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An exact treatment of localization of electromagnetic plus separable potential
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Equivalent local potential with energy-momentum dependence is developed for the combined interactionéf moltified Yamaguchi

potential by developing its exact Jost solution. The generated local potentials are applied to compute scattering phase parameters for (p-
and (p-d) systems through the phase function method (PFM). The same are also calculated for the nonlocal potential from the expressior
of the Fredholm determinant. Our obtained data for both the energy-momentum dependent local and the pure nonlocal interactions are ir
reasonable agreement with the standard data. Reasonable correspondence between the results for the phase equivalent and the nonic
potentials indicate that our equivalent local analysis is in proper order.
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1. Introduction derstand the nature of interactions. Gzl [9] proposed a
generalization of the method to have a momentum-dependent
In optical model calculation the pure nonlocal interactionsjocal potential by exploiting two linearly independent solu-
are replaced by its equivalent energy-dependent local paions of the Schidinger equation with nonlocal interaction.
tentials. These make a comparison between the features pfterwards, Arnold and MacKellar [10] judiciously applied
nonlocal potentials and the well-known phenomenology ofthe method of Ref. [1] with nonlocal separable two-nucleon
the local interactions. Such studies are concerned with thiteractions to fit'S, phase shifts. Following the approach
comparison of the phase parameters or equivalently the traf Ref. [10], in the recent past, we have constructed a local
sition matrix elements of both the potentials. Also, manypotential equivalent to a local plus a nonlocal interaction and
groups [1-8] have studied the supersymmetric aspects of thékamine the merit of our method through some model calcu-
N-N scattering in the context of the one pion exchange aptations namely the nucleon-nucleon and alpha-nucleon scat-
proximation and the transformation of the deep potential intqering [17]. In Ref. [17] we have added the electromagnetic
a shallow potential with a repulsive core. Nucleus-nucleusart externally to the energy-dependent nuclear potential to
interactions are frequently discussed in nuclear physics usingompute charged hadron scattering phase parameters. How-
both shallow and deep potentials. Baye [3] has exploited Suever, from the perspective of additive interaction like pxp,
persymmetric Quantum Mechanics (SQM) to derive shallowp, p-d,a-*H, a-*He etc., the scenario of the scattering theory
nucleus-nucleus potentials that are phase equivalent to de@pdifferent from the pure nuclear interaction because of the
ones. Amado [4] applied Baye's method to the partial wavecombined effect of nuclear as well as electromagnetic poten-
Coulomb problem and obtained a new potential that is phasgal. For electromagnetic plus a nonlocal separable nuclear
identical to the Coulomb potential. Amado’s analytical ap-potential the situation can be treated exactly, while for a local
proach to the problem, in contrast to Baye's treatment, shedsuclear potential the problem is handled through some ap-
light on the function of SQM in obtaining a family of phase proximation techniques [18,19]. For charged hadron systems
equivalent potentials. Khare and Sukhatme [5] and Talukthe nonlocal Scirdinger equation admits exact analytical so-
daret al. [6] have also attempted to extend Amado’s work in|ution. As the electromagnetic interaction is very significant
order to obtain a parametric relationship between several pan the low energy range, it is quite obvious to include this in-
tentials. Using supersymmetric algebra, Majumeleal. [8]  teraction explicitly in such problems. The present article is
recently produced phase-equivalent potentials to Manningan attempt in this direction.
Rosen ones in which the created interactions have a weak
energy dependence and nearly the same shape. The single Here we propose to construct energy dependent local po-
channel (elastic) scattering inside the core potential mode itential for the Hultién [20] modified Yamaguchi separable
the subject of this text. [21] interaction using the prescription of Ref. [10]. For the
In past, several groups [9—-16] constructed phase equivaurpose of establishing an energy-momentum dependent lo-
lent local potentials to a nonlocal one of nuclear origin to un-cal potential, that is phase equivalent to a local plus a nonlo-
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cal interaction, the problem is studied in the coordinate repre-with the irregular Hultén Green’s function [22, 23]
sentation. Only the s-wave case is considered here. Separa-

