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Comparison of energy-dependentand independent interactions-A case study

B. Swain∗, S. Laha?, U. Laha† and B. Khirali‡

Department of Physics, National Institute of Technology, Jamshedpur, 831014, India,
∗e-mail: biswanathswain73@gmail.com; https://orcid.org/0000-0002-9149-8857

?e-mail: lahas.bol@gmail.com
†e-mail: ujjwal.laha@gmail.com; https://orcid.org/0000-0003-4544-2358
‡e-mail: b.khirali720@gmail.com; https://orcid.org/0000-0001-7200-1828

Received 14 December 2023; accepted 9 February 2024

In the present text we construct velocity-dependent or equivalently energy-dependent potential (EDP) to an energy-independent nonlocal
potential (EIP) of rank-1 by Taylor series method. The phase shifts for the nucleon-nucleon and alpha-nucleon systems are computed for
these two potentials by exploiting the variable phase method and the Fredholm determinant, respectively. The velocity-dependent potential
is found to be superior to central nonlocal interaction in generating the scattering phase shifts up to high energy region.
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1. Introduction

The study of the two-nucleon interaction is of essential im-
portance for the understanding of nuclear properties on a mi-
croscopic level. Although in a system of many nucleons there
may subsist three and many-body forces, the role of the two-
nucleon force plays a predominant character. Generally, in
nuclear physics nucleons are considered as non-relativistic
particles interacting through the N-N interaction which is rep-
resented by a potential either central or non-central. Most of
the information about the N-N interaction is obtained from
the nucleon-nucleon scattering experiments which is supple-
mented by the properties of the deuteron- the only bound state
of the two nucleon system. Analyses of these data yield phase
shifts for the different partial waves regarding to the nucleon-
nucleon scattering. The short range part of the nuclear in-
teraction mainly arises due to multipion exchange processes
when the effect of recoil of the nucleons is indispensible. In
such situation the nucleon-nucleon interaction cannot be rep-
resented by one radial variable r, i.e., the relative separation
of two interacting nucleons. Thus the nucleon-nucleon inter-
action should be represented by a nonlocal potential which
depends on two variables r and r′. The wave function ψ(r)
at any point r will now depend on its value at other neigh-
bouring points r′ through the interaction V (r, r′) [1-7]. The
momentum-dependent potentials are generally applied in the
nucleon-nucleon scattering to restore the hard core in nuclear
interactions. The intention of constructing a phase equivalent
local potential is to understand the properties of the parent
nonlocal interaction in terms of those models which are fa-
miliar to physicists. As the equivalent local potential is de-
rived from the knowledge of the solutions to the nonlocal one,
it becomes energy-momentum dependent in a partial wave
analysis. The main motivation of such method consists in
studying to what degree the angular momentum barriers re-
main effective. Therefore, several attempts have been made

towards the development of equivalent local potential to a
nonlocal one which provides a greater understanding of nu-
clear interaction [8–16]. Various approaches to study energy-
momentum dependent interactions in the context of atomic
and nuclear physics have also been advocated by a number
of researchers [17–34]. The present text addresses itself to
the phase shift analysis of the nucleon-nucleon and nucleon-
nucleus elastic scattering in the low to high energy region. In
Sec. 2 we briefl outline our methodology. Section 3 is de-
voted to results and discussion part. We put our concluding
remarks in Sec. 4.

2. Methodology

The Schrödinger equation for a non-local potential Vl(r, r′)
in all partial waves is given by [3–6]

[
d2

dr2
+ k2 − l(l + 1)

r2

]
φl(k, r)

=
∫ ∞

0

Vl(r, r′)φl(k, r′)dr′. (1)

The Taylor series expansion of the radial wave function
φl(k, r′) yields

φl(k, r′) =
∞∑

m=0

(r′ − r)λ

m!
dm

drm
φl(k, r). (2)

From Eqs. (1) and (2) one gets
[
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Considering the Taylor series expansion up to m = 2 in
Eq. (3) one gets an energy-dependent local potential of the
form

VL(k, r) = V
(1)
L (k, r) + V

(2)
L (r)

d

dr
, (4)

where the quantities V
(1)
L (k, r) and V

(2)
L (r) are given by

V
(
L1)(k, r) =

I
(0)
l (s)− k2I

(2)
l (s) +

l(l + 1)
r(2)

I2
l (r)

1− I
(2)
l (r)

, (5)

and

V
(2)
L (r) =

I
(1)
l (r)

1− I
(2)
l (r)

. (6)

Rank-one separable potentials with its simplest mathemati-
cal form are used in different areas of physics. The rank one
separable potential considered here reads as [3–7]

Vl(r, r′) = λlgl(r)gl(r′), (7)

where

gl(r) = 2−l(l!)−1rle−βlr. (8)

