
Nuclear Physics Revista Mexicana de Fı́sica70051201 1–8 SEPTEMBER-OCTOBER 2024

An exact treatment of localization of electromagnetic plus separable potential
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Equivalent local potential with energy-momentum dependence is developed for the combined interaction of Hulthén modified Yamaguchi
potential by developing its exact Jost solution. The generated local potentials are applied to compute scattering phase parameters for (p-p)
and (p-d) systems through the phase function method (PFM). The same are also calculated for the nonlocal potential from the expression
of the Fredholm determinant. Our obtained data for both the energy-momentum dependent local and the pure nonlocal interactions are in
reasonable agreement with the standard data. Reasonable correspondence between the results for the phase equivalent and the nonlocal
potentials indicate that our equivalent local analysis is in proper order.
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1. Introduction

In optical model calculation the pure nonlocal interactions
are replaced by its equivalent energy-dependent local po-
tentials. These make a comparison between the features of
nonlocal potentials and the well-known phenomenology of
the local interactions. Such studies are concerned with the
comparison of the phase parameters or equivalently the tran-
sition matrix elements of both the potentials. Also, many
groups [1–8] have studied the supersymmetric aspects of the
N-N scattering in the context of the one pion exchange ap-
proximation and the transformation of the deep potential into
a shallow potential with a repulsive core. Nucleus-nucleus
interactions are frequently discussed in nuclear physics using
both shallow and deep potentials. Baye [3] has exploited Su-
persymmetric Quantum Mechanics (SQM) to derive shallow
nucleus-nucleus potentials that are phase equivalent to deep
ones. Amado [4] applied Baye’s method to the partial wave
Coulomb problem and obtained a new potential that is phase
identical to the Coulomb potential. Amado’s analytical ap-
proach to the problem, in contrast to Baye’s treatment, sheds
light on the function of SQM in obtaining a family of phase
equivalent potentials. Khare and Sukhatme [5] and Taluk-
daret al. [6] have also attempted to extend Amado’s work in
order to obtain a parametric relationship between several po-
tentials. Using supersymmetric algebra, Majumderet al. [8]
recently produced phase-equivalent potentials to Manning-
Rosen ones in which the created interactions have a weak
energy dependence and nearly the same shape. The single
channel (elastic) scattering inside the core potential mode is
the subject of this text.

In past, several groups [9–16] constructed phase equiva-
lent local potentials to a nonlocal one of nuclear origin to un-

derstand the nature of interactions. Cozet al. [9] proposed a
generalization of the method to have a momentum-dependent
local potential by exploiting two linearly independent solu-
tions of the Schr̈odinger equation with nonlocal interaction.
Afterwards, Arnold and MacKellar [10] judiciously applied
the method of Ref. [1] with nonlocal separable two-nucleon
interactions to fit1S0 phase shifts. Following the approach
of Ref. [10], in the recent past, we have constructed a local
potential equivalent to a local plus a nonlocal interaction and
examine the merit of our method through some model calcu-
lations namely the nucleon-nucleon and alpha-nucleon scat-
tering [17]. In Ref. [17] we have added the electromagnetic
part externally to the energy-dependent nuclear potential to
compute charged hadron scattering phase parameters. How-
ever, from the perspective of additive interaction like p-p,α-
p, p-d,α-3H, α-3He etc., the scenario of the scattering theory
is different from the pure nuclear interaction because of the
combined effect of nuclear as well as electromagnetic poten-
tial. For electromagnetic plus a nonlocal separable nuclear
potential the situation can be treated exactly, while for a local
nuclear potential the problem is handled through some ap-
proximation techniques [18,19]. For charged hadron systems
the nonlocal Schr̈odinger equation admits exact analytical so-
lution. As the electromagnetic interaction is very significant
in the low energy range, it is quite obvious to include this in-
teraction explicitly in such problems. The present article is
an attempt in this direction.

