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Solution of the inverse problem of estimating particle size distributions
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In this work, we describe two alternative methods for solving the ill-conditioned inverse problem that allows estimating the particle size
distribution (PSD) from turbidimetry measurements. The first method uses the inverse Penrose matrix to solve the inverse problem in its
discrete form. The second method consists of replacing an ill-posed problem with a collection of well-posed problems, penalizing the norm
of the solution, and it is known as the Tikhonov regularization. Both methods are used to solve a synthetic application of the inverse problem
by solving the direct problem using a theoretical expression of the distribution of particles sizes fyftiédipand considering soft industrial

latex particles (NBR), with average particle diameters of: 80.4, 82.8, 83.6, and 84.5 nm; and three illumination wavelengths in the UV-Vis
region:300, 450, and 600 nm The estimated solution obtained by the inverse Penrose matrix is different from the original solution due to the
inverse problem is ill-conditioned. In contrast, when using Tikhonov’s regularization, the estimate obtained is close to the original solution,
which proves that the particle size distribution is adequate.
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1. Introduction

It is well-known that a particle’s scattering properties depencdf blends of spices and scents to enhance and optimize it by
on its size, shape, the real and the imaginary part of its redsing a laser diffraction technique, focused on the food in-
fractive index, and the particle size distribution (PSD) [1]. dustry [4]. In 2017, Galpiret al. recovered refractive index
The PSD is an important physical feature in particulate colvalues of spherical polystyrene particles using illumination
loidal systems such as aerosols, emulsioeaspensiofl§  wavelengths corresponding2@0 and 420 nm by employing
dispersion&?, powders, etc. [2]. PSD influences the rheo-a differential optical absorption spectrophotometer and Mie’s
logical performance and chemical stability of emulsions andheory [5]. Also, previous reports found in the literature have
dispersions, the rate of reaction and diffusion, and magnetidescribed the solving of the inverse problem of the estima-
and optical properties [2]. In industrial applications, PSD cartion of particle size distributions by using the least squares
affect the taste and texture of certain foods, the propertieapproximation and neural networks. In particular, this work
of automotive paints, inks, and toners, ceramic manufacturstudies the inverse problem of estimating particle size distri-
ing processes, and the consumption rate of fuels and expldutions theoretically and numerically from turbidimetry mea-
sives [2]. Usually, turbidimetry techniques are employed tasurements, and its novelty and originality lies in the fact that
obtain the PSD by using a spectrophotometer that projectsthe inverse Penrose matrix and the Tikhonov regularization
beam of monochromatic light through a sample and measuresme used to solve it. In addition, we present the deduction
the amount of light absorbed. According to Hadamard, esef the mathematical model that describes the inverse prob-
timating the PSD from turbidimetry measurements involvedem, which may be written in matrix form. In this way, the
the resolution of an ill-conditioned inverse problem [1]. Frominverse problem for estimating particle size distributions is
this, it is possible to calculate the turbidity spectrum, whichgiven by the system of linear equations= Af; wherer

is related to the PSD by Mie’s theory. Different methodsis the turbidimetry measurements,is the matrix obtained
based on regularization techniques have been proposed fimm Mie’s theory, andf is the distribution of size of parti-
solve this problem from the knowledge of turbidity [3]. In cles vector to be estimated. The inverse problem consists in
2016, Gonalez-Garés analyzed the particle size distribution finding f from knowingr and the ill-conditioned matri¥.
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2. Approach to the inverse problem of estimat- i
ing particle size distributions (PSD) Iy A _ | I'maginary
This work uses turbidimetry to estimate the particle size dis- 7~ h \Sphem'cal
tribution from Mie’s theory. Turbidimetry is an optical mea- / .
—-

surement technique based on the scattering of light that oc-
curs when solid particles appear in a homogeneous solu-
tion [7]. The loss of homogeneity means that the light that —_—
passes through the solution is not the same intensity as be ™————>
fore turbidity appeared [6]. Turbidity is defined as the de- ==
crease in a liquid’s transparency caused by undissolved par-

ticles [7]. A turbidimetry experimental test is carried out Us- gigyre 2. Extinction of light by an arbitrary particle in a non-

ing a spectrophotometer and consists of measuring at diffetspsorbent medium.

