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Resonant scattering by a loop: the Wigner delay time and Poisson’s kernel
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The resonances of a loop pierced by a magnetic field are analized in terms of the scattering matrix phase, the Wigner delay time and its
relation to Poisson’s kernel. Except for specific values of the magnetic flux, the resonances appear overlapped by pairs due to the broken
degeneracy. Although it is well known that the Poisson kernel describes how the phase is distributed in the Argand plane, we demonstrate that
Poisson’s kernel coincides with the reciprocal of the Wigner time delay, thus providing a novel interpretation of this quantity. The distribution
of the Wigner delay time is also determined, it exhibits explicitly the effect of the magnetic flux, contrary to what happens to the distribution
of the phase.
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1. Introduction

The study of scattering problems are very interesting and
have lead to important discoveries in many areas of physics
such electrodynamics, classical mechanics and quantum
physics [1]. In particular, resonant scattering of particles or
waves allows the detailed understanding of the inner struc-
ture of a system through the analysis of their eigenmodes and
its distribution, as has been done in classical wave cavities,
microwave graphs, quantum dots, optical microcavities, nu-
cleus, atoms and molecules, to mention just a few.

A simple general model to study resonant scattering con-
sists of a one-mode single port terminal connected to a system
of arbitrary complexity; although simple, this general model
serves well to explain the main physical features of resonant
scattering of more complex systems. A particular case con-
siders an Aharonov-Bohm ring, a single loop that encloses
a magnetic flux, that is connected to a reservoir through a
straight terminal. This system preserves the simplicity of
one-dimensional problems since it enables a wide analytical
study but, in a very important manner, introduces the tuning
of the scattering process in two ways, the interplay of the cou-
pling of the ring with the terminal, and the phase due to the
Aharonov-Bohm effect.

The loop connected to a port has been considered from
several perspectives, many of them related to electronic trans-
port in normal metal rings. In this way, it has been very use-
ful to understand the relations between the scattering matrix,
persistent currents, and magnetoresonances [2–4], as well as
to analyze the effect of a reservoir [5], or the absorption by a
inductively coupled heat load that occurs during the measure-
ments of these currents [6]. More recently, technological ad-
vances in the fabrication of nanostructures have renewed the
interest about magnetic properties of quantum rings, made of
semiconductors or graphene [7–9], or by the advent of the
molecular elctronics [10].

In this paper we revisit this model, loop or ballistic ring
pierced by an Aharonov-Bohm flux, while being feed by
means of a single mode ballistic wire. Our purpose is to ana-
lyze the effect of the magnetic flux on the phase, the Wigner
delay time, and in the wave function in general. More pre-
cisely, we look for the effect of the magnetic flux on the dis-
tribution of the phase of the scattering matrix along the uni-
tary circle in the Argand plane, whether this distribution is
given by the so called Poisson kernel, as well as its relation
to the Wigner delay time; we also ask for the distribution in
energy of the Wigner delay time and how it is affected by the
magnetic flux.

2. Scattering properties of a resonant system

Any scattering problem by a potential of finite range can be
described by a scattering matrix, usually denoted byS, which
is obtained by solving the Schrödinger equation. By defini-
tion, S relates the outgoing plane wave amplitudes to the in-
coming ones and, for a problem ofN open modes (or chan-
nels),S is aN×N unitary matrix, unitarity being due to flux
conservation [11].