Here we propose to construct energy dependent local po-
tential for the Hulth́en [20] modified Yamaguchi separable
[21] interaction using the prescription of Ref. [10]. For the
purpose of establishing an energy-momentum dependent lo-
cal potential, that is phase equivalent to a local plus a nonlo-
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cal interaction, the problem is studied in the coordinate repre-
sentation. Only the s-wave case is considered here. Separa-
ble nonlocal interactions have immense importance in var-
ious branches of physics. In nuclear scattering the effect
of recoil of the target due to particle exchange should be
taken care of properly and as a consequence the interaction
is represented by a nonlocal potentialV (r, s). In addition
to the phenomenological separable nuclear interaction, the
short ranged electromagnetic interaction is represented by a
screened Coulomb, the Hulthén potential [20]. The purpose
of the present text is to study hadron-hadron systems with
an energy-dependent local potential with rigorous inclusion
of the electromagnetic effect. As a primary requisite for the
localisation process, we need any convenient pair of linearly
independent solutions to the effective nonlocal-like interac-
tion for the development of equivalent local potential. The
next section is directed towards the derivation of the irregular
solutions for the Hulth́en modified Yamaguchi potential and
method of localisation. The constructed local potentials are
applied to compute scattering phase shifts of (p-p) and (p-d)
systems through the Phase Function Method (PFM) in Sec. 3.
Finally, we conclude in Sec. 4.

2. Construction of an equivalent local poten-
tial

2.1. Irregular solution

The wave equation with irregular boundary condition for
Hulthén [20] plus Yamaguchi potential [21] is written as

{
d2

dr2
+ k2 − V0

e−r/a

1− e−r/a

}
f(k, r)

= λe−α rd(I)(k)f(k, r), (1)

where

d(I)(k) =
∫ ∞

0

ds e−α sf(k, s). (2)

HereV0 anda are termed as the strength and the inverse range
of the atomic Hulth́en potential [20] whereas the quantities
λ andα are the parameters of the Yamaguchi potential [21].
Applying Green’s function technique, the irregular or the Jost
solutionf(k, r) for the concerned combined potential reads
as

f(k, r)=fH(k, r)+λd(I)(k)
∫ ∞

r

e−αsG
(I)
H (r, s)ds, (3)

with the irregular Hulth́en Green’s function [22,23]

G
(I)
H (r, s) =

1
fH (k)

[φH(k, s)fH(k, r)

− φH(k, r)fH(k, s)]. (4)

HereϕH(k, r), fH(k, r) andfH(k) are the s-wave regular,
irregular/Jost solution and Jost function of the same potential
under consideration, respectively. These are given by [24]

ϕH(k, r) = aeikr
(
1− e−r/a

)

× 2F1(1 + A, 1 + B; 2; 1− e−r/a), (5)

fH(k, r) = eikr
2F1 (A , B; C ; e−r/a), (6)

and

fH(k) =
Γ(C)

Γ(1 + A) Γ(1 + B)
, (7)

where A = −iak + ia
√

(k2 + V 2
0 ), B = −iak −

ia
√

(k2 + V 2
0 ) andC = 1− 2iak.

From Eq. (3) one can easily evaluate the factord(I)(k) as

d(I)(k) =
1

D(I)(k)

∫ ∞

0

e−α rfH(k, r) dr, (8)

with D(I)(k), the Fredholm determinant reads as

D(I)(k) = 1− λ

∫ ∞

0

∫ ∞

r

e−αr e−αsG
(I)
H (r, s) dr ds. (9)

To deduce the expression for required irregular solution
from Eq. (3), one has to first solve the indefinite integration
G

(I)
H (r, α) =

∫∞
r

G
(I)
H (r, s) e−αsds. In such case we can

write the quantityG(I)
H (r, α) as

G
(I)
H (r, α) =

∫ ∞

0

G
(I)
H (r, s) e−αsds

−
∫ r

0

G
(I)
H (r, s) e−αsds. (10)

Substituting Eqs. (5)-(7) in Eq. (4) along with the follow-
ing analytic continuation for Gaussian hypergeometric func-
tion [25–27]

2F1(A ,B; C ; Z) =
Γ (C) Γ (C −A−B)
Γ (C −A) Γ (C −B) 2F1(A , B; A + B − C + 1 ; 1−Z)

+ (1− Z)C−A−B Γ (C) Γ (A + B − C)
Γ (A) Γ (B) 2F1(C −A,C −B; C −A−B + 1; 1−Z), (11)
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the second term in Eq. (10) becomes