ent wavelengths\; with i = 1, m; the attenuation of light

when passing through a set of spherical particles immerseid light absorption and scattering as it passes through a par-
in a non-absorbent medium [1, 2]. The principle of operationticulate medium [10]. Considering the extinction of light by
comprises a light beam that passes through a monochromatarsingle arbitrary particle illuminated by a plane wave (See
which in turn divides the incident light beam into different Fig. 2, it is possible to consider an imaginary spherical sur-
wavelengths, producing a band of colors called a spectrurface of radius- surrounding the particle in such a way that
due to light scattering; then, a certain wavelength is selectedf the particle is in a non-absorbing medium, the rate of en-
which travels an optical path lengt#f and impinge the sam- ergy inside the particle can be neglected. Thus we will have
ple to be analyzed (See Fig. 1. Finally, the photometer othe net ratio at which electromagnetic energy is extinguished
detector measures the intensliy\;) of the transmitted light when passing through surfage denoted byi¥ey is the sum
produced by the spectrum when passing through the samptg the energy absorption rat&, and the energy dispersion
with turbidity [1]. rateW [10].

In general, the turbidity spectrum measurement using tur- It is known that the incident irradiandg passes through
bidimetry is based on the relationship between the incidenthe cross-section of the imaginary sphere that contains the
light intensity and the light intensity scattered by the parti-particle. Thus, the relationship betweé¥e,: and I, is a
cles in the medium through Lambert-Beer's law, in which quantity with area dimensions. This quantity is called the
turbidity is proportional to particle concentration [7]. Ac- cross-section of light extinction and to denotediy; [10].
cording to Mie’s theory, for a monodispetésuspensiofiof On the other hand, based on Mie’s theory, it is possible
non-absorbing spherical isotropigarticles, in the absence to theoretically model the physical phenomena that occur in
of multiple scattering, it is possible to define the relationshipa turbidimetry experiment based on ttyg,; coefficients [2].
between the turbidity spectrum()\;) and the particle size The theory is only valid under certain conditions of simple
distribution f (D) through the following equation [8, 9]: scattering, that is, under the hypothesis that the light scat-

tered by a particle does not interact with any other particle in
_ logyp(e)m? [ 2 the system [2]. According to Bohren and Huffman, the ex-
() = 4 /0 F(D)Qext (i mi) D* D, (1) tinction light efficiency factor is defined @@ext = Cext/G,
whereG is the cross-section area of the projected particle in
where f(D) is the continuous normalized particle size dis- a plane perpendicular to the direction of the incident beam. If
tribution (number of particles per chvs particle diameter  the particles are spherical, then the cross-section of the parti-

D); Qex: is the efficiency of the extinction of light passing cle is a circle, so it is possible to rewrite the factds, as:
through the samplen; is the relative refractive index; and

o0
is the particle size parameter [8, 9]. In addition, the attenua- Qo5 mi) = 2 S (20 +1)
. . . T . K3 (] -
tion of an electromagnetic wave in a turbidimetry experiment ’ z?
is based on a physical phenomenon called light extinction due

* n=1
X Relan (xi,ms) + bp(xi,mg)],  (2)

Incidence of light where a,, and b,, are Mie's coefficients. Even more, if
Sample they meet the Rayleigh conditions; that iszif < 1 and
|m;x;| < 1, then the dispersion coefficients andb,, of the

Continuous spectrum . - . : -
= series expansion of Ed2) containing functiongz;)* with

(Io, \i) (I, \;) t > 7, may be neglected. Furthermore, the light extinction ef-
Monochromator U >d ficiency function reduces to the following expresion [2, 8, 9]:
Photometer 9
2 _
FIGURE 1. Diagram of a spectrophotometer for turbidity measure- Qext(Ti,m;) = §x4 m; — 1 . 3)
ment. 370 \mi +2
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However, since there is a finite number of measurements, th&1. Inverse Penrose matrix

problem is posed on its discrete form in such a way that if )
f(D;) is considered as a discrete function equivalent to théor the case where < n and matrixA € My, x,(C) is row-
continuous functionf(D), that depends on different mean full-rank, there always exists a unique maftixe M, xm(C)
diametersD; (j = T,n) taken at regular intervald D, and ~ Such thatd™ = (AY'A)* = (Y A)*A" and (Y A)" = Y'A.
considering a finite set of wavelengths (i = T, m), thenit ~ Then,
is possible to rewrite the Eql) as:

