T T T ]
et B 2k 4
3.2. Bound states a) gl ool N N N
The bound states are obtained for the closed system, wher 1 Ll BTN 67 T ‘ T]
the ring is decoupled to the wire. Fer= 0, Egs. 6) and I ‘ "-,__ @ 3¢
(8) gives By = — A1, such that the wave function in the wire - \ [ | | /
becomes 2 of s S I ——
S o4r =t
Y1 (z) = sin[k(z — R)], (14) \ A8 i ]
once the amplitudel, is chosen properly ag; = (i/2)Vk. d)’lfl b 1 %5 0 15 20 25
Also, from Egs. §) and 8), By = Bsel*L=27¢) and € D kL
Age—i(kLH+2m0) — A, which lead to FIGURE 2. Fore = 0.4 we show: Motion ofS(kL) in the Ar-
gand plane for a = 0 and d)p = 0.3; phased(kL) for b)
k,(Li)L =+21p+2nm, for n=0,1,.... (35) ¢ = 0 and e)p = 0.3; Wigner time delay, in units ofo, for
c)p = 0and f)p = 0.3. For instance,S(2r¢) = 1 and
These values ot imply discrete energy values that dependss(r) = —1; S(0.237) = i and S(1.77x) = —i for ¢ = 0,
quadratrically onp [26]. while §(0.487) = —i andS(0.717) =i for = 0.3.
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wherery = L/(hk/M), which is the time that the particle I o 1 |
takes to travel freely the circumference of the ring. Equa- i %

tion (18) shows the dependence ofon ¢ andk explicitly. a2

The behaviour of-(k) is also shown Fig. 2, in panels (c) for by U3 ]lOkL]‘S T ]‘OkL]‘S 3

¢ = 0 and (f) forpo = 0.3, where each resonance is clearly 4
observed as a local maximum. FIGURE 3. Square modulus of the wave function, tim&s for

In F|g Zc)’ we may observe that f@f = (0 the reso- 6 = 0.4. a) Spatial behaViOUr-fodp = 0 (cyan diSCOﬂtinUIOUS
nances are isolated and symmetric with respect to its cerin€) andy = 0.3 (magenta continuous line). b) The behaviour at
ter. located ak;i)L. The same happens fap| = 1/4 and ¢ = w/2in the ring, for zero.flgx (leftyangp = 0.3 (rlght), shows

' . the resonance peaks when it is plotted as a functidanof
1/2 (not shown here); in fact, the structure of the resonances

for p = 1/2 is the same as that fgp = 0 but shifted by 54 5 function ok L for e = 0.4 andy = 0.3. The resonance

m. For any other value op, the effect of the magnetic flux x5 are clearly observed. The shape of the resonances can

is clearly observed by breaking the double degeneracy, sucl\s, pe obtained making an expansion fdr very close to
that the resonances appear overlapped by pairs, giving rise kcai)L and weak coupling: the result is

non-symmetric individual resonances, as can be observed In

Fig. 2f). Another characteristics that we can be observed is 2 € 1
stationarity: the same behaviour is found for low and high V20" ~ (kL — (2o + 2n7) + (5)2 4R’ (23)
energies. Therefore, it is enough to consider an isolated reso- 2

nance or two overlapped resonances in our subsequent angr ¢ + 0, and

ysis, as has been performed in physical realizations in recent

experiments with elastic systems [20, 21, 27]. In the absence ()] ~ 2¢ cos® (kR¢) (24)

of stationarity an interval of energy with several resonances (kL — 2nm)2 + €2 ' 2R

in which stationarity is recovered should be considered. . o
The shape of the resonance can be determined analyfi?’ ¥ = 0- Again, these resonances are of the Breit-Wigner
cally making an expansion close to a resonance in a wealf'™ and are the same of those of Eq&d)(and €0, as

coupling limit. The result is should be.

REYS < (19)

T kL — (2mp + 2nm)] + (5)7

4. Probability distributions

for ¢ # 0, which is a typical Breit-Wigner form of a reso- It has been noticed th&t describes a circle of radius 1 as the
nance of widthe, centered ak L = 2wy + 2n7. Forg = 0, energy of the particle is varied, see Fig. 2a) and d). In the

the result is same figure we can also observed tRatloes not visit the
. % circumference in a uniform way. In this section we address
— = SR (20)  the distribution of the phase of the scattering matrix in the
T (kL —2nm)" +e Argand plane and establish a relation with the Wigner delay
a resonance of widtPe, centered ak L = 2n. time. At the same time, we determine the distribution of this

last quantity.
3.4. Wave function at resonance

I . . .. 4.1, Probability distribution of the phase
The wave function in the wire can be obtained by substitution

of § = —e”? into Egs. B) and ). Once the normalization The scattering matrix of the system, given by Et0)( can
constant is chosen to b = (i/2)\/Ee—15, the result forthe  be directly written as
wave function is

e = —v1—2¢
1 (z) =sin [k (x — R) + 4], (22) . .
S e 2 [cos(2mp)eltt — kL] Ve (25)
which is similar to that of Eq.14), except for the phase ‘1 2 cos(2r )L 4 /T = e oBHL €.

