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Solution of the inverse problem of estimating particle size distributions
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In this work, we describe two alternative methods for solving the ill-conditioned inverse problem that allows estimating the particle size
distribution (PSD) from turbidimetry measurements. The first method uses the inverse Penrose matrix to solve the inverse problem in its
discrete form. The second method consists of replacing an ill-posed problem with a collection of well-posed problems, penalizing the norm
of the solution, and it is known as the Tikhonov regularization. Both methods are used to solve a synthetic application of the inverse problem
by solving the direct problem using a theoretical expression of the distribution of particles sizes functionf(D) and considering soft industrial
latex particles (NBR), with average particle diameters of: 80.4, 82.8, 83.6, and 84.5 nm; and three illumination wavelengths in the UV-Vis
region:300, 450, and 600 nm The estimated solution obtained by the inverse Penrose matrix is different from the original solution due to the
inverse problem is ill-conditioned. In contrast, when using Tikhonov’s regularization, the estimate obtained is close to the original solution,
which proves that the particle size distribution is adequate.
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1. Introduction

It is well-known that a particle’s scattering properties depend
on its size, shape, the real and the imaginary part of its re-
fractive index, and the particle size distribution (PSD) [1].
The PSD is an important physical feature in particulate col-
loidal systems such as aerosols, emulsionsi, suspensionsii,
dispersionsiii, powders, etc. [2]. PSD influences the rheo-
logical performance and chemical stability of emulsions and
dispersions, the rate of reaction and diffusion, and magnetic
and optical properties [2]. In industrial applications, PSD can
affect the taste and texture of certain foods, the properties
of automotive paints, inks, and toners, ceramic manufactur-
ing processes, and the consumption rate of fuels and explo-
sives [2]. Usually, turbidimetry techniques are employed to
obtain the PSD by using a spectrophotometer that projects a
beam of monochromatic light through a sample and measures
the amount of light absorbed. According to Hadamard, es-
timating the PSD from turbidimetry measurements involves
the resolution of an ill-conditioned inverse problem [1]. From
this, it is possible to calculate the turbidity spectrum, which
is related to the PSD by Mie’s theory. Different methods
based on regularization techniques have been proposed to
solve this problem from the knowledge of turbidity [3]. In
2016, Gonźalez-Garćes analyzed the particle size distribution

of blends of spices and scents to enhance and optimize it by
using a laser diffraction technique, focused on the food in-
dustry [4]. In 2017, Galpinet al. recovered refractive index
values of spherical polystyrene particles using illumination
wavelengths corresponding to220 and 420 nm by employing
a differential optical absorption spectrophotometer and Mie’s
theory [5]. Also, previous reports found in the literature have
described the solving of the inverse problem of the estima-
tion of particle size distributions by using the least squares
approximation and neural networks. In particular, this work
studies the inverse problem of estimating particle size distri-
butions theoretically and numerically from turbidimetry mea-
surements, and its novelty and originality lies in the fact that
the inverse Penrose matrix and the Tikhonov regularization
are used to solve it. In addition, we present the deduction
of the mathematical model that describes the inverse prob-
lem, which may be written in matrix form. In this way, the
inverse problem for estimating particle size distributions is
given by the system of linear equationsτ = Af ; whereτ
is the turbidimetry measurements,A is the matrix obtained
from Mie’s theory, andf is the distribution of size of parti-
cles vector to be estimated. The inverse problem consists in
findingf from knowingτ and the ill-conditioned matrixA.
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2. Approach to the inverse problem of estimat-
ing particle size distributions (PSD)

This work uses turbidimetry to estimate the particle size dis-
tribution from Mie’s theory. Turbidimetry is an optical mea-
surement technique based on the scattering of light that oc-
curs when solid particles appear in a homogeneous solu-
tion [7]. The loss of homogeneity means that the light that
passes through the solution is not the same intensity as be-
fore turbidity appeared [6]. Turbidity is defined as the de-
crease in a liquid’s transparency caused by undissolved par-
ticles [7]. A turbidimetry experimental test is carried out us-
ing a spectrophotometer and consists of measuring at differ-
ent wavelengthsλi with i = 1,m; the attenuation of light
when passing through a set of spherical particles immersed
in a non-absorbent medium [1,2]. The principle of operation
comprises a light beam that passes through a monochromator
which in turn divides the incident light beam into different
wavelengths, producing a band of colors called a spectrum
due to light scattering; then, a certain wavelength is selected,
which travels an optical path lengthL and impinge the sam-
ple to be analyzed (See Fig. 1. Finally, the photometer or
detector measures the intensityI(λi) of the transmitted light
produced by the spectrum when passing through the sample
with turbidity [1].

