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1. Introduction

Domain walls, cosmic strings, and monopoles are topologi-
cal defects formed during the vacuum phase transition in the
early universe [1–3]. Among them, cosmic strings have gar-
nered significant attention in particle physics, particularly in
cosmology and astrophysics, where gravitational effects play
a crucial role [4–16]. Cosmic strings do not induce local
gravitational interactions; however, they alter the spacetime
geometry, resulting in planar and solid angle deficits, respec-
tively [17].

The term Dirac oscillator (DO) was coined by Moshinsky
and Szczepaniak [18,19] in their study of a harmonic oscilla-
tor, which introduces strong spin-orbit coupling through the
substitution~p → ~p − imωβ~r. Its physical applications have
been extensively explored by various researchers [20–22],
making it the most renowned interaction due to its myriad
physical applications and its role in exact solutions of Dirac’s
equation examples (see Ref. [21] and references therein).

Relativistic wave equations for the (DO) interaction in a
cosmic string background constitute a significant field in cur-
rent research. Their solutions are employed to determine the
curvature’s influence on various physical properties and to
derive the quantum states of these systems [22–38,40].

The interaction induced by position-dependent mass
(PDM) has been a focal point in recent years [41–50]. These
quantum systems with dependent effective mass have been
studied extensively in both theoretical and applied physics.
The primary objective of these studies is to derive eigenfunc-
tions and energy levels using the Schrödinger equation for
a system with mass varying with position and subject to a
specific potential. Among the applied aspects of PDM are
semiconductor heterostructures [45], Helium clusters [51],

neutrino mass oscillations [52], quantum wells, and quantum
dots [53–58].

Non-inertial effects resulting from a rotating frame in a
cosmic string background have been investigated extensively.
Recently, several intriguing papers have been published on
this subject: Zareet al. [27] examined the relativistic gener-
alized DKP oscillator for a spin-zero field in a cosmic string
background spacetime characterized by a stationary cylindri-
cal symmetric metric. Santoset al. [28] studied the non-
inertial effects on a non-relativistic quantum harmonic oscil-
lator in the presence of a screw dislocation. The non-inertial
effects of a rotating frame on a spin-zero system with non-
commutative geometry in momentum space have been ad-
dressed in Ref. [29]. Ahmed [30] investigated the effects
of rotation on the KG oscillator with a scalar potential in
magnetic cosmic string spacetime using Kaluza–Klein the-
ory. The effects induced by a rotating frame on the Klein–
Gordon equation in spacetime with a screw dislocation have
been discussed in Ref. [31].

The primary objective of this paper is to analyze the ef-
fects of non-inertial forces on the dynamics of a KG oscil-
lator in cosmic string spacetime (with and without position-
dependent mass (PDM) settings) characterized by a station-
ary cylindrical symmetric metric. Our contribution thus in-
troduces a novel aspect to the work by Zareet al. [27], which
considered the same system but for the DKP oscillator.

The outline of our letter is as follows: In Sec. 2, we
present the solution to the KG equation and KG oscillator
in a non-inertial cosmic string background. In Sec. 3, we
investigate PDM KG-particles in non-inertial cosmic string
spacetime. Finally, in Sec. 4, we present our conclusions.
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2. An overview of the Klein-Gordon equation
in curved spacetime

In this section, we delve into the relativistic quantum de-
scription of a spin-0 particle propagating in Minkowski
spacetime, characterized by the metric tensorηµν =
diag(1,−1,−1,−1). For a scalar massive fieldΦ with mass
m > 0, the standard covariant Klein-Gordon (KG) equation
is given by

(
ηµνDµDν + m2

)
Φ(x, t) = 0, (1)

whereDµ = i (pµ − eAµ) denotes the minimally-coupled
covariant derivative.

The equation of motion for a scalar particle in a Rieman-
nian spacetime, characterized by the metric tensorgµν , can
be obtained by reformulating the KG equation as [32,33]

(
¤ + m2 − ξR

)
Φ(x, t) = 0, (2)

where

¤ =
1√−g

∂µ

(√−ggµν∂ν

)
, (3)

represents the Laplace-Beltrami operator,ξ is a real dimen-
sionless coupling constant,R is the Ricci scalar curvature
defined byR = gµνRµν whereRµν is the Ricci curvature
tensor,gµν is the inverse metric tensor, andg = det (gµν).