shift §. Similarly, substitution of amplituded, and B, from
Eqg. 13 into Eq. [7), gives the wave function along the ring, This expression is of the form of E@B) it is easy to identify

the optical matrix as
Ve itkr-5) P

~ VRA () = —v1— 2. (26)
x [e*™?sin(kR¢) + sin(kL — kR¢)],  (22)

P2(0)

Therefore, it is expected that the distribution of the phase

whereA = 1 — 2bcos(27yp) L + /T — 2e e?*L, along the circumference is give by Poisson’s kernel, BY. (
The evaluation of the wave function at a specific position  In Fig. 4 the histogram of the pha8dor two resonances,

in the ring is shown in Fig. 3, in its square modulus tinigs  for ¢ = 0 andyp = 0.3, is compared with the Poisson kernel
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SFTTATTT OETTA T T T ular case of the the ring, as
SHN 1 F 4 F - 1 99 a0
2 . f 1 T 1 T g — T 28
- | . ' "7 hk/m ok~ ° 9kL (28)
a) - 4 6 8 b)O 1 2 3 C)0 2 4 6 . . o .
kL kL kL As sugested by Fig. 4, we assume a uniform distribution for

the variablek L and establish the equality of the probabilities
for the transformatiod = 6(kL); that is

p(0)do = C'd(kL), (29)

whereC is the normalization constant of the uniform distri-

FIGURE 4. Phase) and its distributiorp(6) for e = 0.4: a) and d) bution of L. Therefore,

for ¢ = 0 and resonance &t = 2; b) and e) forp, = 0.3 and 1
resonance &L = 0.6m; ¢) and f) foro = 0.3 and resonances at p(0) = Cma
kL = 0.6mr andkL = 1.47. The bars in d), e), and f) are the his-

tograms obtained from the phaig: L) of panels a), b), and c); the  which using the last equality E28) lead us to the result of
discontinuous (black) lines correspond to Poisson’s kernel, whiIeEq_ 27).

the continuous (orange) lines are the reciprocal of the time delay. This prodecedure is important since it enables to deter-

mine the distribution of the Wigner delay time.

(30)

distribution, Eq./4), with (S) given by Eq.26). In Fig. 4d)

we observe that the P0|sso_n kernel describes the distributiop Probability distribution of the Wigner delay time

of the phase forp = 0, while it does not forp = 0.3. It

is worth to note a symmetry in the shape of an isolated resot is also interesting to look for the distribution of the Wigner
nance in the phase: it is invariant under two reflections, ongelay time delay. Lets defing= T /ey, Such that

with respect to a vertical line at the resonance initheaxis,

followed by a second reflection with respect the horizontal _ [1 — cos(kL) cos(2mp)] (31)
line # = w. This symmetry is absent fay = 0.3. As a b2 [cos(2mp) — cos(kL)]* + a2 sin? (kL)
consequence, a deviation with respect to Poisson’s kernel at e N S

6 =  is observed in the distribution @f in Fig. 4e): the 1herefore, ifg’(y) is the probability density distribution gf,
values off just below¢ = = becomes depopulated but pop- the corresponding one ot/ is (7 /7). _
ulated just above of it. Poisson’s kernel is recovered if an  Since the probability is invariant under the transformation
interval of2r in kL contains the two overlapped resonances = ¥(kL) and thatL is uniformly distributed, then

Figs. 4c) and 4f).

/ —
The reciprocal of the Wigner delay time is also plotted in ¢ (y)dy = Cd(kL), (32)
Fig. 4, as an implicit function of through its dependence on ¢\ hich
kL, for the corresponding resonances of panels 4a) fer0,
4b) and 4c) forp = 0.3. The excellent agreement with the d(y) = 1 . (33)
respective histograms says that the reciprocal of the Wigner |dy/dkL]|
delay time describes exactly the distribution of the phase. | '
is concluded that [:rom Eq. 08) we find that
70(6) dy _ .Y sin(kL) VA 4
p(0)=C 7(0) (27) dkL 1 — cos(2mp) cos kL’ (34)
where

where(C' is a normalization constan€ = 1/2x for ¢ = 0,
while C = 1/x for ¢ = 0.3. We accentuate that the de-
pendence of-/m9 on 6 is implicit throughkL. That is, an
_explici_t determination of—_/m asa function of requires_ the Now, from Eq. 81),
inversion of Eq./25) to write kL in terms of and substitute
into Eqg. (18). The result reduces to E)(with (S) given —(1 — 2b%y) cos(2mp) = VA
by Eq. 26). However, this procedure is not necessary since cos(kL) = 2(a + b)y ’
Eq. 27) is easily demonstrated, as is shown in what follows.