SinceS contains all the information about the system due
to the scattering potential, physical observables can be ob-
tained from it; we restrict ourselves to two properties. For
example, unitarity ofS implies that its determinant,detS,
is a complex number of modulus 1, which describes a circle
in the Argand plane when the energyE of the incident par-
ticles is varied. The phase of this complex number, denoted
by θ, is known as Friedel phase [12,13]. In particular, for the
one-channel case,N = 1, the complex number is exactly the
scattering matrix (we are interested in the single mode case),
namely

S(E) = eiθ(E); (1)

in fact θ(E) is twice the phase shift plusπ [11]. Another
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important observable is the Wigner time delay (see Ref. [14]
and references there in), which forN = 1 is defined as the
derivative ofθ with respect toE [11,15],

τ(E) = ~
∂θ(E)
∂E

. (2)

In the optical model [16, 17] the amplitude of the scat-
tering wave consists of the sum of two contributions, one
coming from the prompt response, direct processes, while the
other leaves the system after a delay. The prompt response
corresponds to a smooth behavior of the scattering matrix that
is independent of the energy,E, and it is quantified by the en-
ergy average ofS over a sufficiently large interval, denoted
by 〈S〉 and referred to as the opticalS-matrix. Therefore,S
can be splitted as [11]

S(E) = 〈S〉+ Sd(E), (3)

whereSd(E) represents the delayed part. The absence or
presence of direct processes has drastic consequences in scat-
tering properties, in particular in how the scattering matrix
visits its available space asE is varied. This is what we will
refer to as a distribution, not associated to a random process
(although it could be by appealing an ergodic hypothesis).
In the former case,S visits its space in a uniform way, such
that〈S〉=0, while in latest oneS distributes according to the
Poisson kernel. For instance, forN = 1 it is given by [11,18]

p〈S〉(θ) =
1
2π

1− |〈S〉|2
|eiθ − 〈S〉|2

. (4)

An interesting feature of this distribution is that it is uni-
vocally determined once the parameter〈S〉 is given, unless
there is dissipation or gain [19]. If〈S〉 = 0, p〈S〉(θ) reduces
to a constant, if not, the phaseθ does not visit uniformly the
circumference of the unit circle. A demonstration of the Pois-
son kernel uses an analyticity condition which implies that
〈Sn〉 = 〈S〉n, with n an integer. For many problems,〈S〉 is
obtained from experimental data, but in recent investigations
it is given by the problem itself [20,21]. Moreover, a physical
realization of the Poisson kernel is artificially constructed by
assuming a model for the coupling of the scattering region to
the external world [22,23].

3. Resonant scattering in a ring pierced by a
magnetic flux

The system consisting of a single mode ballistic ring of ra-
dius R, pierced by a magnetic fluxΦ, is shown in Fig. 1.
The ring is coupled to a single mode ballistic wire through
a junction whose scattering potential is described by a fixed
scattering matrixS0. For simplicity, we assume thatS0 is a
real symmetric matrix, namely [24]

S0 =



− (a + b)

√
ε

√
ε√

ε a b√
ε b a


 , (5)

FIGURE 1. (Color online) Single mode Ballistic ring of radiusR
pierced by a Aharonov-Bohm fluxΦ, indicated by a filled circle
inside (red), feeded by a single mode ballistic wire. The coupling
between ring and the wire is indicated by a T-junction in black,
whcih is described by a fixed3 × 3 scattering matrixS0. A1 and
B1 represent the amplitudes of the incoming and outgoing plane
waves in the wire, respectively, whileA2 andB2 represents the
plane wave amplitudes into the ring, traveling counter clockwise
and clockwise direction, respectively;φ is the angle in the counter
clockwise direction.

where 0 ≤ ε ≤ (1/2), a = (1/2)
(√

1− 2ε− 1
)
, and

b = (1/2)
(√

1− 2ε + 1
)
. This simple model for the junc-

tion is peculiar because couples the wire to both arms of the
ring with the same transmission probabilityε. For ε = 0,
a = 0 andb = 1, such that the wire is decoupled and nothing
is transmitted into the ring; maximum coupling is obtained
for ε = (1/2), in which casea = −(1/2) andb = (1/2), and
no reflection occur into the wire as a first response.