Now, we aim to investigate the quantum dynamics of
spin-0 particles in the spacetime induced by non-inertial ef-
fects on a cosmic string’s Klein-Gordon oscillators.

2.1. Free Klein-Gordon equation in non-inertial cosmic
string space-time

Let us first derive the KG wave equation for the free relativis-
tic scalar particle propagating in the cosmic string space-time
that is assumed to be static and cylindrically symmetric.

The general expression for a (3+1)-dimensional cosmic
string metric is defined by the line element [31]

ds2 = gµνdxµdxν = dt2 − dr2 − α2r2dϕ2 − dz2, (4)

in cylindrical coordinatesi. Here−∞ ≤ t ≤ +∞, r ≥ 0,
0 ≤ ϕ ≤ 2π, −∞ ≤ z ≤ +∞, and α ∈ [0, 1[ is
the angular parameter which determines the angular deficit
δϕ = 2π(1 − α), and it is related to the linear mass density
µ of the string byα = 1− 4µ.

Consider a string with a linear mass densityµ along thez-
axis, with the Lorentz metricds2 = dt2−dx′2−dy′2−dz′2,
and the coordinate changes

x′ = R cos(αΦ), y = R sin(αΦ), z = Z, andt = T ,

which leads to the line element of a cosmic string space-time
with the cylindrical coordinates [34–38]

ds2 = dT 2 − dR2 − (αR)2 dΦ2 − dZ2. (5)

In addition to the presence of a dislocation, we will analyze
a frame that rotates evenly with a constant angular velocity
Ω. To include this rotation into our line element, we use the
coordinate transformation used in Refs. [35–38] to obtain

ds2 =
(
1− α2Ω2r2

)
dt2

− 2Ωα2r2dϕdt− dr2 − α2r2dϕ2 − dz2. (6)

Since we do not want the termg00 to become positive, we im-
pose that the corresponding radial wave function must vanish
at some

r → r0 =
1

αΩ
. (7)

When the metric and inverse metric tensor components are,
respectively,

gµν =




(
1− (αΩr)2

)
0 −Ω(αr)2 0

0 −1 0 0
−Ω(αr)2 0 − (αr)2 0

0 0 0 −1


 ,

gµν =




1 0 −Ω 0
0 −1 0 0
−Ω 0

(
Ω2 − 1

(αr)2

)
0

0 0 0 −1


 , (8)

we arrive at the following second order differential equation
for the radial functionψ(r) , after some simple algebraic ma-
nipulations.

[
1√−g

∂

∂r

(√−g
∂

∂r

)
− (j)2

α2r2

+ (E + Ωj)2 −m2 −K2

]
ψ (r) = 0, (9)

and consequently

γ2 = (E + Ωj)2 −m2 −K2, (10)

and the rest of the results should be corrected accordingly.
Setting

ς2 =
j2

α2
, (11)

yields
[

d2

dr2
+

1
r

d

dr
− ς2

r2
+ γ2

]
ϕs (r) = 0. (12)

Equation (12) represents a Bessel differential equation, and
its solutions can be expressed in terms of a first-order Bessel
function as:

ψ (r) = A′ J |j|
α

(γr) , (13)
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whereA′ denotes the normalization factor. We may now seek
finiteness of such a radial part atr = r0 = 1/Ωα so that
J|j|/α (γr0) = 0 for γr0 À 1. In this case,

J |j|
α

(γr0) →
√

2
πγr0

cos
(

γr0 − π|ς|
2
− π

4

)
= 0, (14)

to imply the energies in the form of

E±
n = −Ωj

±
√

m2 + K2 + α2π2Ω2

(
n +

|j|
2α

+ 3/4
)2

. (15)

2.2. Klein-Gordon oscillator in non-inertial Cosmic
String Space-time

We start by considering a scalar quantum particle embed-
ded in the background of gravitational field space-time de-
scribed by metric (5). To retrieve the Klein-Gordon oscil-
lators we replace the momentum operatorpk = −i∂k by
its non-minimal coupling formpk = −i∂k − iFk, where
Fk = (Fr, 0, 0);Fr = ar for KG-oscillatorsiii andFr =
∂r − (∂rf (r)/4f (r)), wherepk is the position-dependent
mass momentum operator.