ble nonlocal interactions have immense importance in var- G(”(r 5) = 1
ious branches of physics. In nuclear scattering the effect ’ fu (k)
of recoil of the target due to particle exchange should be

taken care of properly and as a consequence the interaction — ulkr)fulk,5). “)
is represented by a nonlocal potentié{r, s). In addition

to the phenomenological separable nuclear interaction, the
short ranged electromagnetic interaction is represented by a
screened Coulomb, the Huéth potential [20]. The purpose
of the present text is to study hadron-hadron systems with

an energy-dependent local potential with rigorous inclusion ou(k,r) = ae™ (1 - e_r/a)
of the electromagnetic effect. As a primary requisite for the A
localisation process, we need any convenient pair of linearly XoFi(1+ A 14 B;2;1 - 6_7/(1)’ ®)
independent solutions to the effective nonlocal-like interac- Fr(k,r) = ¢ Ry (A, B; C; e—r/a)7 (6)
tion for the development of equivalent local potential. The

next section is directed towards the derivation of the irregular, d

solutions for the HultBn modified Yamaguchi potential and

[¢H(k77 S)fH(k7 T)

Hereow (k,r), fu(k,r) and fy (k) are the s-wave regular,
wregular/Jost solution and Jost function of the same potential
under consideration, respectively. These are given by [24]

method of localisation. The constructed local potentials are r(C)

applied to compute scattering phgse shifts of (p-p) a}nd (p-d) fu(k) = T1+A)T(1+B) (1)
systems through the Phase Function Method (PFM) in Sec. 3.

Finally, we conclude in Sec. 4. where A = —iak + ia\/2 VD), B = —iak —

_ _ (k? + V¢) andC = 1 — 2iak.
2. Construction of an equivalent local poten- From Eq. 8) one can easily evaluate the factt) (k) as
tial
1 > —Qr
2.1. Irregular solution dD (k) = D(T(k:)/o e " fu(k,r)dr, (8)

The wave equation with irregular boundary condition for
Hulthén [20] plus Yamaguchi potential [21] is written as

d2 efr/a 0o oo
{d2 + k- Vol—e—’”/“} f(k,7) DD (k) =1-\ /0 / e " e*aSGg) (r,s)drds. (9)

_ —ar j(I)
= e (k) f (K, ), @ To deduce the expression for required irregular solution
where from Eg. @), one has to first solve the indefinite integration

with D) (&), the Fredholm determinant reads as

A0 (1) = /°° ds e f(k, 5) @) G(I)(r a) = [ G(I)(r s) e~“ds. In such case we can
—Jo T write the quantityG'? (r, o) as
Herel} anda are termed as the strength and the inverse range
of the atomic Hultén potential [20] whereas the quantities o _ /°° o —as
A anda are the parameters of the Yamaguchi potential [21]. i (1) i (rs)e y

Applying Green’s function technique, the irregular or the Jost v
solution f(k, r) for the concerned combined potential reads - / G(H)(T', s) e “%ds. (10)
as 0

Fk,m)=fr (k,r)+\dD (k) /Oo efang) (r,s)ds, (3) Substituting Egs.8)-(7) in Eq. @) along with the follow-
' r ing analytic continuation for Gaussian hypergeometric func-
| tion [25-27]

I (C)T(C—A—B

2F1(A,B;C; Z) = T(C_AT(C_B

§2F1(A,B,A+B_C+l7 1—Z)

)T (A+B-0C)
(AL (B)

Z)C A— BF(C

+(1_ QFl(C—A,C—B;C—A_B+1;1_2)7 (11)
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the second term in Eq1(Q) becomes

/ Gg)(ns ~%ds = —lim a ¢’ l(l —e T/“) 2F(1+ A1+ B;2;1—e T/“)/ e~ (a—ik)s
0 e—0 0
X 2F1(A, B, g, 1-— e_s/a)ds — QFl(A, B;€; 1-— e—r/a)
x / e~ (a=ik)s (1 f e*s/a) DRI (14 A1+ B2 1 — es/“)ds] . (12)
0