Assuming that the ring is on thexy plane, the wire along
thex axis and the coordinate system at the center of the ring,
as shown in Fig. 1, the junction is placed atx = R such that
the solution of the Schrödinger equation along wire can be
written as [3]

ψ1(x) =
1√
k

[
A1 e−ik(x−R) + B1 eik(x−R)

]
, (6)

wherek is the wave number,k =
√

2ME/~2 with E the en-
ergy of incidence of the quantum particle of massM . Here,
A1 is the amplitude of the incoming plane wave, whileB1 is
the amplitude of the outgoing one. Along the ring, the solu-
tion can be written as [3]

ψ2(φ) =
1√
kR

(
A2 e−ikRφ + B2 eikRφ

)
, (7)

whereφ is the azimuthal angle;A2 andB2 are the clock-
wise and counterclockwise plane wave amplitudes, respec-
tively. ψ2(φ) satisfies unusual boundary conditions [25]:
ψ2(2π) = ψ2(0)ei2πϕ, whereϕ is the magnetic flux in units
of the flux quantum or fluxon,ϕ = Φ/(h/e) (in SI units).
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3.1. Solution of the scattering problem

By definition, S0 relates the outgoing amplitudes to the in-
coming ones at the junction, as [3]




B1

B2

A2e−i(kL+2πϕ)


 = S0




A1

A2

B2ei(kL−2πϕ)


 , (8)

whereL = 2πR, is the perimeter of the ring. This matrix
equation can be solved forB1 in terms ofA1 to give

B1 = S A1, (9)

whereS is the1 × 1 scattering matrix of the system. Using
the model forS0, Eq. (5), the resulting scattering matrix of
the system can be expressed as

S = S0
PP + S0

PQ

1
I2 − UϕS0

QQ

UϕS0
QP , (10)

whereI2 stands for the2 × 2 unit matrix. Here,S0
PP =

−√1− 2ε, which is the reflection to the wire;S0
PQ =√

ε
(

1 1
)
, it is a1×2 matrix that represents the transmis-

sion to the ring through the junction, andS0
QP = (S0

PQ)T ,
which is a2 × 1 matrix that gives the transmission from the
ring to the wire. Finally,S0

QQ together withUϕ are responsi-
ble for the multiple scattering due to the junction in the ring;
they are given by

S0
QQ =

(
a b
b a

)
, (11)

and

Uϕ =
[

0 ei(kL+2πϕ)

ei(kL−2πϕ) 0

]
. (12)

Similarly, Eq. (8) can be solved forA2 y B2 in terms of
A1; the result is

[
A2

B2ei(kL−2πϕ)

]
=

1
I2 − UϕS0

QQ

UϕS0
QP A1. (13)

3.2. Bound states

The bound states are obtained for the closed system, when
the ring is decoupled to the wire. Forε = 0, Eqs. (5) and
(8) givesB1 = −A1, such that the wave function in the wire
becomes

ψ1(x) = sin[k(x−R)], (14)

once the amplitudeA1 is chosen properly asA1 = (i/2)
√

k.
Also, from Eqs. (5) and (8), B2 = B2ei(kL−2πϕ) and
A2e−i(kL+2πϕ) = A2, which lead to

k(±)
n L = ±2πϕ + 2nπ, for n = 0, 1, . . . . (15)

These values ofk imply discrete energy values that depends
quadratrically onϕ [26].

3.3. Resonances

The1×1 scattering matrix of Eq. (10) is just a complex num-
ber of modulus 1, as in Eq. (1); explicitly, we have

eiθ(k) = − b [cos(2πϕ)− cos(kL)] + i a sin(kL)
b [cos(2πϕ)− cos(kL)]− i a sin(kL)

, (16)

that shows the dependence ofS onϕ andk explicitly. There-
fore, due to flux conservation, the motion ofS in the Argand
plane describes a circle of radius 1. This is shown Fig. 2,
panels (a) forϕ = 0 and (d) forϕ = 0.3.