In this case, one would rewrite the KG-equation as
[

1√−g
(∂µ+Fµ)

√−g (∂ν −Fν) + m2

]

×Ψ(t, r, φ, z)=0, (16)

to obtain
[

1√−g

(
∂

∂r
+ Fr

)√−g

(
∂

∂r
−Fr

)

− (j)2

α2r2
+ (E + Ωj)2 −m2 −K2

]
ψ (r) = 0. (17)

Following the same procedure as described in section II, we
get

[
∂2

∂r2
+

1
r

∂

∂r
−M(r)− j̃2

r2
+ δ

]
ψ (r) = 0, (18)

wherej̃ = j/α, and

δ = (E + Ωj)2 −m2 −K2,

M(r) = Fr/r + F ′r + F2
r . (19)

Let us now takeFr = ar, to obtain KG-oscillators equation,
and useψ(r) = R(r)/

√
r to yield

[
∂2

∂r2
− (j̃2 − 1/4)

r2
− a2r2 + δ̃

]
R (r) = 0, (20)

where

δ̃ = δ − 2 a. (21)

This equation represents KG-oscillators as it resembles the
two-dimensional Schrödinger radial oscillators (hence the
notion KG-oscillators) and admits exact solution.

Manipulating exactly the same steps before, we obtain the
following radial equation

[
∂2

∂r2
+

1
r

∂

∂r
− a2r2 − ϑ2

r2
+ δ̃

]
ψ (r) = 0, (22)

where we have defined

ϑ2 =
j2

α2
, δ̃ = (E + Ωj)2 −m2 −K2 − 2a. (23)

To solve Eq. (22), we introduce a new dimensionless vari-
ableU = ar2, and by substitution into Eq. (22),the resulting
equation reads

[
d2

dU2
+

1
U

d

dU − ϑ2

4U2
− 1

4
+

δ̃

4aU

]
ψ (U) = 0. (24)

Consider the following change of variable

ψ(U) = U− 1
2J (U) , (25)

then, Eq. (24) becomes

d2J (U)
dU2

+

[
−1

4
+

δ̃

4aU +
1
4 −

(
ϑ
2

)2

U2

]
J (U) = 0, (26)

which has the form of the Whittaker differential equation
[59, 60]. The general solution of this equation, which is reg-
ular at the origin, is given by

J (U) = |C|U− 1
2 M

(
δ̃

4a
,
|ϑ|
2

,U
)

, (27)

where|C| is an arbitrary constant andM
(
δ̃/4a, |ϑ|/2,R

)

is the Whittaker M-function defined via the confluent hyper-
geometric functions as [34]

Mδ,ϑ

( ˜̃
δ

4a
,
|ϑ|
2

,U
)

= e−
U
2 U |ϑ|+1

2

× 1F1

(
|ϑ|
2
− δ̃

4a
+

1
2
, |ϑ|+ 1,U

)
. (28)

The other solution is the Whittaker W-function given by

Wδ̃,ϑ

(
δ̃

4a
,
|ϑ|
2

,U
)

= e−
U
2 %

|ϑ|+1
2

× U

(
|ϑ|
2
− δ̃

4a
+

1
2
, |ϑ|+ 1,U

)
, (29)
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which U
(
[|ϑ|/2]− [δ̃/4a] + [1/2], |ϑ|+ 1, %

)
is the Tri-

comi confluent hypergeometric function (or Kummer’s func-
tion of the second kind) [59,60]. In general,U (a, b, z) has a
branch point atz = 0, i.e, it has a singularity at zero. Thus
we keep only the solution described by (28).