A* = YAA*. )

log,o(e)7&Z
T(\i) = 10 Z F(Dj)Qext(Tij, mz)DJZ‘a (4)  Also, sincerank(AA*) = rank(A); if rank(A) = m, then
N(AA*) = 0; therefore,AA* is invertible, then by multiply-
where, ing the inverse on both sides of E®),(the Penrose inverse
() of Alis:
m; = 2 (5) -1
N (i) Y = A" [AA*] 7. (10)

and wherer;; is the size parameter defined as:

From Eg.00), an approximation of the solution to the prob-

N (A) lem given by [f) is obtained. However, when inverse prob-
Tij =D ( ) ) ®)  |ems are ill-conditioned, they cannot be solved using only
the Penrose inverse method, so it is necessary to apply a reg-
ularization method. In this work, Tikhonov regularization is

7
in this casen,,();) is the refractive index function of the
medium andn,();) is the refractive index function of the

. g . " : implemented.
particle. Equation4) may be written in its matrix form:
= Af; @) 3.2. Tikhonov regularization
whereA € M, n(K), 7 € K™, f e K" (K=RoC)and It is well-known that a regularization method consists of re-
the coefficients of matrixd are given by [8] plaCing an i||—posed problem with a collection of We||-posed
| ()n problems so that the solution is a good approximation to the
0gple)m i i i i .
aij = 104 Qext(-rijymi)D]2'~ (8)  original solution [3]. The collection will depend on the reg

ularization parameter; for each value of the parameter, there
Thus, the direct problem of estimating particle size distribu-exists a different problem, and its solution is called a regular-
tions consists in finding the value of the turbidity spectrumized solution.

7, based on knowing the particle size distribution vecfor Formally, from the point of view of free linear opera-
and the matrix4. Consequently, the inverse problem con-tors, givenk : X — Y linear and bounded, in search for
sists in finding the vectof from knowing the turbidity spec- ax, which satisfie§| Kz, — y|| < ||Kz — y| forallz € X
trum 7 and the matrix4. For the case in whicm > nand andy € Y, such that it is a solution of the normal equation
rank(A) = min(m,n), the solution of the inverse problem K*Kz, = K*y, where K* is the adjoint operator of’.

is given by f = [AtA]"" Ar. However, the inverse PSD es- Tikhonov's regularization method consists of penalizing the
timation problem is ill-posed in the Hadamard sense; therenorm||z|| of the solution in the least squares problem to min-
fore, small deviations in the measurements asultin large  imize the effect of the changes [3,12]. That is, we want to ob-
deviations in the solutiorf. Hence, methods of solving the tain the regularized solutian, that minimizes the Tikhonov
inverse problem are needed, which allow finding a better apfunctional defined by:

proximation to the original solution. The following section

. J = K 2 2 2
presents two solutions that solve the problem and demon- o(z) 1= [Kz —y[|” + o [z,
strate what is stated above. VeeX, a>0, (11)
3. Solution methods of the inverse problem wherea is the regularization parameter, and it must be satis-

fied that||z, || tends to zero as tends to infinity and|z,||
Once the matrix form/d) of the inverse problem has been tends to infinity ag: tends to zero.
established, two solution methods are presented: the inverse In Ref. [3], the existence of a minimum for the Tikhonov
Penrose matrix and the Tikhonov regularization. Two definifunctional is proven, although it is obvious to the reader that
tions equivalent to the definition of the Penrose inverse maseveral steps have been neglected; in this work, we show the
trix are the Moore inverse matrix and the pseudoinverse macomplete sequence of the missing steps in the Appendix A.
trix. We have implemented the Penrose definition for solv-  The regularized solutionX;22) minimizes the Tikhonov
ing a synthetic application for this work. If the reader re- functional, so it is possible to apply said regularized solution
quires more information about the Moore inverse, he can reto solve the ill-conditioned discrete inverse problem of PSD
fer to [11]. estimation.
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4. Solution of the problem and numerical ex- gx10” ‘ ‘
periments ~ 7 1B,
- i D,