∫ r

0

G
(I)
H (r, s)e−αsds = − lim

ε→0
a eikr

[ (
1− e−r/a

)
2F1(1 + A, 1 + B; 2; 1− e−r/a)

∫ r

0

e−(α−ik)s

× 2F1(A,B; ε; 1− e−s/a)ds− 2F1(A, B; ε; 1− e−r/a)

×
∫ r

0

e−(α−ik)s
(
1− e−s/a

)
2F1(1 + A, 1 + B; 2; 1− e−s/a)ds

]
. (12)

Now by applying the integral relations [28,29]

fσ(a, b; c; z) =
1

c− 1

{
2F1(a, b ; c ; z)

∫ z

0

sσ−1 (1− s)a+b−c
2 F1(a− c + 1 , b− c + 1 ; 2− c ; s) ds

− z1−c
2F1(a− c + 1 , b− c + 1 ; 2− c ; z)

∫ z

0

sσ+c−2 (1− s)a+b−c
2F1(a , b ; c ; s) ds

}
, (13)

Eq. (12) simplifies to

∫ r

0

G
(I)
H (r, s) e−αsds = −a2eikr

(
1− e−r/a

) ∞∑
n=0

Γ (n + 1− (α + ik) a)
Γ (1− (α + ik) a)n!

fn+1(1 + A, 1 + B; 2; 1− e−r/a). (14)

However, the first term in Eq. (10) involving definite integration can be easily solved through the application of standard
integral relation for hypergeometric function [25–27]

∫ 1

0

xρ − 1 (1− x)σ − 1
2F1 (a, b; c; x) dx =

Γ (ρ) Γ (σ)
Γ (ρ + σ) 3F2 (a, b, ρ; c, ρ + σ; 1)

Reρ > 0; Reσ > 0 ; Re(c + σ − a− b) > 0. (15)

Combining Eqs. (4)-(7) together with Eq. (15) simplifies the first term of Eq. (10) as

∫ ∞

0

G
(I)
H (r, s) e−αsds = −a eikr

[ (
1− e−r/a

)

(α− ik) fH(k)

× 3F2(A,B, (α− ik) a; C, 1 + (α− ik) a; 1)2F1 (1 + A , 1 + B; 2 ; 1− e−r/a)

− a Γ ((α + ik) a) Γ ((α− ik) a)
fH(k)Γ (1 + (α− ik) a−A) Γ (1 + (α− ik) a−B) 2F1 (A , B; C ; e−r/a)

]
. (16)

Now, by utilising Eqs. (10), (14) and (16) in Eq. (9) jointly with the application of Eq. (15) and the following formula and
relations for non-homogenous Gaussian hypergeometric functions [25–28]

∫ 1

0

zc−1 (1− z)υ−1
fσ(a , b ; c ; pz) dz =

Γ (σ + c− 1) Γ (υ)
Γ (σ + c + υ − 1)

fσ(a , b ; c + υ ; p), (17)

fσ(a , b ; c ; z) =
zσ

σ (σ + c− 1) 3F2(1 , σ + a, σ + b ; σ + 1 , σ + c ; z), (18)

we get

D(I)(k) = 1− λ a3
∞∑

n=0

Γ (n + 1− (α + ik) a)
Γ (1− (α + ik) a)

Γ ((α− ik) a)
Γ (n + 3 + (α− ik) a)

× 3F2(1, n + 2 + A,n + 2 + B; n + 2, n + 3 + (α− ik) a; 1). (19)

Equation (6) in Eq. (8) together with the use of Eq. (15), one has

d(I)(k) =
1

(α− ik)D(I)(k)3F2(A,B, (α− ik)a; C, 1 + (α− ik)a; 1) . (20)

Rev. Mex. Fis.70051201



4 A. K. BEHERA, B. SWAIN, U. LAHA, AND J. BHOI

Substituting Eqs. (10), (14), (16) and (20) in Eq. (3), the desired irregular solution for effective nonlocal interaction under
consideration is expressed as

f(k, r) = fH(k, r) + λ d(k) a eikr

[
a

(
1− e−r/a

) ∞∑
n=0

Γ (n + 1− (α + ik) a)
Γ (1− (α + ik) a) n!