Using the definition (28), the final expression of the wave-
function of the spinless KGO propagating in the non-inertial
effects on a cosmic strings can be represented as

ψ (r) = |C2|
(
ar2

) |ϑ|
2 e−

a
2 r2

e−i(Et−jϕ−iKz)

× 1F1

(
|ϑ|
2
− δ̃

4a
+

1
2
, |ϑ|+ 1, ar2

)
, (30)

where the parametersϑ andδ are defined in Eq.(23).
Again, The asymptotic behavior of the confluent hyper-

geometric function implies that

|ϑ|
2
− δ̃

4a
+

1
2

= −n, (31)

hence, after insertingϑ andδ̃, and by solving Eq. (31) for E,
we obtain the energy levels for our scalar particle

E±
n = −Ωj ±

√
m2 + K2 + 2a

(
2n +

|j|
α

+ 2
)

. (32)

The relativistic energy levels (32) represent the energy spec-
trum of the Klein-Gordon oscillator within a non-inertial
cosmic string spacetime background. The inclusion of dis-
tinct geometrical parametersα andΩ modifies the degener-
ate spectrum of the particle. Unlike the scenario with the
Dirac oscillator [14,16] and in contrast to flat space, the pres-
ence of these defects disrupts the degeneracy of energy lev-
els. Asα tends toward 1 andΩ tends toward 0, and with
N = 2n + j denoting the principal quantum number, we re-
trieve the energy spectrum of the Klein-Gordon oscillator in
flat space [14,16].

In the classical limit, utilizing the relationE′ = E+Ωj =
ε+m, and considering the non-relativistic conditionε ¿ m,

Eq. (32) simplifies to

E′2 −m2

2m
≈ ε = 2a

(
2n +

|j|
α

+ 2
)

. (33)

We observe that only the presence ofα in equation ((33))
breaks the degeneracy of the spectrum. The other parameter
Ω has no influence in the classical limit.

To examine the impact of bothα andΩ parameters on the
energy spectrum, we graphed the energy of the Klein-Gordon
oscillator in non-inertial cosmic string spacetime across dif-
ferent values ofα andΩ (wherej = a = 1).

Figure 1 shows that when the value ofα is bigger, the en-
ergy spectrum becomes cramped. Also, we plotted the energy
density of Eq. (30)

By analyzing these results, we can estimate the density
of the probability of KGO in the non-inertial cosmic string
space-time. The purpose of this study is to determine howα
andΩ affect this density. The density of the positive energy
spectrum of KGO is provided by the following equation

ρKG (r) = 2Eψ∗ψ. (34)

Figures 2 and 3 illustrate the probability density of KGO in
the non-inertial cosmic string space-time with respect to the
radial distancer for four levelsn = 0, 1, 2, 3 for different
values ofα andΩ.

Based on the depicted figure, several observations
emerge:

• The probability density of Klein-Gordon oscillators
(KGO) in non-inertial cosmic string spacetime is no-
tably affected by the choice of the quantum numbern,
alongside the parametersα andΩ.

• With a constant value ofα (refer to Fig. 2) and varying
Ω, the following trends are evident:

– The magnitudes of each density peak exhibit con-
siderable variations.

FIGURE 1. Energy Spectrum of KG oscillator in Non-inertial cosmic string for different values ofn.

Rev. Mex. Fis.70050802
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FIGURE 2. Plots of the positive density of KG oscillator in Non-inertial cosmic string for different values ofΩ.

FIGURE 3. Plots of the positive density of KG oscillator in Non-inertial cosmic string for different values ofα.

Rev. Mex. Fis.70050802
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– The quantity of these peaks increases asn rises.
Additionally, they display symmetry at a fixed
point r, with the width of each peak diminishing
as the quantum numbern escalates.

• Conversely, for a constantΩ (as shown in Fig. 3) and
diverseα values, the scenario differs markedly from
the previous case:

– At a fixed rotational valueΩ, the intensity of each
density peak declines as the angularα deficit in-
creases. Moreover, the peaks lack symmetry.

– Similar to the prior case, the number of peaks
multiplies with increasingn.

– As with the previous observation, the width of
each peak diminishes with the increasing quan-
tum numbern.