It is convenient to writeθ = 2δ + π, whereδ is the phase
shift given by

tan δ(k) =
(a

b

) sin (kL)
cos (2πϕ)− cos (kL)

. (17)

From this expression we observe that an abrupt change in
δ(k), and hence inθ(k), occurs atk = k

(±)
n , wherek

(±)
n is

given by Eq. (15). Therefore, these values correspond to res-
onances of the system. We remark that this is a peculiarity
of the simple model we have adopted for the junction, which
has no dependence on the energy. In a more general situa-
tion the resonances do not coincide with those of the closed
system (see Ref. [11], page 76). The behaviour of the phase
θ(k) in the interval(0, 2π) is also shown in Fig. 2, panels (b)
for ϕ = 0 and (e) forϕ = 0.3.

The resonances are also exhibited in the Wigner time de-
lay; it is easily obtained from the definition (2), namely [3]

τ = τ0
ε [1− cos(kL) cos(2πϕ)]

b2 [cos(2πϕ)− cos(kL)]2 + a2 sin2(kL)
, (18)

FIGURE 2. For ε = 0.4 we show: Motion ofS(kL) in the Ar-
gand plane for a)ϕ = 0 and d)ϕ = 0.3; phaseθ(kL) for b)
ϕ = 0 and e)ϕ = 0.3; Wigner time delay, in units ofτ0, for
c) ϕ = 0 and f) ϕ = 0.3. For instance,S(2πϕ) = 1 and
S(π) = −1; S(0.23π) = i and S(1.77π) = −i for ϕ = 0,
while S(0.48π) = −i andS(0.71π) = i for ϕ = 0.3.
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whereτ0 = L/(~k/M), which is the time that the particle
takes to travel freely the circumference of the ring. Equa-
tion (18) shows the dependence ofτ on ϕ andk explicitly.
The behaviour ofτ(k) is also shown Fig. 2, in panels (c) for
ϕ = 0 and (f) forϕ = 0.3, where each resonance is clearly
observed as a local maximum.

In Fig. 2c), we may observe that forϕ = 0 the reso-
nances are isolated and symmetric with respect to its cen-
ter, located atk(±)

n L. The same happens for|ϕ| = 1/4 and
1/2 (not shown here); in fact, the structure of the resonances
for ϕ = 1/2 is the same as that forϕ = 0 but shifted by
π. For any other value ofϕ, the effect of the magnetic flux
is clearly observed by breaking the double degeneracy, such
that the resonances appear overlapped by pairs, giving rise to
non-symmetric individual resonances, as can be observed in
Fig. 2f). Another characteristics that we can be observed is
stationarity: the same behaviour is found for low and high
energies. Therefore, it is enough to consider an isolated reso-
nance or two overlapped resonances in our subsequent anal-
ysis, as has been performed in physical realizations in recent
experiments with elastic systems [20, 21, 27]. In the absence
of stationarity an interval of energy with several resonances
in which stationarity is recovered should be considered.

The shape of the resonance can be determined analyti-
cally making an expansion close to a resonance in a weak
coupling limit. The result is

τ

τ0
≈ ε

[kL− (2πϕ + 2nπ)]2 +
(

ε
2

)2 , (19)

for ϕ 6= 0, which is a typical Breit-Wigner form of a reso-
nance of widthε, centered atkL = 2πϕ + 2nπ. Forϕ = 0,
the result is

τ

τ0
≈ 2ε

(kL− 2nπ)2 + ε2
, (20)

a resonance of width2ε, centered atkL = 2nπ.