fn+1(1 + A, 1 + B; 2; 1− e−r/a)

− 1
(α− ik) fH(k)3F2(A,B, (α− ik) a;C, 1 + (α− ik) a; 1)

(
1− e−r/a

)
2F1 (1 + A , 1 + B; 2 ; 1− e−r/a)

+ a
Γ ((α + ik) a) Γ ((α− ik) a)

fH(k)Γ (1 + (α− ik) a−A) Γ (1 + (α− ik) a−B) 2

F1 (A , B; C ; e−r/a)

]
. (21)

2.2. Equivalent local potential

In this text we use two linearly independent irregular solutionsf±(k, r) wheref−(k, r) = f∗+(k, r) satisfying the boundary
conditions lim

r→∞
e∓ikrf±(k, r) = 1. With knowledge of two independent solutions the desired equivalent local potential can

be constructed from the relation [9,10]

VEQ(k, r) = − 1
2

J ′′(k, r)
J(k, r)

+
3
4

(
J ′(k, r)
J(k, r)

)2

− λ

J(k, r)
e−αr

∫ ∞

0

e−αs Q′(k, r, s) ds, (22)

where the WronskianJ(k, r) of the pair of irregular solution is written as

J(k, r) =
1
k

Img
[
f−(k, r)f ′+(k, r)

]
, (23)

and the quantityQ`(k, r, s) is defined as [9,10]

Q(k, r, s) =
1
k

Img [f`−(k, r)f`+(k, s)] . (24)

From Eqs. (23) and (24), one can writeJ ′(k, r), J ′′(k, r) andQ′(k, r, s) as

J ′(k, r) =
1
k

Img
[
f−(k, r)f ′′+(k, r) + f ′−(k, r)f ′+(k, r)

]
, (25)

J ′′(k, r) =
1
k

Img
[
f−(k, r)f ′′′+ (k, r) + 2× f ′−(k, r)f ′′+(k, r) + f ′′−(k, r)f ′+(k, r)

]
, (26)

and

Q′(k, r, s) =
1
k

Img
[
f ′`−(k, r)f`+(k, s)

]
. (27)

Here the higher order partial differentiation off±(k, r) have to be carried out with respect tor using the following formulae
[25,28]

dn

dzn 2F1 (a, b, c; z) =
(a)n(b)n

(c)n
2F1 (a + n, b + n, c + n; z), (28)

and
d

dz
fσ(a, b, c; z) = (σ − 1) fσ−1(a + 1, b + 1, c + 1; z). (29)

Now from the Eq. (27), the quantity
∫∞
0

e−αs Q′(k, r, s) ds can be expressed as
∫ ∞

0

e−αs Q′(k, r, s) ds =
1
k

Img

[
f ′`−(k, r)

{
1

(α− ik)3F2(A,B, (α− ik) a;C, 1 + (α− ik) a; 1)

×
{

λd(k)a2

{
a

∞∑
n=0

(n + 1)
Γ (n + 1− (α + ik) a)

Γ (1− (α + ik) a)

}
Γ ((α− ik) a)

Γ (n + 2 + (α− ik) a)

× fn+1(1 + A, 1 + B; 2 + (α− ik) a; 1)

}}]
. (30)

The above Eq. (30) is deduced by using integral formulae mentioned in Eqs. (15) and (17).
Thus, having the knowledge of Eqs. (23), (25), (26) and (30) in conjunction with Eq. (22), one can develop the required

expression for energy dependent equivalent local potential for the Hulthén modified Yamaguchi potential.
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3. Results and discussion

The energy dependent local potential, developed here, for Hulthén plus Yamaguchi separable interaction is applied to compute
scattering phase shifts of (p-p) and (p-d) systems through PFM. In past, PFM was successfully used by us for various phase
equivalent potentials [14–17] in order to analyse nuclear scattering phase shifts. The phase equation for a local potential [30]
is given by

δ′`(k, r) = −k−1V`(k, r)
[
ĵ`(kr) cos δ`(k, r)− η̂`(kr) sin δ`(k, r)

]2

, (31)

whereĵ`(kr) andη̂`(kr) are the Riccati–Bessel functions. For the partial wave` = 0 one gets

δ0
′
(k, r) = −k−1V0(r) [sin (δ0(k, r) + kr)]2 . (32)

HereV0(r) is VEQ(k, r), the energy-dependent equivalent local potential for the effective interaction of Hulthén modified
Yamaguchi potential, developed from Eq. (22).