+
b

1(01)=‘5 9470 x 10'°
f(D,)=5.4496 x 10'°
1(D,)=5.1977 x 10"
1(D,)=4.8776 x 10"

Due to the lack of data, a synthetic example is built, in which E """"""
the direct problem is solved, so then, to solve the inverse £/
problem of estimating the particle sizes distributions by tur- 7,
bidimetry in the UV-Vis spectrum near the Rayleigh region
based on the theory according to Ref. [8], for soft industrial 0 = - T o e o
latexes (NBR) with particle sizes in the range of 80 nm to D (nm)
85 nm . The inverse problem is solved using the Penrose in-
verse and the Tikhonov regularization method. FIGURE 3. Particle size distribution functiofi(D).

We want to solve the discrete inverse problem given by
Eq. @) wherex;;, m; andQ..: are given by Egs.3), (5),

For the particular case in which= T, 4,

(6) with . = 1 cm. It is assumed that the refractive index 5.0470 % 1010
functions of the medium,,, (\;) and the particles,()\;) are 5.4496 % 1010
defined as [8]: f(D)= 51977 x 1010 | - (15)
4 4.8776 x 100
N (Ni) = 1.324 + 3226,
' Now, to find the coefficients of matriXd, we first calcu-
ny(\) = 1494 + 6224. late the refractive indices of the particles,();), the refrac-
A; tive indices of the medium,,,()\;), and the relative refrac-
tive indicesm;, considering the given wavelengths (see
4.1. Solution of the direct problem Table I.

The particle size parameters and the light extinction
First, we consider four different mean diameters of soft in-coeﬁicientsQext(xi, m;) is calculated from the above daja
dustrial latex (NBR) particles immersed in water, given by:are shown in Table II.
Dy = 80.4 nm, D, = 82.8 nm, D3 = 83.6 nm, and
D4 = 84.5 nm; and three different illumination wavelengths:
A1 =300 nm, Ay = 450 nm, andAs = 600 nm. In this way,  TagLE I. Values of the refractive index of the medium, (\,),
and using matrix notation, Ecd)is as follows: values of the refractive index of the particig (\;) and relative

refractive index values;.

T = A 5 12
wherer € R3, f € R* andA € M3.4(R), with coefficients 300 nm 1.3578 1.5638 1.1517
given by the Eq.8) for i = 1,3 andj = 1, 4. To solve the 450 nm 1.3390 1.5250 1.1389
direct problem, the matrix| and the functiory’ are assumed 600 nm 1.3325 15115 1.1343
to be known in order to calculate the values)of For this,
an approximation of the continuous functi¢fD) is consid-
ered, given by [8]: TABLE Il. Particle size parameter valugg; and the light extinc-
tion coefficientQexi(xs;, m;).
N, — In(D) — In(D,)]? ,
f(D) = \;—exp{ [In( )2 QH( q)] } . (13) Ty Qext(ij, mi)
Do/2m 7 w1y = 1.1432 Qea(z11,m1) = 0.0439
with N, = 1.2 x 102 part.ent; D, = 80 nm; ando = 0.1, 2 = L1T7 Qex(w12,m1) = 0.0493
The continuous distribution of Eg18) may be changed by r13 = 1.1887 Qext(713,m1) = 0.0513
the equivalent discrete functigf{D,) given by Eq./14), tak- x14 = 1.2015 Qext(T14,m1) = 0.0535
ing into account the diameter3; and the wavelengths;. x21 = 0.7516 Qext(21,m1) = 0.0069
Thef_(Dj) values are then calculated using the following ex- oy = 0.7740 Qex(@22, m1) = 0.0078
pression:
To3 = 0.7815 Qext($23,m1) = 0.0081
D 1.2 x 10'2 #part./cn? T24 = 0.7899 Qext(w24,m1) = 0.0084
f( j) - Dj (0.1)‘ /o x31 = 0.5609 Qext(z31,m1) = 0.0020
T332 = 05777 Qext($32, ml) 0.0023
—[n(Dy;) — 1n(80)]
X exp 0.02 . (14) x33 = 0.5833 Qext(x33,m1) = 0.0023
’ T34 = 0.5895 Qext($347 ml) = 0.0025
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In this way, using Eq/8) and the values found previously, Now, we calculate the estimation of the vector with parame-
thea,; coefficients of matrix4 are found given by: ters f by considering the vectar:

96.7045 115.3699 122.2216 130.3319 0.409293417919107
A= (152341 18.1745 19.2538  20.5315 5 Vi 2.087583172718300
4.4296  5.2846 5.5984 5.9699 f=Yr= —1.258845877485565

. . — . . —0.969210418586275
With the obtained results in this section, the direct problem

of estimating the particle sizes distribution has been solvedry. orrors ar = fH = 2.65579 and||7 — 7| = 1 x 104

and its solution is given by: Note that small variations in the vector of measurements

24.7479046889131 x 102 cause large errors in the estimated solutjosince the in-
7= Af = |3.80858046984298 x 10'2| . verse problem is ill-conditioned, as explai.ned next. We con-
1.13358678358970 x 1012 sider the matrix4d € M3.4(R) as the matrix representation

of the linear operatoK : R* — R3 and the transposed ma-
The solution of the direct problem will be used as input datatrix A* € My.3(R) as the matrix representation of the ad-

to solve the inverse problem. joint linear operatok* : R? — R*, on the canonical bases
of R? andR*. To find the singular values;, (k = 1,4) of

4.2. Solution to the inverse problem matrix A, singular value decomposition is applied, and we
obtain:

Let 7 € R? and the matrix4d € M3,4(R) known data; also,
a relative errok is considered, such that= Af + ¢. In this 236.760785418670 6
section, we implement the Penrose inverse and the Tikhonov o= 60.5937041072596 x 10 . (16)

-6
regularization method to find the exact solutipre R*. 27'66541492(5)8401 x 10

4.2.1. Solution obtained by the Penrose inverse On|y the non-zero Singu|a|’ values are to be consid-

. . ) . __ered; therefore, we have thatax |o;| = 236.76079 and
Equationl0) is employed to find the Penrose inverse matrix k

of A. In this case;n = 3 andn = 4; furthermore, ma-  ™Min|ox] = 27.66541 x 107" Hence, the condition number

trix A is of full range by rows, which means thétm R, =  of matrix A is:

rank(A) = 3. SinceA € M;x4(R), thenA* = A'. There- max o]

fore, doing the calculations for matrik, the Penrose inverse c(A) = =& — 8558006 x 10°.

matrix of 4 is given by: min lok|
—0.0925  0.6226  —-0.1210 Since ¢(A) > 1, the inverse PSD problem is ill-

y=A' [AA] -1_|—0.0514 —0.4166  2.5555 %10* conditioned. Consequently, calculating only the Penrose in-
0.2348 —1.4884 —0.0064 verse is not enough; it is necessary to regularize the problem.
—0.1060  1.3026  —2.1663 For this, a new well-posed problem is solved such that its

. _ i solution correctly approximates the original solution.
The matrixY satisfies the Penrose conditions. Then, the ma- yapp g

trix Y is used to find an approximation to the solution of the4 5 5 gg|ution obtained by the Tikhonov regularization
inverse problem given by:

In order to apply the Tikhonov regularization method, we

0.000182477455386 choose a collection of well-posed problems that depend on
f I Vo 0.000084237889068 ) the regularization parameter For each value of the param-

0.001238859978678 eterq, different problems are obtained and, consequently, a

0.000527147719822 different regularized solution. The solutions of well-posed

problems are in terms of the regularization parameter, which

Note tha.t the estimatgd solutighis different from the origi- may be chosen by applying Morozov's discrepancy principle
nal solutionf. In practice, measurement errors are generallyy the 1.-curve method.