3.4. Wave function at resonance

The wave function in the wire can be obtained by substitution
of S = −e2iδ into Eqs. (9) and (6). Once the normalization
constant is chosen to beA1 = (i/2)

√
ke−iδ, the result for the

wave function is

ψ1(x) = sin [k (x−R) + δ] , (21)

which is similar to that of Eq. (14), except for the phase
shift δ. Similarly, substitution of amplitudesA2 andB2 from
Eq. (13) into Eq. (7), gives the wave function along the ring,

ψ2(φ) =
√

ε√
R∆

ei(kL−δ)

× [
e2πiϕ sin(kRφ) + sin(kL− kRφ)

]
, (22)

where∆ = 1− 2b cos(2πϕ) eikL +
√

1− 2ε e2ikL.
The evaluation of the wave function at a specific position

in the ring is shown in Fig. 3, in its square modulus timesR,

FIGURE 3. Square modulus of the wave function, timesR, for
ε = 0.4. a) Spatial behaviour forϕ = 0 (cyan discontinuous
line) andϕ = 0.3 (magenta continuous line). b) The behaviour at
φ = π/2 in the ring, for zero flux (left) andϕ = 0.3 (right), shows
the resonance peaks when it is plotted as a function ofkL.

as a function ofkL for ε = 0.4 andϕ = 0.3. The resonance
peaks are clearly observed. The shape of the resonances can
also be obtained making an expansion forkL very close to
k

(±)
n L and weak coupling; the result is

|ψ2(φ)|2 ≈ ε

[kL− (2πϕ + 2nπ]2 +
(

ε
2

)2 ·
1

4R
, (23)

for ϕ 6= 0, and

|ψ2(φ)|2 ≈ 2ε

(kL− 2nπ)2 + ε2
· cos2(kRφ)

2R
, (24)

for ϕ = 0. Again, these resonances are of the Breit-Wigner
form and are the same of those of Eqs. (19) and (20), as
should be.

4. Probability distributions

It has been noticed thatS describes a circle of radius 1 as the
energy of the particle is varied, see Fig. 2a) and d). In the
same figure we can also observed thatS does not visit the
circumference in a uniform way. In this section we address
the distribution of the phase of the scattering matrix in the
Argand plane and establish a relation with the Wigner delay
time. At the same time, we determine the distribution of this
last quantity.

4.1. Probability distribution of the phase

The scattering matrix of the system, given by Eq. (10), can
be directly written as

eiθ = −√1− 2ε

+
√

ε
2

[
cos(2πϕ)eikL − e2ikL

]

1− 2b cos(2πϕ)eikL +
√

1− 2ε e2ikL

√
ε. (25)

This expression is of the form of Eq. (3); it is easy to identify
the optical matrix as

〈S〉 = −√1− 2ε. (26)

Therefore, it is expected that the distribution of the phaseθ
along the circumference is give by Poisson’s kernel, Eq. (4).

In Fig. 4 the histogram of the phaseθ for two resonances,
for ϕ = 0 andϕ = 0.3, is compared with the Poisson kernel
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FIGURE 4. Phaseθ and its distributionp(θ) for ε = 0.4: a) and d)
for ϕ = 0 and resonance atkL = 2π; b) and e) forϕ = 0.3 and
resonance atkL = 0.6π; c) and f) forϕ = 0.3 and resonances at
kL = 0.6π andkL = 1.4π. The bars in d), e), and f) are the his-
tograms obtained from the phaseθ(kL) of panels a), b), and c); the
discontinuous (black) lines correspond to Poisson’s kernel, while
the continuous (orange) lines are the reciprocal of the time delay.

distribution, Eq. (4), with 〈S〉 given by Eq. (26). In Fig. 4d)
we observe that the Poisson kernel describes the distribution
of the phase forϕ = 0, while it does not forϕ = 0.3. It
is worth to note a symmetry in the shape of an isolated reso-
nance in the phase: it is invariant under two reflections, one
with respect to a vertical line at the resonance in thekL-axis,
followed by a second reflection with respect the horizontal
line θ = π. This symmetry is absent forϕ = 0.3. As a
consequence, a deviation with respect to Poisson’s kernel at
θ = π is observed in the distribution ofθ in Fig. 4e): the
values ofθ just belowθ = π becomes depopulated but pop-
ulated just above of it. Poisson’s kernel is recovered if an
interval of2π in kL contains the two overlapped resonances,
Figs. 4c) and 4f).