The merit of the construction of energy dependent potential can be judged when it will effectively reproduce same observ-
ables of its parent nonlocal potential. Therefore, phase shifts of p-p and p-d systems are also computed from the Fredholm
determinantD(+)(k) [31] associated with physical boundary condition for Hulthén distorted Yamaguchi separable interaction.
From Ref. [31]D(+)(k) for s-wave is expressed as

D(+)(k) = 1 + λa3 Γ (2αa− 1)
(A + 1) (B + 1) Γ (2αa + 1)

× 4F3(1, 2, 1− (α + ik) a, 1− (α + ik) a; A + 2, B + 2, 2− 2αa; 1). (33)

For numerical computation, we have taken~2/mp = 41.47
MeV fm2 andV0a = 0.0347 fm−1 and0.04629 fm−1 for
(p-p) and (p-d) systems, respectively. Here the screening ra-
dius is considered to bea = 10 fm for (p-p) and (p-d) sys-
tems. We have portrayed our results for the generated equiva-
lent local potential, labelled as “Eq. Local-Exact” phase shift
values, along with results of its nonlocal partner, in Figs. 1-3.
For better understanding, we have also presented phase shifts
“Eq. Local-Appx” for the energy dependent equivalent local
potential calculated from Ref. [17].

In Fig. 1, phase dataδ1s0-pp (Eq. Local-Exact) computed
from the exact energy dependent local potential constructed
for Hulthén plus Yamaguchi separable interaction are in bet-
ter agreements with standard results [32] than those of phase
dataδ1s0-pp (Eq. Local-Appx.) computed from the approxi-

FIGURE 1. 1S0 (p-p) phase shifts as a function ofELAB .

FIGURE 2. 1S0 (n-p) phase shifts as a function ofELAB .

mate equivalent local one [17]. It is also observed that phase
shift valuesδ1s0-pp (Eq. Local-Exact) are in more consistent
with nonlocal resultsδ1s0 -pp (Nonlocal) thanδ1s0-pp (Eq.
Local-Appx.) data.

The phase parameters for the (n-p) system are calculated
by turning off the Hulth́en potential in the numerical pro-
gramme of the (p-p) system and are plotted in Fig. 2 along
with the standard data of Arndtet al. [32] and Gross-Stadler
[33]. The1S0 states of (p-p) and (n-p) systems are unbound
and phase shift values are obtained by usingλ = −2.405
MeVfm−1 andα = 1.1 fm−1 [34]. In the absence of electro-
magnetic interaction both exact and approximate [17] energy
dependent local potentials analytically represent the same
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FIGURE 3. 1/2+ (p-d) phase shifts as a function ofELAB .

localisation to pure Yamaguchi interactions, thereby show-
ing numerically equivalent results except the peak value. In
Fig. 2, we find the peak point in phase shifts only for the lo-
cal potential obtained in Ref. [17]. However, in s-wave p-p
scattering, our phase shift estimation for exact local potential
exhibits nearly exact peak value atELAB = 5 MeV.

Parameters of Yamaguchi potential for the 1/2+ state of
the p-d system with binding energyEB = −7.761 MeV are
found to beλ = −162.7959 MeVfm−1 andα = 3.97 fm−1.
In case of bound state, zeros of theD(+)(k) for k = ikB with
kB =

√
2µEB/~2 reproduce the bound state energy, thus

providing a relation betweenλ, α andkB . Hence, either by
adjustingλ or α, one can produce proper phase shift values
satisfying the binding energy of the system under considera-
tion. In Fig. 3, we have presented phase shifts for 1/2+ state
of the p-d system along with standard data [35, 36]. Phase
shifts for exact local potentialsδ1/2+ (Eq. Local-Exact)
match quite well with Huttelet al. [35] at laboratory energies
1−3 MeV. Though our phase data shows light difference with
those of Ishikawa [36] beyond 2 MeV, the overall quality of
matching is noteworthy. On the other hand, nonlocal phase

FIGURE 4. 1S0 (p-p) potential at various energies as a function
of r.