We are now ready to discuss the PDM KG-particles in non-
inertial cosmic string space-time.

3. PDM KG-particles in non-inertial Cosmic
String Space-time

In this section, we wish to discuss PDM KG-particles in non-
inertial Cosmic String Space-time using the substitution of

Fr = ar +
f ′(r)
4f(r)

, (35)

in Eq. (17) and consider two cases of fundamental interest,
PDM KG-oscillators and KG-Coulombic like [41–50] parti-
cles.

3.1. PDM KG-oscillators

We consider the casea = 0 andf(r) = exp(2ηr2) to obtain
M(r) = 2η + η2r2 (19). Using such settings in Eq. (18) we
obtain

[
∂2

∂r2
− (j̃2 − 1/4)

r2
− η2 r2 + δ̃

]
R (r) = 0, (36)

where

δ̃ = δ − 2η. (37)

This equation represents KG-oscillators for it resembles the
two-dimensional Schrödinger radial oscillators and admits
exact solution, withψ(r) = R(r)/

√
r,

ψ(r) = C exp
(
−η

2
r2

)
r|j̃|

× 1F1

(
1
2

+
|j̃|
2
− δ̃

4η
, 1 + |j̃|, ηr2

)
, (38)

and the condition of finite polynomial solution requires that

1
2

+
|j̃|
2
− δ̃

4η
= −nr, (39)

wherenr = 0, 1, 2, · · · is the radial quantum number.
Consequently,

δ̃ = 2η
(
2nr + |j̃|+ 1

)
, (40)

or

δ = 2η

(
2nr +

∣∣∣∣
j

α

∣∣∣∣ + 2
)

, (41)

that would, using (19), yield

E±
n = −Ωj ±

√
m2 + K2 + 2η

(
2n′r +

|j|
α

+ 2
)

. (42)

with n′r = nr + 1. Equation (42) represents the energy spec-
trum of the Position-Dependent Mass (PDM) Klein-Gordon
oscillators. This expression bears resemblance to (32). Here
η has a role of frequency compared with (32). It depends
on various geometrical parametersα andΩ, along with the
parameterη denoting the position-dependent masses (PDM).
Additionally, the geometrical parameter also breaks the de-
generacy of the energy spectrum. In the classical limit, em-
ployingE′ = E+Ωj = ε+m, and under the non-relativistic
conditionε << m, Eq. (32) simplifies to

E′2 −m2

2m
≈ ε = 2η

(
2n′r +

|j|
α

+ 2
)

. (43)

Similar to the previous scenario, we observe that only the
presence ofα in Eq. (43) disrupts the degeneracy of the spec-
trum. The parameterΩ exerts no influence in the classical
limit.

3.2. PDM KG-Coulombic like particles

We now considerf(r) = J0(2
√

Ar)4 to imply thatM(r) =
−(A/r) (19). This would allow us to write (18), with ψ(r) =
R(r)/

√
r, as

[
∂2

∂r2
− (j̃2 − 1/4)

r2
+

A

r
+ δ

]
ψ (r) = 0. (44)

This is represents the KG-Coulombic particles for it resem-
bles the two-dimensional Schrödinger radial Coulombic par-
ticles and admits exact solution in the form of

R(r) = B e−Ãr/2 r|j̃|+1/2

× 1F1

(
1
2

+ |j̃|+ iA

2
√

δ
, 1 + 2|j̃|, 2i

√
δr

)
. (45)

whereB is a normalization factor. We now need to satisfy the
condition

1
2

+ |j̃|+ iA

2
√

δ
= −nr

Rev. Mex. Fis.70050802
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so that the confluent hypergeometric series is truncated into a
polynomial of of ordernr. This would yield to

√
δ = −i Ã ⇒ δ = −Ã2, Ã =

A

2(nr + |j|
α + 1

2 )
, (46)

and withψ(r) = R(r)/
√

r we obtain

ψ(r) = Nnorme−Ãr/2 r
|j|
α

× 1F1

(
−nr, 1 + 2

|j|
α

, 2Ãr

)
, (47)

whereNnorm denotes the normalization factor.
With δ in Eq. (19) we obtain

(E + Ωj)2 −m2 −K2 = −Ã2, (48)

and

E±
n = −Ωj ±

√
m2 + K2 − A2

4(nr + |j|
α + 1

2 )2
. (49)