Now by applying the integral relations [28, 29]

fola,b;c;2) =

1 z e
1{2F1(a,b;c;z)/s”_1 (1—s)g+b Fila—c+1,b—c+1;2—c; s)ds
0

— 2o R(a—c+1l,b—c+1;2—c; z)/ gote=2 (1—8)a+b_ch1(a,b; c; 8) ds}, (13)
0

Eq. (12) simplifies to

I) —as a2 zkr _ —r/a F(n+1_(a+lk> ) _ —r/a
/G r,s) e"%%ds = ( e );) F—(as a1+ AL+ B2 ). (14)

However, the first term in Eq./10) involving definite integration can be easily solved through the application of standard
integral relation for hypergeometric function [25—-27]

L'(p) I'(0)
I'(p+o)
Rep>0; Reo>0; Re(ct+o—a—10)>0. (15)

1
/ xp_l(l—x)o_lgFl (a, b; ¢;x) dx = 3Fy (a,b,p;e,p+0; 1)
0

Combining Egs.4)-(7) together with Eq.[15) simplifies the first term of Eql10) as

(1)
(= ik) frr (K)

X 3F5(A, B, (a —ik) a;C,1 + (v —ik)a; 1)oFy (1 + A, 1 + B; 2;1— e77/9)

o0 .
/ Gg)(r, 8) e~ ds = —a "
0

B aT ((a+ik)a)T ((o — ik) a) R
fH(k)l—‘(l—l—(04—ik)a—A)l"(l_|_(a_l~k)a_B)2F1(A,B,C’7 ). (6)

Now, by utilising Egs. [10), (14) and (L6) in Eqg. (9) jointly with the application of Eq./X5) and the following formula and
relations for non-homogenous Gaussian hypergeometric functions [25-28]

Pc+c—1)T (v)

1
e=1 (1 _ 5t _ . : 17
| =t 0= e biespy ax = T @ e o) a7)
fo(a;bw;Z):ﬁ:ﬁFz(l,U+a»0+b;0+1,U+C§2), (18)

we get

+1— (a+ik)a) I'((a—ik)a)
D(l )=1-— 3 (n
Aa Z 'l—(a+ik)a) T(n+3+ (a—ik)a)

X 3Fy(l,n+24+An+2+B;n+2,n+3+ (a—ik)a;l). (19)

Equation|6) in Eq. 8) together with the use of Ed18), one has

1

dD (k) = CETYIe)

3Fa2(A, B, (o — ik)a; C, 1+ (o —ik)a; 1) . (20)
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Substituting Egs.[10), (14), (16) and 20) in Eq. (3), the desired irregular solution for effective nonlocal interaction under
consideration is expressed as

Fn+1—(a+ik)a)
I'(l—(a+ik)a)n!

f(k,r) = fu(k,r)+Xd(k) ae’ l ( *T/a) fapi (L4 A, 14 B;2;1 —e” r/ay

1
(o —ik) fu (k)

I'((o+ik)a)T ((a — ik) a)
FaBL (1 + (a—ik)a— AT (1+ (a—ik)a—B),

3Fy(A, B, (a —ik) a: C, 1 + (a — ik) a; 1) (1 _ e—"/u) JFL(1+ A1+ B 21— /)

+a F, (A, B; C; er/a)] . (21)

2.2. Equivalent local potential

In this text we use two linearly independent irregular solutigngk, r) where f_(k,r) = fi (k,r) satisfying the boundary
conditions lim eT%" f, (k,r) = 1. With knowledge of two independent solutions the desired equivalent local potential can

be constructed from the relation [9,10]