common, so it .is necessary to determine their gffect onthe |nthis case, the data given by the turbidity spectrum vec-
solution. For this, the vectar(\;) chfnge_s by adding aterm (1, and the matrix4 are known, so the regularization prob-
with a small valuej.e., ¢ = 1 > 107%, which represents the |om consists in finding the regularized solutifin € R* that

error in the measurements, thus: minimizes the Tikhonov functional given by:
0.247579046889131 2 2 2
Ja = ||Af — ,
F(\) = 7(\i) + € = |0.0390858946984298 ()= lAf =77+ a7l ]l
0.0114358678358970 ViER,TER? y a> 0. (17)
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Appendix A demonstrates the existence of the minimum ofolution f,,. If we give values ton in such a way that each
the Tikhonov functional, which will be used to solve the case it is smaller, the following is obtained:
synthetic application shown below. Let the exact solution

f(D) € R* given by: e Parao =1
5.9470 x 1010 4.38421797581138 x 100
F(D) = 5.4496 x 10'° = 5.23043693814276 x 10'°
5.1977 x 10101 ° 7 |5.54106671580672 x 1010
4.8776 x 1010 5.90875761045696 x 1010

which we want to approximate by the regularized solution
fo; in addition, it is true that the smaller the size of the reg- o Paraa =0.5:
ularization parametet, the regularized solutiotfi, is closer

to the exact solutiorf (D); that is, || fo — f(D)|| — 0 when 4.38427660522684 x 1012
a — 0. In general, it is known that the regularized solution fo= 5.23050687725977 x 1010
fo can be obtained using the singular value decomposition of 5.54114092962522 x 10

the matrixA, given by A = USV, where: 5.90883665273824 x 101

[—986.80841  160.03908 24.42638
U= |-155.45419 —894.59020 —418.97778| X 10_37
| —45.20122  —417.24798  907.66788

e Paran = 0.3:

4.38428905001994 x 1010

[236.76079 0 0 0 I = 5.23052170833471 x 1010
S= 0 60.59370 x 107° 0 of, 7 15.54115692854422 x 100
L O 0 27.66541 x 107° 0 5.90885348533342 x 1010

[—0.413908 —0.315888 —0.103176 —0.847496

y= | 70493799 —0.425291  0.689643  0.315727 | With this, we have found the approximate solution to the in-

_8??%;2 068136182250 Oblgggé& _Ooﬁggﬁo verse problem of estimating the PSD using the optical tech-
- e e : nique of turbidimetry.

The regularized solution that minimizes the functidr)(is

given by Eq. (39). In this case, it is true that rank(A) <

n, so the sum of the regularized solution goes from 1, 7. 5. Conclusions

Given thatrank(A) = 3, then it is possible to write the regu-

larized solution to the inverse problem of estimating the PSDI'he function f(D) and the matrixA of the system are as-

using the SVD of matrix4 as: sumed to be known to solve the direct problem related to the
inverse problem of estimating the particle size distribution.

> o ‘ Then, using the inverse Penrose matrix, the inverse problem

fa=3_ [W“ﬂ} vi (18)  is solved, and is obtained that the estimated solution is differ-

ent from the exact solutiofi(D). Therefore, the problem is
Since the matrixA € M3y 4(R) is the matrix representa- regularized by implementing Tikhonov's regularization. Sin-
tion of the compact linear operatdf : R* — R3, A! ¢ gular value decomposition is applied to matrlx and val-
M,3(R) is the matrix representation of the adjoint operatorues are given to the regularization parameteWwith this, an

K* : R3 — R*, and the vectors; > o5 > o3 > 0, which adequate approximation to the original solutipfD) is ob-

are given by Eg. (16), are the non-zero singular values of theained, which verifies that the particle size distribution is of
matrix A, then, there exist orthonormal sqml} c R3 and the logarithmic-normal type. There are specific methods to
{v;} c R* given by the columns of the matri¥ and ma- obtain the regularization parameteiin such a way that it is
trix V, respectively. Said orthonormal systems satisfy thapptimal; the study of these methods is beyond the scope of
Av; = oyu; and Atu; = oyv; withi € T ={1,2,3} C N. this article, so it is left as a pending problem.