This form can be rewritten in the two dimensions as

E±
n = −Ωj ±m

√
1− A2

4m2(nr + |j|
α + 1

2 )2
. (50)

Equation (50) depicts the energy spectrum form within the
PDM KG-Coulombic scenario. It is evident that various pa-
rameters such asA from the Coulombic potential, along with
α andΩ, the geometric parameters of the curved spacetime,
significantly influence this spectrum. In the non-relativistic
approximation, the behavior of the spectrum of energy, for
very small values of the constantA, can be expanding in a
power series inA as follows

E±
n = m− Ωj − A2

8mN2
− A4

64mN4
, (51)

where

N =
[
nr +

|j|
α

+
1
2

]
, (52)

is the principal quantum number, and[N ] means the biggest
integer inferior toN . The components of Eq. (51) can be un-
derstood as follows: the initial term represents the particle’s
rest energy adjusted by the factorjΩ. The second segment
mirrors the energy of a particle with massm in a Coulombic
field under non-relativistic conditions. This portion is con-
tingent upon the spatial geometric parameters denoted byα.
The third segment elucidates the relativistic adjustment to the
energy. Notably, this correction relies on the geometric pa-
rameter of spacetime,α.

4. Conclusion

In this study, we investigate the fascinating interaction be-
tween the Klein-Gordon oscillator and a non-inertial cosmic
string defect. Our primary objective is to ascertain the sys-
tem’s energy and elucidate the repercussions of this interac-
tion. Notably, we observe that the energy density remains en-
tirely positive for positive energy statesE+, whereas it turns
negative for negative energy statesE−. To tackle this issue,
we advocate for the utilization of the Feshbach-Villars Ap-
proximation method, previously examined in [34], which has
consistently produced entirely positive outcomes. Addition-
ally, we have derived the eigensolutions of the problem at
hand and scrutinized the influence of non-inertial effects and
the presence of the PDM on the eigenvalues.
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i. Note that this metric is an exact solution to Einstein’s field
equations for0 ≤ µ < 1/4, and by settingϕ′ = αϕ, then
it represents a flat conical exterior space with angle deficit
δφ = 8πµ.

ii. NotFr = mωr that yields dimensional inconsistency, see our
equation below, wherem2 = m2c4 multiplied by ω2r2 to
give an overall dimensionality of energy to power 3 instead of
power 2.
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Raychaudhuri cosmic string spacetime background,Eur. Phys.
J. Plus 138 (2023) 21, https://doi.org/10.1140/
epjp/s13360-022-03630-6 .

50. O. Mustafa, PDM KG-Coulomb particles in cosmic string rain-
bow gravity spacetime and a uniform magnetic field,Phys. Lett.
B 839 (2023) 137793,https://doi.org/10.1016/j.
physletb.2023.137793 .

51. B. G. da Costa and E. P. Borges, A position-dependent
mass harmonic oscillator and deformed space,J. Math.
Phys.59 (2018) 042101,https://doi.org/10.1063/
1.5020225 .

52. E. Barbagiovanni, S. Cosentino, D. Lockwood, R. N. Costa
Filho, A. Terrasi, and S. Mirabella, Influence of interface po-
tential on the effective mass in Ge nanostructures,Journal of
Applied Physics, 1174 (2015) 15430,https://doi.org/
10.1063/1.4918549 .

53. G. Barbagiovannia, D. Lockwoodb, R. N. Costa Filho, L. Gon-
charovad and P. Simpson, Quantum confinement in Si and
Ge nanostructures: effect of crystallinity, Proc. SPIE 8915,
Photonics North(2013) 891515,https://doi.org/10.
1117/12.2036323 .

54. M. Barranco, M. Pi, S. M. Gatica, E. S. Hernandez, and J.
Navarro, Structure and energetics of mixed 4He-3He drops,
Phys. Rev. B56 (1997) 8997, https://doi.org/10.
1103/PhysRevB.56.8997 .