In general, the turbidity spectrum measurement using tur-
bidimetry is based on the relationship between the incident
light intensity and the light intensity scattered by the parti-
cles in the medium through Lambert-Beer’s law, in which
turbidity is proportional to particle concentration [7]. Ac-
cording to Mie’s theory, for a monodisperseiv suspensionv of
non-absorbing spherical isotropicvi particles, in the absence
of multiple scattering, it is possible to define the relationship
between the turbidity spectrumτ(λi) and the particle size
distributionf(D) through the following equation [8,9]:

τ(λi) =
log10(e)πL

4

∫ ∞

0

f(D)Qext(xi,mi)D2 dD, (1)

wheref(D) is the continuous normalized particle size dis-
tribution (number of particles per cm3 vs particle diameter
D); Qext is the efficiency of the extinction of light passing
through the sample;mi is the relative refractive index; andxi

is the particle size parameter [8, 9]. In addition, the attenua-
tion of an electromagnetic wave in a turbidimetry experiment
is based on a physical phenomenon called light extinction due

FIGURE 1. Diagram of a spectrophotometer for turbidity measure-
ment.

FIGURE 2. Extinction of light by an arbitrary particle in a non-
absorbent medium.

to light absorption and scattering as it passes through a par-
ticulate medium [10]. Considering the extinction of light by
a single arbitrary particle illuminated by a plane wave (See
Fig. 2, it is possible to consider an imaginary spherical sur-
face of radiusr surrounding the particle in such a way that
if the particle is in a non-absorbing medium, the rate of en-
ergy inside the particle can be neglected. Thus we will have
the net ratio at which electromagnetic energy is extinguished
when passing through surfaceA, denoted byWext is the sum
of the energy absorption rateWa and the energy dispersion
rateWs [10].

It is known that the incident irradianceI0 passes through
the cross-section of the imaginary sphere that contains the
particle. Thus, the relationship betweenWext and I0 is a
quantity with area dimensions. This quantity is called the
cross-section of light extinction and to denote byCext [10].

On the other hand, based on Mie’s theory, it is possible
to theoretically model the physical phenomena that occur in
a turbidimetry experiment based on theQext coefficients [2].
The theory is only valid under certain conditions of simple
scattering, that is, under the hypothesis that the light scat-
tered by a particle does not interact with any other particle in
the system [2]. According to Bohren and Huffman, the ex-
tinction light efficiency factor is defined asQext = Cext/G,
whereG is the cross-section area of the projected particle in
a plane perpendicular to the direction of the incident beam. If
the particles are spherical, then the cross-section of the parti-
cle is a circle, so it is possible to rewrite the factorQext as:

Qext(xi,mi) =
2
x2

i

∞∑
n=1

(2n + 1)

×Re[an(xi,mi) + bn(xi,mi)], (2)

where an and bn are Mie’s coefficients. Even more, if
they meet the Rayleigh conditions; that is, ifxi ¿ 1 and
|mixi| ¿ 1, then the dispersion coefficientsan andbn of the
series expansion of Eq. (2) containing functions(xi)t with
t > 7, may be neglected. Furthermore, the light extinction ef-
ficiency function reduces to the following expresion [2,8,9]:

Qext(xi,mi) =
8
3
x4

i

(
m2

i − 1
m2

i + 2

)2

. (3)
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However, since there is a finite number of measurements, the
problem is posed on its discrete form in such a way that if
f(Dj) is considered as a discrete function equivalent to the
continuous functionf(D), that depends on different mean
diametersDj (j = 1, n) taken at regular intervals∆D, and
considering a finite set of wavelengthsλi (i = 1,m), then it
is possible to rewrite the Eq. (1) as:

τ(λi) =
log10(e)πL

4

n∑

j=1

f(Dj)Qext(xij , mi)D2
j , (4)

where,

mi =
np(λi)
nm(λi)

; (5)

and wherexij is the size parameter defined as:

xij = πDj

(
nm(λi)

λi

)
, (6)

in this case,nm(λi) is the refractive index function of the
medium andnp(λi) is the refractive index function of the
particle. Equation (4) may be written in its matrix form:

τ = Af ; (7)

whereA ∈ Mm×n(K), τ ∈ Km, f ∈ Kn (K = R oC) and
the coefficients of matrixA are given by [8]:

aij =
log10(e)πL

4
Qext(xij ,mi)D2

j . (8)

Thus, the direct problem of estimating particle size distribu-
tions consists in finding the value of the turbidity spectrum
τ , based on knowing the particle size distribution vectorf
and the matrixA. Consequently, the inverse problem con-
sists in finding the vectorf from knowing the turbidity spec-
trum τ and the matrixA. For the case in whichm > n and
rank(A) = min(m,n), the solution of the inverse problem
is given byf = [AtA]−1

Atτ. However, the inverse PSD es-
timation problem is ill-posed in the Hadamard sense; there-
fore, small deviations in the measurements ofτ result in large
deviations in the solutionf . Hence, methods of solving the
inverse problem are needed, which allow finding a better ap-
proximation to the original solution. The following section
presents two solutions that solve the problem and demon-
strate what is stated above.