We consider the partial waves l = 0, 1 for which we obtain

I
(0)
0 (r) =
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β0
e−β0r, (9)

I
(0)
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4β2
1

e−β1r, (10)

I
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β2

0

e−β0r, (11)

I
(1)
1 (r) =

λ1r(2− rβ1)
4β3

1

e−β1r, (12)

I
(2)
0 (r) =
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−β1r,

2β3
0

(2 + r2β2
0 − 2rβ0), (13)

and

I
(2)
1 (r) =

λ1re
−β1r,

8β4
1

(6 + r2β2
1 − 4rβ1). (14)

For velocity-dependent potential one has to use the phase
equation of McKellar and May [35] to calculate the scattering
phase shifts. According to McKellar and May [35] and Be-
hera et al. [14] the phase equation corresponding to Eqs. (4)
is given by

δ′l(k, r) = k−1
[
V

(1)
L (k, r)(ĵ′l(kr) cos δl(k, r)

− η̂′l(kr) sin δl(kr))− V 2
L (r)]

× [η̂l(kr) sin δl(k, r)− ĵl(kr) cos δl(k, r)]. (15)

The scattering phase shift δ(k) is accomplished by cracking
the above equation from origin to asymptotic region with the

initial condition δ(k, 0) = 0. Finally, one gets the phase shift
δ(k) when r →∞. For pure nonlocal plus the Coulomb
potential under consideration the Fredholm determinant for
physical boundary condition reads as [3–7]

D+
l (k) = 1 + λl

[
Γ(2l + 2)(βl − ik)−2

22l(l!)(2βl)2l+1(l + 1)2

× 2F1

(
1,−l; l + 2

(
βl + ik

βl − ik

)2
)]

. (16)

The Jost function is related to D
(+)
l (k) and Dl(k) by

fl(k) = D
(+)
l (k)/Dl(k), where the quantity Dl(k) is the

Fredholm determinant associated with the regular and irreg-
ular boundary conditions and is always a real quantity while
D

(+)
l (k), the Fredholm determinant associated with the phys-

ical boundary condition, is complex. The Jost function has
two distinct properties: its zeros in the complex momentum
plane’s top half repeat the energies of bound and resonance
states, and its phase is the opposite of the scattering phase
shift. Therefore, by exploiting the Jost function one can cal-
culate the scattering phase shifts. For computing scattering
phase shifts we follow two different approaches. For the
velocity-dependent potential in Eq. (4) we consider the phase
function method [14, 35] and solve the problem numerically
by using Chi square fittin to get appropriate potential param-
eters. Utilizing these parameters Eq. (16) is solved numeri-
cally to have the same phase parameters. Our aim is to com-
pare the phase parameters computed for velocity-dependent
and parent central nonlocal interactions and to examine the
effectiveness of these two potentials.

3. Result and discussion

For numerical processes we have chosen to work with
~2/2m = 41.47 MeV fm2 and 25.92 MeV fm2 and 2kη =
0.03472 and 0.11152 fm−1 for nucleon-nucleon and alpha-
nucleon systems, respectively. The best fitte potential
parameters for nucleon-nucleon, alpha-neutron and alpha-
proton systems are presented in Table I.

TABLE I. Parameters for the systems under consideration.

System State λ(fm−2l−3) β(fm−1)

Nucleon-nucleon 3s1(n− p) -17.201 1.909
1s0(n− p/p− p) -5.237 1.4054

α− n 1/2+ −35.55 1.53

1/2− −42.28 1.53

3/2− −56.50 1.53

3/2+ −62.3 1.56

5/2+ −65.21 1.56

α− p 1/2+ −45.55 1.94

1/2− −49.28 1.95

3/2− −76.20 1.95

3/2+ −65.45 2.02

5/2+ −72.54 2.02
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FIGURE 1. (n-p) 1S0 phase shifts as a function of ELab. The stan-
dard data are from Refs. [36–38].

FIGURE 2. (p-p) 1S0 phase shifts as a function of ELab. The stan-
dard data are from Refs. [36–38].

FIGURE 3. (n-p) 3S1 phase shifts as a function of ELab. The stan-
dard data are from Refs. [36–38].

FIGURE 4. (α − n)1/2+ phase shifts as a function of ELab. The
standard data are from Refs. [39, 40].

FIGURE 5. (α − n) 1/2− and 3/2−phase shifts as a function of
ELab. The standard data are from Refs. [39, 40].

FIGURE 6. (α − n) 3/2+ and 5/2+ phase shifts as a function of
ELab. The standard data are from Refs. [39, 40].
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FIGURE 7. (α − p) 1/2+ phase shifts as a function of ELab. The
standard data are from Refs. [39, 40].

The computed phase parameters are presented in
Figs. 1-9 along with those of standard data [36–40].

Looking closely at Figs. 1-3 it is noticed that our velocity-
dependent potential reproduces phase shifts in conformity
with those of Arndt et al. [37] and Perez et al. [38] up to
350 MeV and over the entire energy range under considera-
tion with Arndt et al. [36] for both n-p and p-p systems while
those with central nonlocal potential match quite well with
Ref. [36–38], up to 50 MeV and beyond that they discern
from Refs. [36–38] quite significantl . From the foregoing
observation it is quite clear that the energy-dependent po-
tentials are superior to their energy-independent counterpart.
This may be attributed to the fact that the energy-dependent
interactions have the ability to reproduce the effect of non-
central nature of the N-N force to generate correct phase pa-
rameters up to high energy region.

FIGURE 8. (α − p) 1/2− and 3/2− phase shifts as a function of
ELab. The standard data are from Refs. [39, 40].

FIGURE 9. (α − p) 3/2+ and 5/2+ phase shifts as a function of
ELab. The standard data are from Refs. [39, 40].

From Figs. 4-9 it is noticed that our energy-dependent
phase shifts for different states of (α-n) and (α-p) systems re-
produce better agreement with those of Satchler et al. [39].
However, the energy-independent phase parameters match
better with Majumder et al. [40]. It is quite obvious be-
cause Majumder et al. [40] analyzed the phase shifts by us-
ing a central potential model. The phase parameters with the
velocity-dependent interaction are in close conformity with
those of Satchler et al. [39], Kumar et al. [41] and Laha-
Bhoi [25]. The phase parameters of Refs. [25,41] are in close
conformity with those of Satchler et al. [39] and are not por-
trayed in Figs.4-9 for clarity of presentation. However, the
data from Ref. [40] are plotted for comparison with our re-
sult. Small discrepancies which are observed in our phase
parameters with those of standard data are within the permis-
sible error. They may appear due to improper electromag-
netic effect which does not account perfectly as observed in
experiment in s-wave cases and for higher partial waves may
be due to strong centrifugal barrier effects. By combining
the resonating-group method with a microscopic description
of the nucleon clusters with more realistic N3LO and CD-
Bonn NN potentials, Quaglioni and Navrátil [42] calculated
(n-α) and (p-α) phase shifts which are in good agreement
with Ref. [39] for s-wave only but discern from p-wave data.
Lee and Robson [43] also generated a nucleon-nucleus opti-
cal potential in the folding model approach, including spin-
orbit and tensor forces. When it comes to the p-wave, they
were able to describe the alpha-nucleon phase shifts with ap-
propriate splitting and magnitude in comparison to the ex-
perimental results [39]. The phase shifts do not change sign
in their values as the central nonlocal potential is rank-one at-
tractive interaction. The velocity-dependent potential has two
components which take care of the sign change in phase shift
as energy increases. The same phenomenon is also observed
for α-n and α-p scattering with velocity-dependent and inde-
pendent interactions. The energy-dependent potential takes

Rev. Mex. Fis.70 041201



COMPARISON OF ENERGY-DEPENDENT AND INDEPENDENT INTERACTIONS-A CASE STUDY 5

care of the sign change in nucleon-nucleon phase shifts and
reproduces reasonable agreement in numerical values up to
1 GeV. This may be attributed to the fact that the energy-
dependent potential includes implicitly the effects of spin-
orbit and tensor parts of the interaction. Thus, the energy-
momentum dependent potential reflect to be superior to its
nonlocal counterpart.

4. Conclusions

For a number of different nuclear systems, elastic scatter-
ing phase shifts have been satisfactorily fitte using sepa-
rable nonlocal potentials [6, 7, 44, 45]. For systems where
the phase shifts change sign with energy, higher-rank sepa-
rable potentials are typically used. The rank one separable
potential is purely appealing and is unable to explain how
the phase shifts’ sign changed. But the phase changes for
nucleon-nucleon and alpha-nucleon systems reproduced cor-
rectly by our built-in equivalent energy-dependent potential

up to very high energy. From a practical point of view, com-
parison of the potential models is often made through phase-
shift analyses of experimental data. In order to verify various
components of the potential, it is also important to compare
to n-p scattering observables, especially the n-p analyzing
power. Our results for the elastic scattering phase shifts for
the nucleon-nucleon and alpha-nucleon systems are in con-
formity with the standard data. The calculations of cross
sections and analyzing powers can be performed using the
basic ingredients like phase parameters. A synchronized de-
scription of all obtainable theoretical and experimental data
over a large energy range would expose more information
on the nucleon-nucleon interaction and possibly on the sig-
nificanc of three-body forces for the nucleon-nucleon and
alpha-nucleon systems. Therefore, computing phase shifts
and other physical observables for complex nuclear systems
may start with this straightforward model calculation. Our
simple minded approach to the problem may turn out to be
interesting to physicists.
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