1" (k, 3 (J(k,r)\° A [ s oy
Veg(k,r) = — 3 J((k :)) + 1 (J((k; :;) = Tk r)e /0 e " Q'(k,r,s) ds, (22)
where the Wronskiad (k, r) of the pair of irregular solution is written as
T0,r) = 1 g [ (k) £, 7)] (23
and the quantity),(k, r, s) is defined as [9, 10]
QU7 8) = 7 Tmg [fe (k) s (h, )] (24
From Egs.23) and 24), one can writeJ'(k,r), J" (k,r) andQ’(k,r, s) as
Tk, ) = 4 T [ () f4 (6 ) + £ () )] (25)
J"(k,r) = % Tmg [f—(k,r) fY (k,r) +2 % fL (k) f (kyr) + [ (kyr) £ (k)] (26)
and
Q () = 1 g [f1_ (ks e ()] @)

Here the higher order partial differentiation Hf (k, ) have to be carried out with respectitaising the following formulae
[25, 28]

ar N (a)n(b)n .
ngl (a,b,c;2) = o oF) (a+n,b+n,c+n;z), (28)
and
d
%fg(a,b,c;z):(ofl) fo—1(a+ 1,0+ 1,c+ 15 2). (29)

Now from the Eq.[27), the quantityfoOO e~ Q)'(k,r, s) ds can be expressed as

/Ooo e~ Q'(k,r,s) ds = %Img [fé_ (k, r){(a_lik)gFg(A, B,(a—ik)a;C,1 + (o —ik)a; 1)

i C(n+1—(a+ik)a) I'((a —ik)a)
X {Ad(k)a2{a;(”+l) I'(1-(a+ik)a) }F(n+2+(0¢—ik‘)a)

><fn+1(1—|-A,1—|—B;2+(a—ik)a;l)}}]. (30)
The above Eq.30) is deduced by using integral formulae mentioned in E@S) &nd (17).

Thus, having the knowledge of Eq®3}, (25), (26) and B0) in conjunction with Eq.22), one can develop the required
expression for energy dependent equivalent local potential for the éfufttodified Yamaguchi potential.
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3. Results and discussion

The energy dependent local potential, developed here, for étufthus Yamaguchi separable interaction is applied to compute
scattering phase shifts of (p-p) and (p-d) systems through PFM. In past, PFM was successfully used by us for various phast
equivalent potentials [14—17] in order to analyse nuclear scattering phase shifts. The phase equation for a local potential [30]
is given by

2
52(k7 T) = _k_1W(k> ’I“) |:.]€(k"7a) (e 65(ka T) - f]g(k’?") sin 6€(k7 ’I")i| ) (31)
wherej,(kr) andsj,(kr) are the Riccati-Bessel functions. For the partial wave0 one gets
8o (k,r) = —k~Wy(r) [sin (8o (k,r) + kr)]> . (32)

Here Vy(r) is Vgg(k,r), the energy-dependent equivalent local potential for the effective interaction of@ruftiodified
Yamaguchi potential, developed from EG2).

The merit of the construction of energy dependent potential can be judged when it will effectively reproduce same observ-
ables of its parent nonlocal potential. Therefore, phase shifts of p-p and p-d systems are also computed from the Fredholn
determinanD(t) (k) [31] associated with physical boundary condition for Hahhdistorted Yamaguchi separable interaction.

From Ref. [31]D(*) (k) for s-wave is expressed as

. T'(2aa — 1)
DI (k) =1+ \a®
k) =14+ A A B+ D) T @aa + 1)
x 4F5(1,2,1 — (e +ik)a,1 — (e +ik)a; A+ 2, B + 2,2 — 2aa; 1). (33)

For numerical computation, we have taketym,, = 41.47
MeV fm? andVpa = 0.0347 fm~! and0.04629 fm~! for
(p-p) and (p-d) systems, respectively. Here the screening ra- g9

dius is considered to be = 10 fm for (p-p) and (p-d) sys- ——dts -np (Nonlocal)
tems. We have portrayed our results for the generated equiva w0l -~ 15 -np (Eq: Local-Exact)
lent local potential, labelled as “Eg. Local-Exact” phase shift _ | | __ 81 -np (Eq. Local-Appx.)
values, along with results of its nonlocal partner, in Figs. 1-3. e . 5,5“_“P( Asndreral)
For better understanding, we have also presented phase shifi= 7 T8, 0

o 6'5 -np (Gross-Stadler)

“Eq. Local-Appx” for the energy dependent equivalent local
potential calculated from Ref. [17].