The reciprocal of the Wigner delay time is also plotted in
Fig. 4, as an implicit function ofθ through its dependence on
kL, for the corresponding resonances of panels 4a) forϕ = 0,
4b) and 4c) forϕ = 0.3. The excellent agreement with the
respective histograms says that the reciprocal of the Wigner
delay time describes exactly the distribution of the phase. It
is concluded that

p(θ) = C
τ0(θ)
τ(θ)

, (27)

whereC is a normalization constant:C = 1/2π for ϕ = 0,
while C = 1/π for ϕ = 0.3. We accentuate that the de-
pendence ofτ/τ0 on θ is implicit throughkL. That is, an
explicit determination ofτ/τ0 as a function ofθ requires the
inversion of Eq. (25) to writekL in terms ofθ and substitute
into Eq. (18). The result reduces to Eq. (4) with 〈S〉 given
by Eq. (26). However, this procedure is not necessary since
Eq. (27) is easily demonstrated, as is shown in what follows.

The Wigner time delay, as it is defined in Eq. (2), can be
written in terms of the wave numberk, or kL, for the partic-

ular case of the the ring, as

τ =
1

~k/m

∂θ

∂k
= τ0

∂θ

∂kL
. (28)

As sugested by Fig. 4, we assume a uniform distribution for
the variablekL and establish the equality of the probabilities
for the transformationθ = θ(kL); that is

p(θ) dθ = C d(kL), (29)

whereC is the normalization constant of the uniform distri-
bution ofkL. Therefore,

p(θ) = C
1

∂θ/∂kL
, (30)

which using the last equality Eq. (28) lead us to the result of
Eq. (27).

This prodecedure is important since it enables to deter-
mine the distribution of the Wigner delay time.

4.2. Probability distribution of the Wigner delay time

It is also interesting to look for the distribution of the Wigner
delay time delay. Lets definey ≡ τ/ετ0, such that

y =
[1− cos(kL) cos(2πϕ)]

b2 [cos(2πϕ)− cos(kL)]2 + a2 sin2(kL)
. (31)

Therefore, ifq′(y) is the probability density distribution ofy,
the corresponding one forτ/τ0 is q(τ/τ0).

Since the probability is invariant under the transformation
y = y(kL) and thatkL is uniformly distributed, then

q′(y) dy = C d(kL), (32)

from which

q′(y) = C
1

|dy/dkL| . (33)

From Eq. (18) we find that

dy

dkL
= ± y sin(kL)

√
A

1− cos(2πϕ) cos kL
, (34)

where

A = 4y
[
a2y − 1

] [
a2 − b2 sin2(2πϕ)

]
+ cos2(2πϕ). (35)

Now, from Eq. (31),

cos(kL) =
−(1− 2b2y) cos(2πϕ)±√A

2(a + b)y
, (36)

and sin(kL) = ±√1− cos2 kL, which substituted into
Eq. (34), and the result into Eq. (33), we get that

Rev. Mex. Fis.70011602



6 J. RÚIZ-RUBIO, M. MARTÍNEZ-MARES, AND E. CASTAÑO

q′±(y) =
C

y
√

A

2 (a + b) y +
[(

1− 2b2y
)
cos(2πϕ)±√A

]
cos(2πϕ)

√
[2(a + b)y]2 −

[
(1− 2b2y) cos(2πϕ)±√A

]2
, (37)

with A given by Eq. (35). Note that both signs (±) correspond to different branches of the Wigner delay time around the
resonance. For symmetric resonances, like that forϕ = 0, the right sign is (+) andC = 1/2π, while for non-symmetric
resonances, the sing (-) corresponds to the left branch and the (+) sign to the right branch of the resonance;C = 1/π for the
whole interval of the two overlapped resonances.