The Wigner time delay, as it is defined in E@),(can be and sin(kL) = =£+/1 —cos?kL, which substituted into
written in terms of the wave numbér or kL, for the partic-  Eq. (34), and the result into Eq36), we get that

A =4y [a®y — 1] [a® — b*sin®(27mp)] + cos®(2mp). (35)

(36)
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c 2(a+b)y+ [(1 — 2b%y) cos(2my) + \/Z} cos(2mp)

(y) =
yvA \/[2(a +b)y)* — [(1 — 2b%y) cos(2mp) £ \/Z} ’

/

4+

; (37)

with A given by Eq. 85). Note that both signs¥) correspond to different branches of the Wigner delay time around the
resonance. For symmetric resonances, like thatsfer 0, the right sign is (+) and’ = 1/2x, while for non-symmetric
resonances, the sing (-) corresponds to the left branch and the (+) sign to the right branch of the re€bramge;for the
whole interval of the two overlapped resonances.

Finally, the probability density distribution of/ 7, for ¢ # 0, is given by

dtr/m) =m0 [T - =L Jo (- D) ramme|l- L8 —Jo(5-1). @9

70 1—cos(2mp) a? 70 1+ cos(2mp) a2 7
whereO(z) is the Heaviside function angl. () is given by

€ 2(a+ b)z + [(e — 2b%x) cos(2my) + \/A,] cos(2mp)

q+ (‘L) = 5 (39)
LEAVE \/[2((1 +b)a]? — [(e — 202x) cos(2mp) + \/A,]
with
A, = 4(1/70) [a®(T/70) — €] [a® — b?sin®(27p)] + € cos® (2my). (40)

Equation [88) is not valid forp = 0, 1/2, for which the distribution of the time delay should be calculated separately; for
these cases,

(41)

)

€ T € € T 2(a+b)z + [(6_262%0)_" VAO}
atr/m) = =7=9\ 5“5 ) O3 ~ ; ;
™ \/[Q(a + b);ﬂ - [(e - 2b2%> + \/AO]
where Ay is A, for ¢ = 0. In Fig. 5 the distribution of the Wigner delay time for the same resonances as in Fig. 4, for

¢ = 0, 0.3, are shown and compared with the analytical results; the observed agreement is excellent. We also note that for
@ = 0 there is a set of zero measure just at the resonahce 27 for which+ = 0.

2a2 T0

e — T T e e WA

4+ 4 4r 4 4r - |
S 5l 1 ,L 1 L ] flux, coupled to a wire has been used to analyze the influence
N —7 TN of the magnetic flux on the distributions of the phase and the
=6 8 T 2 3 % 2 4 6 Wigner delay time. It is well known that for zero magnetic
2 kL b) kL ©) kL

flux and specific values of it, the resonances are isolated; for
any other values of the flux they become overlapped by pairs,
each one being non symmetric. We established a relation be-
tween the motion of thé x 1 scattering matrix in the Argand
plane and the Wigner delay time. For a single non overlapped
resonance, or two overlapped resonances, the Poisson kernel
describes the distribution of the phase; the effect of the mag-
FIGURE 5. Same as Fig. 4 but for the dimensionless Wigner time netic flux is implicit through the value of the optical matrix.
delay /7o and its distributiong(r /7). The continuous (black)  What is new here is our finding that Poisson’s kernel coin-
lines correspond to the analytical results, E3g) for panels e) and  ¢jdes with the reciprocal of the Wigner delay time. Of course,
). and Eq.[g1) for panel d). this result is not valid when only one of the overlapped reso-
nances is taken into account, because the lack of symmetry in
the shape of single resonances. Our findings provides a new
5. Conclusions interpretation of the Wigner delay time: besides of being the
lapse of time taken by the interaction of the particle with the
We have studied a simple but general model to study the efcattering potential, it is now also interpreted as the rate of
fect of quantum scattering, a ring pierced by a static magnetioccurrence of a phase in the unit circle, while the wavenum-
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ber moves with a constant step. It should be interesting tthe magnetic flux, independently whether one or two reso-
verify whether this holds for a scattering matrix of larger di- nances are considered.
mensions.

Appealing to a similar interpretation of a probability dis-
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