In Fig. 1, phase daté ,,-pp (Eq. Local-Exact) computed
from the exact energy dependent local potential constructed ™
for Hulthén plus Yamaguchi separable interaction are in bet-
ter agreements with standard results [32] than those of phast

40 -

hase Shifts § (degree)

datad: - Eq. Local-Appx.) computed from the approxi- 0 ‘ ‘ ‘ ‘ :
1s07PP (EQ PpX.) P PP 0 20 40 60 80 100
E  ;MeV)
100 T T T
015 -pp (Nonlocal) FIGURE 2. 'Sy (n-p) phase shifts as a function Bf ag.
0
80 - ,”,6|SU-pp (Eq. Local-Exact) | |

mate equivalent local one [17]. It is also observed that phase
shift valuesd: ; -pp (Eq. Local-Exact) are in more consistent
with nonlocal results:,,-pp (Nonlocal) tham:,-pp (Eq.
Local-Appx.) data.

The phase parameters for the (n-p) system are calculated
by turning off the Hultlen potential in the numerical pro-
gramme of the (p-p) system and are plotted in Fig. 2 along
with the standard data of Arnét al. [32] and Gross-Stadler
[33]. The'lS, states of (p-p) and (n-p) systems are unbound
and phase shift values are obtained by using= —2.405

6|S -pp (Eq. Local-Appx.)
0

% 6nso-pp (Arndt et al.)

60 -

Phase Shits § (degree)

20

0 10 20 30 40 50 60 70 80 90 100

E (MeV) MeVfm~! anda = 1.1 fm~! [34]. In the absence of electro-
LAB .. . .
magnetic interaction both exact and approximate [17] energy
FIGURE 1. 'S, (p-p) phase shifts as a function Bfas. dependent local potentials analytically represent the same
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50 ‘ : ‘ : : 50
—61/2+ (Nonlocal) 0
------------ d,,,+ (Eq. Local-Exact)
30 : -100 -
---»61/2+ (Eq. Local-Appx.)
§ 1x 4.+ (Ishikawa) —
%)) o >
S 10k * 0+ (Huttel et al.) § =250
- =
g <
78 400
Q >
= —k=0.15
S8 F ] e k=0.2
----k=0.25
‘ ‘ ‘ ‘ ‘ 2700 : . :
250 =
0 05 1 15 ) 25 3 0 0.5 1 lfj 2 2.5 3
r (fm)
ELAB (MeV)
FIGURE 5. S-wave (p-d) potential at various energies as a function
FIGURE 3. 1/2" (p-d) phase shifts as a function Bf as. of r.

localisation to pure Yamaguchi interactions, thereby showshifts 6, .+ (Nonlocal) are in reasonable order with results
ing numerically equivalent results except the peak value. Iof Ref. [36] while they discern from those of Ref. [35] in the
Fig. 2, we find the peak point in phase shifts only for the lo-energy range — 3 MeV. Despite large dissimilarity in phase
cal potential obtained in Ref. [17]. However, in s-wave p-pshifts with approximate energy dependent potential they fol-
scattering, our phase shift estimation for exact local potentialow correct trend of the phase parameters. At very low labo-

exhibits nearly exact peak value Btag = 5 MeV. ratory energies (less than 0.5 MeV) the quantitative disagree-
Parameters of Yamaguchi potential for the 1 ate of ~ment of both local (Exact) and nonlocal phase values may be
the p-d system with binding enerdyz = —7.761 MeV are due to improper accountability of the electromagnetic inter-
found to be\ = —162.7959 MeVfm—! anda = 3.97 fm—1. action which dominates over the nuclear force in this region.
In case of bound state, zeros of thé") (k) for k = ik with For (p-p) and (p-d) systems, natures of the equivalent