55. H. A. Bethe, Possible explanation of the solar-neutrino puzzle,
Phys. Rev. Lett.56 (1986) 1305,https://doi.org/10.
1103/PhysRevLett.56.1305 .

56. M. G. Burt, The justification for applying the effective-
mass approximation to microstructures,J. Phys.: Con-
dens. Mat.4 (1992) 6651,https://doi.org/10.1088/
0953-8984/4/32/003 .

57. A. D. Alhaidari, Solutions of the nonrelativistic wave equation
with position-dependent effective mass,Phys. Rev. A66 (2002)
042116,https://doi.org/10.1103/PhysRevA.66.
042116 .

58. S. H. Dong and M. Lozada-Cassou, Exact solutions of the
Schr̈odinger equation with the position-dependent mass for a
hard-core potential,Phys. Lett. A, 337 (2005) 313,https:
//doi.org/10.1016/j.physleta.2005.02.008 .

59. M. Abramowitz and I. A. Stegun, Handbook of mathemati-
cal functions with formulas, graphs, and mathematical tables
(Dover Publications, New York, 1970).

60. G. Arfken, H. Weber, and F. Harris, Mathematical Methods for
Physicists: A Comprehensive Guide (Elsevier Science, 2012).

Rev. Mex. Fis.70050802

https://doi.org/10.1140/epjp/i2012-12082-2�
https://doi.org/10.1140/epjp/i2012-12082-2�
https://doi.org/10.1140/epjc/s10052-010-1431-2�
https://doi.org/10.1140/epjc/s10052-010-1431-2�
https://doi.org/10.1103/PhysRevD.80.024033�
https://doi.org/10.1103/PhysRevD.80.024033�
https://doi.org/10.1103/PhysRevD.82.084025�
https://doi.org/10.1103/PhysRevD.82.084025�
https://doi.org/10.1103/PhysRevLett.57.929�
https://doi.org/10.1103/PhysRevLett.57.929�
https://doi.org/10.1140/epjp/i2019-12588- y�
https://doi.org/10.1140/epjp/i2019-12588- y�
https://doi.org/10.1007/s10773-006-9311-0�
https://doi.org/10.1007/s10773-006-9311-0�
https://doi.org/10.1016/j.physleta.2020.126265�
https://doi.org/10.1016/j.physleta.2020.126265�
https://doi.org/10.1103/PhysRevB.27.7547�
https://doi.org/10.1103/PhysRevB.27.7547�
https://doi.org/10.1016/j.aop.2022.168857�
https://doi.org/10.1140/epjc/s10052-022-10043-3�
https://doi.org/10.1140/epjc/s10052-022-10043-3�
https: //doi.org/10.1016/j.aop.2022.169124�
https: //doi.org/10.1016/j.aop.2022.169124�
https://doi.org/10.1140/epjp/s13360-022-03630-6�
https://doi.org/10.1140/epjp/s13360-022-03630-6�
https://doi.org/10.1016/j.physletb.2023.137793�
https://doi.org/10.1016/j.physletb.2023.137793�
https://doi.org/10.1063/1.5020225�
https://doi.org/10.1063/1.5020225�
https://doi.org/10.1063/1.4918549�
https://doi.org/10.1063/1.4918549�
https://doi.org/10.1117/12.2036323�
https://doi.org/10.1117/12.2036323�
https://doi.org/10.1103/PhysRevB.56.8997�
https://doi.org/10.1103/PhysRevB.56.8997�
https://doi.org/10.1103/PhysRevLett.56.1305�
https://doi.org/10.1103/PhysRevLett.56.1305�
https://doi.org/10.1088/0953-8984/4/32/003�
https://doi.org/10.1088/0953-8984/4/32/003�
https://doi.org/10.1103/PhysRevA.66.042116�
https://doi.org/10.1103/PhysRevA.66.042116�
https://doi.org/10.1016/j.physleta.2005.02.008�
https://doi.org/10.1016/j.physleta.2005.02.008�

