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Phase signal analysis for high-sensitive temperature
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We experimentally demonstrate a highly temperature-sensitive external Fabry-Perot cavity. The interferometric structure is composed of an
air-microcavity; its fabrication uses a microcapillary and UV polymer. A temperature sensitivity close to 8@ israthieved with suitable

linearity (0.9896) and minimal hysteresis; a phase analysis technique is proposed and applied to overcome the trade-off between sensitivity
and range of operation. This technique provides a competitive sensitivity (0.8€jadbod linearity (0.9934), and a range of operation

from 25°C to 41°C.
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1. Introduction This work aims to demonstrate that by the phase signal
analysis technique, it is possible to attend to the following
External Fabry Perot Interferometers (EFPI) have been inveé:_halllengdes: tav?rl]dlngh the tradle-o_ff (\;vhenttwo m_gasijr:ements
tigated for several decades [1-3]. Temperature measuremeﬁ‘(erap ue 1o Ihe phase analysis do not consider the wave-
ength reference points. Furthermore, by this technique, the

is one of the first and most attractive applications [1,4]. With q ) fih bei dd he bh
the arrival of UV-cured polymers, the fabrication of these de- yhamicrange o t '€ Sensar can be increased due to the phase
of the interferometric signal that can be measured beyond the

vices turned cost-effective and straightforward. Often this lenath h feat d ived in detail b
cavity is generated at the tip of optical fibers, creating a prob avelength range. These features are described In detail be-

for temperature and refractive index [5]. The polymer micro- ow.

cavity can also be created inside an optical fiber for simul-

taneous detection of humidity and temperature [6,7]; Fur2, Fabrication process

thermore, the sensor’s performance can be improved using

a Fiber Bragg Grating (FBG) for simultaneous detection ofFigure 1 shows the manufacturing route of the Capil-
some parameters [8,9]. UV-cured polymers have been used tary Low-coherence External Fabry-Perot Interferometer
improve the sensitivity of some Mach-Zehnder interferome{CLEFPI). A single-mode fiber (630-HP) is cleaned and
ters [10]. The most commonly used implementation employ<leaved; then, it is aligned to gl capillary [Fig. 1a)] using
silica capillary tubes [11-16]. A fiber is inserted into the cap-a 3D translation (MBT610D). The capillary has a 20 in-
illary, and the fiber is fixed using the UV polymer. Another ner diameter and a total length of 3.2 cm. The optical fiber is
optical fiber is set on the opposite side. Such configurationgserted halfway into the capillary using the translation stage,
present high sensitivity to parameters such as curvature [17§nd a sensitive UV glue polymer is applied at the end of the
strain [18], and temperature [16]. The high sensitivity impliescapillary [Fig. 1b)]. Then a second 630-HP fiber is intro-
measurement limited unambiguous measurement range. Thiiced from the opposite side of the capillary. When a suit-
trade-off can be overcome by phase analysis [19,20]. In thiable cavity length is achieved (typically 7 microns), the glue
work, an External Fabry Perot Interferometer is fabricateds added and cured [Fig. 1¢)]. The final optical fiber structure
and operated with phase analysis. The optical fiber structuns presented in Fig. 1d). The cavity lengthis controlled by
represents a reliable alternative to measure temperature in aghre Z plane of the 3D translation stage. Moreover, the cavity
plications related to room temperature. losses are minimized by using th&Y” positions.
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FIGURE 1. Fabrication procedure: a) prepareull capillary and
630-HP fiber, b) insert 630-HP fiber into one end of theblicap-
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FIGURE 3. Experimental setup to characterize the CLEFPI.

3. Experimental setup

Figure 3 shows the light from a visible led (MBB1F1) is
launched to the CLEFPI using2ax 2 optical fiber coupler
(TW670R5A2). One output of the coupler is using an index
matching gel, and the other port is connected to the CLEFPI.
The reflected signal is monitored by the fourth port using
spectrometer (2000+ UV-VIS) and computer.

Of the coupling between the single-mode 630-HP optical
fiber (3.5¢) and the VIS-LED is low so that the VIS-LED is
operated at maximal current (500 mA), while the integration

illary and set by cured UV polymer, c) repeat the prosses at thetime of the spectrometer is set at 50 msec.
opposite position to close the cavity by inserting the second 630-

HP, and d) final cavity structure.

In Fig. 2, the cavity is shown. When the polymer is cured, D
an air microcavity is generated between the two flat ends of < 0.3
the fibers, the refractive index transitions are given by silica
fibernf = 1.4570 and airn = 1.00 that yield a reflectivity

[21]:
2

’Ilf —n

ng+n

We assume thalk, = R, = R. The cavity can be mod-

eled as a one layer Fabry-Perot cavity which yields:

R(\) = R+ R(1 — R)* +2R(1 — R) cos(4mnL)). (2)
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side the cavity, the polymer is not considered in the cavityFiGuRE 4. Interference spectrums of the fabricated CLEFPIs.

reflections [22].

CLEFPI-1 (dot line) and CLEFPI-2 (continuous line).
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FIGURE 5. Interference spectrum response of the CLEFPIs consid-Ficure 6. Reflection response as the CLEFPI cavity length is var-
ering the estimated cavity length. ied.

of 56 nm, where the position of the minima shifts to longer
4. Principle of operation wavelengths as the temperature increases (see Fig. 6).

To demonstrate the operation of the CLEFPI, the reflections
spectra of CLEFPI-1 and CLEFPI-2 are shown in Fig. 4. 5. Temperature Wave|ength ana|ysis
Figure 4, interference spectrums of the fabricated CLEF-

Pls. CLEFPI-1 (dot line) and CLEFPI-2 (continuous line).  As shown in Fig. 3, the CLEFPI is located over a hot plate (C-
The cavity length can be computed from the Free SpectrallAG HP4) and a thermocouple (UT320D) is used to monitor

Range (FSR) shown in Fig. 4 as [23]: the temperature at the location of the CLEFPI. The reflection
Ao * Aq signal was recorded at increments 6{C2for temperature in-
FSR= X — A = onL (3)  crease and decrease. Both interferometers were evaluated,
where \; and \» represent the position of two consecutive 2nd thew_t_h_ermal response is shown in Fig. 7.
peaks. These yields: CLEFPI-1=7.3@2n and CLEFPI- Sensitivities of 5.248 nmfiC (CLEFPI-1) and 5.773

2=4.743 um. Figure 5 shows a simulation of the reflectivites "M/~ C (CLEFPI-2) is achieved. The temperature range vari-
using these cavity lengths but ignoring the cavity losses. ~ ation is limited by the ambiguity that arises from shifts over
The position of the minima can be described by [24] more than half an FSR. This interferometric structure exhibits
onl, sensitivity comparable to prior works based on polymer cav-
Ag = — (4) ities (see Table I).
where the cavit_y refrgctive indexand lengthl, are desc_ribed _ éem;r;?atiffeuisrfsrdenfgﬁ? rr:ng;d;rc:;? fzggogglg e(g_lqulfg: ethe
above, and m is an integer. When the temperature is varied,
the refractive index of the air does not change significantly.
The UV polymer however, shows a linear expansion and as @

result, the cavity length varies and the positions of the min-ABLE I. Comparative performance in terms of sensitivity and tem-

ima are shifted by perature range operation.

AL Sensitivity Rangé€(C) Year Ref.
Adg = m ®) (nmPC) IstepfC)

The cavity length variation is related to the linear Thermo 0.48 25-45/5 2019 7

Expansion Coefficient (TEG-) asAL = oAT. The wave- 0.34 25-45/5 2020 8

length shift can thus be expressed in terms of the temperature  0.19 25-55/5 2014 5

variations as [25]: 2.22 28-34/1 2021 26

Ady = ANAL _ )\daAT. ©6) 2.46 2-35/1 2021 27

L L 2.88 25-55/2 2020 16

For CLEFPI-1 at 625 nm, a shift of 5 nm is appreciated; this 5.2 15-22/1 2013 28
wavelength shifting corresponds to a cavity length variation 5.7 25-35/2 - this work
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FIGURE 9. Spatial frequency spectrums of the interferences reflections signals of a) CLEFPI-1 and b) CLEFPI-2 for temperature ranges
from 25°C to 41°C.
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=0.98965 for CLEFPI-1 and R-square =0.98965 for CLEFPI-spectrum generated by Eq. (1) can be expressed as the Fourier
2). An analysis of the hysteresis is presented in Figure 8 angpectrum by:
indicates minimal path difference in both interferometers and
good reversibility. Although the fabricant does not provide
information about the TEC, this value can be estimated by
Son,l\esospr:gvi:?r?h;;;gq.u;,sths]t.emperature range operation iSBy using the positive g data from the complex Fourier signal,