kg = /QMEB/hz reproduce the bound state energy, thuslocal potentials are investigated and displayed in Figs. 4
providing a relation betweek, o andkz. Hence, either by and 5. Here we have plotted potentials for a fewalues
adjusting) or «, one can produce proper phase shift valuesconsidered within the corresponding energy range of phase
satisfying the binding energy of the system under considerashifts evaluated. UnlikéS, state of the (p-p) system, poten-
tion. In Fig. 3, we have presented phase shifts for 9gate  tials for 1/2" state of the (p-d) system die out quickly be-
of the p-d system along with standard data [35, 36]. Phasgond 1 fm. In Fig. 5, depth of potentials slowly increases
shifts for exact local potential§, ,,. (Eq. Local-Exact) as the energy increases. The similar tendency is also ob-
match quite well with Huttegt al. [35] at laboratory energies Served in case of theS, p-p potential withink < 0.2 fm~"

1—3 MeV. Though our phase data shows light difference with(Eias < 3.3176 MeV). For instance, '.nlSO state of p-p
those of Ishikawa [36] beyond 2 MeV, the overall quality of SYStem, maximum depth 6f57.03 MeV is noted in poten-

matching is noteworthy. On the other hand, nonlocal phasfa! for & = 0.15 fm~! whereas depth of-57.24 MeV is
observed fork = 0.2 fm~!. However, we have checked

that this tendency holds for very low energies. FEor> 1
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ fm=! (ELag > 46.6537 MeV), the depth of potentials grad-
i ually decreases, similar t&, p-p potential in Fig. 4. In

Ref. [17], it is shown that theS, state (p-p system) local
potentials possess repulsive cores. The same trend is also no-
ticed in the present case below laboratory energy 3.3176 MeV
(k = 0.08 fm~!) due to repulsive electromagnetic potential
which are not shown in the figure.

VL‘Q(k'r) (MeV)

4. Conclusions

Itis well known that separable two body interactions, because
&6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ of their simplicity, are frequently applied to various physi-

0 05 1 15 2 25 3 35 4 45 5 cal situations which are extremely difficult to solve with lo-
cal two body interactions. In this context, the equivalent lo-
FIGURE 4. 'Sy (p-p) potential at various energies as a function cal analysis may lead physicists to understanding the proper-
of r. ties of these phenomenological nonlocal potentials in terms
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AN EXACT TREATMENT OF LOCALIZATION OF ELECTROMAGNETIC PLUS SEPARABLE POTENTIAL 7

of most familiar concepts of a local potential. Phase equivieraction of the charged particle scattering. The (p-p) and the
alent potentials have also been constructed by several rép-d) phase shifts calculated for the present local potential
searchers by exploiting the methodology of Supersymmetare superior than those computed from the previous one [17].
ric Quantum Mechanics and variable phase approach. Su-his can be attributed to the fact that the energy and the angu-
persymmetric formalism involves the construction of phasdar momentum dependency of our equivalent local potentials
equivalent potential to a parent deep or shallow local potenare described properly in terms of the solutions to the non-
tial. In this text we have adapted a different point of view local equation and the potential. However, the construction
which is entirely different from the algebra of Supersymmet-of this type of equivalent local potential to nonlocal interac-
ric Quantum Mechanics. Here we have developed equivation does not depend explicitly on the boundary conditions
lent local potential for the effective nonlocal interaction of imposed on the solutions [10]. For higher partial wave gen-
Hulthén plus Yamaguchi separable potential following theeralization, one has to consider separable potential in partial
approach of Ref. [10]. The constructed local potentials apwaves [14] along with the addition of a centrifugal barrier to
plied to study asymptotic phase shifts for elastic scatteringhe wave equation. Therefore, within the framework of par-
of (p-p) and (p-d) systems through PFM and achieve goodial wave analysis, the generalization of the present approach
agreement with standard data [32—-35]. We have also foundonnected with introducing equivalent local interaction for a
reasonable correspondence between the results produced ¢tgmbined electromagnetic plus separable nuclear interaction
the nonlocal and the generated local potentials. In our previis still remain to be investigated. Such an approach involves
ous work [17], Hultlen potential was added to the generatedots of mathematical complications. However, it is in our ac-
equivalent local one to represent the net equivalent local intive contemplation and will be tackled in future.
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