Similarly, it is known from the singular value decompo- This work establishes a precedent for the use of the
sition of A that there are more vectors to the rightthan  inverse Penrose matrix and the Tikhonov regularization to
vectors to the left; to know; vectorsy; on the right are used solve the inverse problem of estimating the particle size dis-
to find the regularized solutiofi,, and they must satisfy that tribution since this problem has been studied in the literature
u; = Aw; /oy, with i = 1,3. In this case, the condition is using least squares and neural networks. The limitations that
true for columns)y, v9, andvs, and for columnv,, Avy = 0. they found when solving the inverse problem are the lack of
Therefore, the orthonormal systémy) is formed by the first  a data bank that adjusts to the studied model and the lack of
three columns of the matri¥ of the DVS of A. The reg- a spectrophotometer to validate the results. For this reason, a
ularization parameter is chosen adequately to calculate th&y/nthetic application has been solved.
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SOLUTION OF THE INVERSE PROBLEM OF ESTIMATING PARTICLE SIZE DISTRIBUTIONS 7

Appendix

A. Existence of a minimum for the Tikhonov
functional

To prove the existence of the minimum of the Tikhonov func-
tional, it needs to be proved that it is the limit of a Cauchy

Given that:
2
Ty + Tm Tn + Tm
2o | ——— | =2||[K | ————— | —
() =2 (=) -
2
Tn + T
22 n m
+ 2« ||

sequence. To do this, we consider a minimizing sequence

{z,} C X, which satisfies that:
nh_)rrgo Jo(zp) =1 = llgf( Jo (). (A1)
Letm,n € N, then forz,, andz,, it is true that:

Ja(@n) + Ja(@m) = [ Kzp = y|* + | Kz -yl

+a? ||$n||2+a2 meH2 (A.2)
Applying the binomial formula, we obtain:
012
5 (e =2l + llan + )
2 2 2 2
=a” ||z, ||” + o ||z (A.3)
Then, by substituting EqA.3) into Eq. (A.2), we get:
Ja(@n) + Ja(wm) = | Kzp =y + | Kz — y|?
2 2
+ < Hxn - meQ + 207 M (A.4)
2 2
On the other hand, we know that:
2
Ty + T
2|K (| — | —
(=5 -
2
Ty + T 1 1
=9||K [ ) — 2y — 2
< (=5) -2
1
:§II(K:vn—y)+(me—y)||2~ (A.5)

Furthermore, applying the binomial formula again to the last

term of (A.5), it is obtained:

[(Kzn—y) + (Kzm—y) | + |(Kzn—y) = (Kzpn—y)|*

= 2| Kzo—yll* +2 | Kzm—y|*.  (AB)
Then, by substituting EqA(5) into Eq. (A.6), we get:
2
n m 1
2 HK (m) —yl| + = |Kzn — Kz |
2 2
= |Kzp —yl* + | Kz —yl*. (A7)

By substituting Eq.A.7) into Eq. (A.4), we obtain:

2
Ty + xm> 3

Ja(20) + Jo(2m) =2 HK ( .

1 2 Oé2
+ ) 1 K (zn _mm)Hz + 7”3371 _xm||2

2
Tn + T

20,2
+ 2« 5

(A.8)

the Eq./A.8) can be rewritten as:

Ja(@n) + Ja(@m) = 2Ja <f”n;f”m>

1 2 o? 2
+ ) K (2n — zm)|I” + o |Zn — Zml|” -

Moreover, as

lim J, <w”> =1,

n,m— 00 2

then is must be satisfied that,(z,) + Jo(2m) > 21 +
(02/2) |20 — zm||® . AlSO, Jo(zpn) + Ju(zm) — 21, when
n,m — oo. Therefore, we have thét > ||z, — x| > 0.
This means that the sequence of vectprg} is a Cauchy
sequence. Therefore the sequefieg} converges to some

zo € X. Since the Tikhonov functional is continuous, then

Jo(zn) — Ju(zs); so, for Eq. A.L), it is obtained that
Jo(zo) = 1, and this proves the existence of a minimum
of J,.

On the other hand, if,, is considered to be the minimum
of J,, then it must be fulfilled that:

Jo(xo) < Jo(z), VzelX. (A.9)

In addition, from Eq./11), we have that:

Jol@) = Ja(za) = (1Kz = y|* ~ | Ko — y|*)
+a? (o) = llzall?) -

Given that:

|z — gl ~ | Ko — I
— 2Re((K* (Ko — y), @ — 2a))

2
+ | K (z —za)|™;
then,

Jo(1) = Ja(ra) = 2Re((K* (K2 — y), 2 — Za))

1K@ = 2a)|* + o (ll2]* = llzal*) . (A20)
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By the binomial formula, we have that: Then, A'A = (VXIUY)(UXV?). Since the matrice& and
2 9 A 11 V are orthogonal, that id/tU = I,, andVV*? = I, then
2™ = llza + 2 — za (A1L)  4eq — ystnvt. From here, we have:
= l[zall® + & — zall® + 2Re (za, 7 — 20)) 2 .

(A.12) oI, + A'A = V(a2I, + SISV (A.18)

By substituting Eqg. (A.11) into Eqg. (A.10) and factoring
terms, we obtain:

Jo(x) = Jo(2a) = 2Re ((K*(Kzo — y) + 0’20, — 24))

howevera?I, + X'S = diag(a? + 0%,...,a% + 02); then,
Eq. (A.18) is equivalent to:

(a®I, + APA)V
(A.13) = Vdiag (¢ +03%,...,0° +02). (A.19)

Then, by substituting Eq. (A.12) into inequality (A.9), we
have:

2 2
+IE (@ = za)lI” + o o — za”

Sincea > 0, then the eigenvalues of?I,, + A A are posi-
tive, that is, the matrix.?I,, + A* A is positive definite. Since
0 <2Re ((K*(Kzo — y) + 0220, 7 — 24)) every positive defined matrix is invertible, thefz,, + A*A

is invertible, and from Eq/A.19), its inverse is given by:
K — 2l + 02 2 — 2a]®, Vo€ X. (A14) aA-19 given by

In particular, ifx = z, + az, for anyz € X we have that: (®I, + AtA)_1
< * . 2 2 1
0 < 2Re ((K*(Kwa — y) + a’wa,02)) + || K (0z)] :Vdiag( NLE 2) Vi (A20)
9 9 N 9 a“ + o7 o+ o;
+ o’ ||az|” = 2aRe ((K*(Kzo — y) + 0’24, 2))
+ a2 HKZHQ Lot ”ZHQ. Then, from Eq./A.16), we obtain:
Dividing by « > 0 and taking the limit agx — 0, we 2o = (a®I, + AtA)*l Aly; (A.21)

conclude thatRe((K* (Ko — y) + a?z4, 2)) > 0, for all
z € X, henceK™(Kuo — y) + o’zo = 0; thatis,za is @  ang py substituting EqsA(20) and A.17) into Eq. @A.21),

solution to the normal equation: we have that the regularized solutiop is given by:
or,+ K*Kr, = K*y. (A.15) .
— : t trrt
Furthermore, the solution,, is unique. That is, ifr; is a To =V diag <a2 Yo a2y Jz> VIVIUy.
solution of the normal Eq/A.15), thena?z, + K*Kx, =
o’z; + K* K, is obtained, which is only true if, = z;.  Since the matri¥ is orthogonal and
Thus, the following result is proven.
Theorem 1. Let K : X — Y be a linear and bounded oy
operator on Hilbert spaces and > 0. Then the Tikhonov StUty —

functionalJ,, has a unique minimum,, € X. This minimum

. . . t
x4 is the only solution of the normal equation: Inlny

ozy + KKz, = K*y. then it must fulfill that;

In particular, if matrixA is the matrix representation of
the linear and bounded operatat : R” — R™ and ma- Ta=(v1 ..o vn)
trix At is the matrix representation of the adjoint operator oty
K : R™ — R™, on the canonical basis @&" andR™, then « diag ( 1 )
the normal equation given in EGA[L5) may be written as: a?+02"" a2+ 02

(PL, + A'A) 2o = A'y, >0, (A.16)

t
TnUn,Y

Therefore, the regularized solution using decomposition in

whereA € M,,«»(R) andl,, denotes the x n identity ma- . .
singular values is:

trix. If we consider the singular value decomposition of the
matrix A € M,,«»(R) given byA = ULV, we have: n

a; t
Al = VXU, (A.17) Lo = Z {Muiy} Vj. (A.22)
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