FIGURE 5. S-wave (p-d) potential at various energies as a function
of r.

shifts δ1/2+ (Nonlocal) are in reasonable order with results
of Ref. [36] while they discern from those of Ref. [35] in the
energy range2− 3 MeV. Despite large dissimilarity in phase
shifts with approximate energy dependent potential they fol-
low correct trend of the phase parameters. At very low labo-
ratory energies (less than 0.5 MeV) the quantitative disagree-
ment of both local (Exact) and nonlocal phase values may be
due to improper accountability of the electromagnetic inter-
action which dominates over the nuclear force in this region.

For (p-p) and (p-d) systems, natures of the equivalent
local potentials are investigated and displayed in Figs. 4
and 5. Here we have plotted potentials for a fewk-values
considered within the corresponding energy range of phase
shifts evaluated. Unlike1S0 state of the (p-p) system, poten-
tials for 1/2+ state of the (p-d) system die out quickly be-
yond 1 fm. In Fig. 5, depth of potentials slowly increases
as the energy increases. The similar tendency is also ob-
served in case of the1S0 p-p potential withink < 0.2 fm−1

(ELAB < 3.3176 MeV). For instance, in1S0 state of p-p
system, maximum depth of−57.03 MeV is noted in poten-
tial for k = 0.15 fm−1 whereas depth of−57.24 MeV is
observed fork = 0.2 fm−1. However, we have checked
that this tendency holds for very low energies. Fork > 1
fm−1 (ELAB > 46.6537 MeV), the depth of potentials grad-
ually decreases, similar to1S0 p-p potential in Fig. 4. In
Ref. [17], it is shown that the1S0 state (p-p system) local
potentials possess repulsive cores. The same trend is also no-
ticed in the present case below laboratory energy 3.3176 MeV
(k = 0.08 fm−1) due to repulsive electromagnetic potential
which are not shown in the figure.

4. Conclusions

It is well known that separable two body interactions, because
of their simplicity, are frequently applied to various physi-
cal situations which are extremely difficult to solve with lo-
cal two body interactions. In this context, the equivalent lo-
cal analysis may lead physicists to understanding the proper-
ties of these phenomenological nonlocal potentials in terms
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of most familiar concepts of a local potential. Phase equiv-
alent potentials have also been constructed by several re-
searchers by exploiting the methodology of Supersymmet-
ric Quantum Mechanics and variable phase approach. Su-
persymmetric formalism involves the construction of phase
equivalent potential to a parent deep or shallow local poten-
tial. In this text we have adapted a different point of view
which is entirely different from the algebra of Supersymmet-
ric Quantum Mechanics. Here we have developed equiva-
lent local potential for the effective nonlocal interaction of
Hulthén plus Yamaguchi separable potential following the
approach of Ref. [10]. The constructed local potentials ap-
plied to study asymptotic phase shifts for elastic scattering
of (p-p) and (p-d) systems through PFM and achieve good
agreement with standard data [32–35]. We have also found
reasonable correspondence between the results produced by
the nonlocal and the generated local potentials. In our previ-
ous work [17], Hulth́en potential was added to the generated
equivalent local one to represent the net equivalent local in-

teraction of the charged particle scattering. The (p-p) and the
(p-d) phase shifts calculated for the present local potential
are superior than those computed from the previous one [17].
This can be attributed to the fact that the energy and the angu-
lar momentum dependency of our equivalent local potentials
are described properly in terms of the solutions to the non-
local equation and the potential. However, the construction
of this type of equivalent local potential to nonlocal interac-
tion does not depend explicitly on the boundary conditions
imposed on the solutions [10]. For higher partial wave gen-
eralization, one has to consider separable potential in partial
waves [14] along with the addition of a centrifugal barrier to
the wave equation. Therefore, within the framework of par-
tial wave analysis, the generalization of the present approach
connected with introducing equivalent local interaction for a
combined electromagnetic plus separable nuclear interaction
is still remain to be investigated. Such an approach involves
lots of mathematical complications. However, it is in our ac-
tive contemplation and will be tackled in future.
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