Finally, the probability density distribution ofτ/τ0, for ϕ 6= 0, is given by

q(τ/τ0) = q−(τ/τ0)Θ
[

τ

τ0
− ε/b2

1− cos(2πϕ)

]
Θ

(
1
a2
− τ

τ0

)
+ q+(τ/τ0)Θ

[
τ

τ0
− ε/b2

1 + cos(2πϕ)

]
Θ

(
1
a2
− τ

τ0

)
, (38)

whereΘ(x) is the Heaviside function andq±(x) is given by

q±(x) =
ε

πx
√

Aϕ

2(a + b)x +
[(

ε− 2b2x
)
cos(2πϕ)±√

Aϕ

]
cos(2πϕ)√

[2(a + b)x]2 − [
(ε− 2b2x) cos(2πϕ)±√

Aϕ

]2 , (39)

with

Aϕ = 4(τ/τ0)
[
a2(τ/τ0)− ε

] [
a2 − b2 sin2(2πϕ)

]
+ ε2 cos2(2πϕ). (40)

Equation (38) is not valid forϕ = 0, 1/2, for which the distribution of the time delay should be calculated separately; for
these cases,

q(τ/τ0) =
ε

π τ
τ0

√
A0

Θ
(

τ

τ0
− ε

2b2

)
Θ

(
ε

2a2
− τ

τ0

) 2(a + b) τ
τ0

+
[(

ε− 2b2 τ
τ0

)
+
√

A0

]
√[

2(a + b) τ
τ0

]2

−
[(

ε− 2b2 τ
τ0

)
+
√

A0

]2
, (41)

whereA0 is Aϕ for ϕ = 0. In Fig. 5 the distribution of the Wigner delay time for the same resonances as in Fig. 4, for
ϕ = 0, 0.3, are shown and compared with the analytical results; the observed agreement is excellent. We also note that for
ϕ = 0 there is a set of zero measure just at the resonancekL = 2π for which τ = 0.

FIGURE 5. Same as Fig. 4 but for the dimensionless Wigner time
delay τ/τ0 and its distributionq(τ/τ0). The continuous (black)
lines correspond to the analytical results, Eq. (38) for panels e) and
f), and Eq. (41) for panel d).

5. Conclusions

We have studied a simple but general model to study the ef-
fect of quantum scattering, a ring pierced by a static magnetic

flux, coupled to a wire has been used to analyze the influence
of the magnetic flux on the distributions of the phase and the
Wigner delay time. It is well known that for zero magnetic
flux and specific values of it, the resonances are isolated; for
any other values of the flux they become overlapped by pairs,
each one being non symmetric. We established a relation be-
tween the motion of the1×1 scattering matrix in the Argand
plane and the Wigner delay time. For a single non overlapped
resonance, or two overlapped resonances, the Poisson kernel
describes the distribution of the phase; the effect of the mag-
netic flux is implicit through the value of the optical matrix.
What is new here is our finding that Poisson’s kernel coin-
cides with the reciprocal of the Wigner delay time. Of course,
this result is not valid when only one of the overlapped reso-
nances is taken into account, because the lack of symmetry in
the shape of single resonances. Our findings provides a new
interpretation of the Wigner delay time: besides of being the
lapse of time taken by the interaction of the particle with the
scattering potential, it is now also interpreted as the rate of
occurrence of a phase in the unit circle, while the wavenum-
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ber moves with a constant step. It should be interesting to
verify whether this holds for a scattering matrix of larger di-
mensions.

Appealing to a similar interpretation of a probability dis-
tribution, and following the same procedure for the phase, we
were able to determine the distribution of the Wigner delay
time. Contrary to the distribution of the phase, the distribu-
tion of the Wigner time delay exhibits explicitly the effect of

the magnetic flux, independently whether one or two reso-
nances are considered.
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Súarez, G. B́aez, R.A. Ḿendez-Śanchez, A new Fano resonance
in measurement processes,EPL 110(2015), 54003.

Rev. Mex. Fis.70011602