limited by the FSR so that the same effect is detected 2E33 It is possible to obtain the tgtal phase from the |.nterference
and 27C. spectrum [19,30]. The Fourier spectrums of the interference

signals shown in Fig. 7 are depicted in Fig. 9.

The spatial frequency spectrums show a DC component,
centered 0 nm!, and an intensity peak component. Here,
we consider the regions with symmetric FSR. The phase is
As mentioned above, and paying particular attention to Fig. 7extracted from the spatial frequency components that is at
the overlap measurement between the initial and final pointentered 5 nm' (CLEFPI-1) and 3 nm! (CLEFPI-1). The
limits the wavelength analysis; if the temperature range inphase generated by the temperature changes is presented in
creases, other measurement values will also overlap, and coRig. 10. It can be observed that the phase increase as the
sequently, the temperature range operation is limited. An ademperature increase for the measurement ranges 25-29
cumulative phase method is proposed to remove the ambigy€LEFPI-1) and 25-31C (CLEFPI-2) the phase varies of
ity and improve the range operation. The intensity reflectior2/pi. In Fig. 10b) the phase has been unwrapped.
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As can be appreciated in Fig. 10a), the phase of somg), the sensor presents good linearity, and moreover, the hys-
measurements overlaps; this relates to the interference wavieresis analysis also indicates minimal path difference when
length spectra, and its representation corresponds to the tertite temperature follows the increase-decrease route. De-
perature values 25 and 33 in Fig. 7. However, by usingpite the presented results being competitive compared to
this unwrapping, it is possible to estimate the total phaserior works, the results imply a challenge related to mea-
change as the temperature increases [see Fig. 10b)]; cons#ement overlap, limiting the temperature range operation.
quently, the trade-off measurement is avoided, and the temA phase signal analysis attends to this challenge. Hence,
perature range increases. In Fig. 11, the phase responsetbg phase is extracted from the peaks at Fourier spectrums.
CLEFPI-1 and CLEFPI-2 can be observed. Here, two test3hen the total phase difference is computed in terms of the
were conducted to validate the method. As can be observetemperature variation. As a result, the following sensitiv-
both of them exhibit similar phase sensitivities -0.83t&d/ ities were achieved—0.83 radPC (CLEFPI-1) and—0.84
(CLEFPI-1) and -0.84ra8lC (CLEFPI-2). Furthermore, the radPC (CLEFPI-1). The phase analyses avoid the measure-
linearity is competitive (R-square =0. 97575 for CLEFPI-1 ment overlap and increase the temperature range operation
and R-square =0. 99341 for CLEFPI-2); Moreover, accord{from 25°C to 41°C). Furthermore, the linearity is suitable
ing to Fig. 11, the phase extracted from the interference speder sensing applications (R2 =0.97575 for CLEFPI-1 and R2
tra was used to detect temperature without ambiguity points 0.99341 for CLEFPI-2). The proposed structure implies a
usually observed wavelength spectra and moreover it can best-effective implementation and can be used for monitoring
appreciated that the temperature range can be beyond initiblo-thermal changes.
temperature range analyzed. This technique can be applied Considering the temperature range operation and the sen-
at any highly sensitive interferometric device that providessitivity achieved, some future research directions can be hu-
phase modulation. man temperature and pressure monitoring as well as biologi-
cal temperature monitoring, for instance, cell culture incuba-
tion and microbial fermentation where the ideal temperature
range varies depending on the organism; however, this tem-

A high-sensitive temperature External Fabry-Perot interferiP€rature often falls within the 2& to 4°C range.

ometer is experimentally demonstrated and analyzed. A

cured UV polymer composes the optical fiber structure. Th&AcknowIedgment
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