3. Solution methods of the inverse problem

Once the matrix form (7) of the inverse problem has been
established, two solution methods are presented: the inverse
Penrose matrix and the Tikhonov regularization. Two defini-
tions equivalent to the definition of the Penrose inverse ma-
trix are the Moore inverse matrix and the pseudoinverse ma-
trix. We have implemented the Penrose definition for solv-
ing a synthetic application for this work. If the reader re-
quires more information about the Moore inverse, he can re-
fer to [11].

3.1. Inverse Penrose matrix

For the case wherem < n and matrixA ∈ Mm×n(C) is row-
full-rank, there always exists a unique matrixY ∈ Mn×m(C)
such thatA∗ = (AY A)∗ = (Y A)∗A∗ and(Y A)∗ = Y A.
Then,

A∗ = Y AA∗. (9)

Also, sincerank(AA∗) = rank(A); if rank(A) = m, then
N(AA∗) = 0; therefore,AA∗ is invertible, then by multiply-
ing the inverse on both sides of Eq. (9), the Penrose inverse
of A is:

Y = A∗ [AA∗]−1
. (10)

From Eq. (10), an approximation of the solution to the prob-
lem given by (7) is obtained. However, when inverse prob-
lems are ill-conditioned, they cannot be solved using only
the Penrose inverse method, so it is necessary to apply a reg-
ularization method. In this work, Tikhonov regularization is
implemented.

3.2. Tikhonov regularization

It is well-known that a regularization method consists of re-
placing an ill-posed problem with a collection of well-posed
problems so that the solution is a good approximation to the
original solution [3]. The collection will depend on the reg-
ularization parameter; for each value of the parameter, there
exists a different problem, and its solution is called a regular-
ized solution.

Formally, from the point of view of free linear opera-
tors, givenK : X → Y linear and bounded, in search for
axα which satisfies‖Kxα − y‖ ≤ ‖Kx− y‖ for all x ∈ X
andy ∈ Y , such that it is a solution of the normal equation
K∗Kxα = K∗y, whereK∗ is the adjoint operator ofK.
Tikhonov’s regularization method consists of penalizing the
norm‖x‖ of the solution in the least squares problem to min-
imize the effect of the changes [3,12]. That is, we want to ob-
tain the regularized solutionxα that minimizes the Tikhonov
functional defined by:

Jα(x) : = ‖Kx− y‖2 + α2 ‖x‖2 ,

∀ x ∈ X, α > 0, (11)

whereα is the regularization parameter, and it must be satis-
fied that‖xα‖ tends to zero asα tends to infinity and‖xα‖
tends to infinity asα tends to zero.

In Ref. [3], the existence of a minimum for the Tikhonov
functional is proven, although it is obvious to the reader that
several steps have been neglected; in this work, we show the
complete sequence of the missing steps in the Appendix A.

The regularized solution (A.22) minimizes the Tikhonov
functional, so it is possible to apply said regularized solution
to solve the ill-conditioned discrete inverse problem of PSD
estimation.
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4. Solution of the problem and numerical ex-
periments

Due to the lack of data, a synthetic example is built, in which
the direct problem is solved, so then, to solve the inverse
problem of estimating the particle sizes distributions by tur-
bidimetry in the UV-Vis spectrum near the Rayleigh region
based on the theory according to Ref. [8], for soft industrial
latexes (NBR) with particle sizes in the range of 80 nm to
85 nm . The inverse problem is solved using the Penrose in-
verse and the Tikhonov regularization method.

We want to solve the discrete inverse problem given by
Eq. (4) wherexij , mi andQext are given by Eqs. (3), (5),
(6) with L = 1 cm. It is assumed that the refractive index
functions of the mediumnm(λi) and the particlesnp(λi) are
defined as [8]:

nm(λi) = 1.324 +
3046
λ2

i

,

np(λi) = 1.494 +
6284
λ2

i

.

4.1. Solution of the direct problem

First, we consider four different mean diameters of soft in-
dustrial latex (NBR) particles immersed in water, given by:
D1 = 80.4 nm, D2 = 82.8 nm, D3 = 83.6 nm, and
D4 = 84.5 nm; and three different illumination wavelengths:
λ1 = 300 nm,λ2 = 450 nm, andλ3 = 600 nm. In this way,
and using matrix notation, Eq. (4) is as follows:

τ = Af, (12)

whereτ ∈ R3, f ∈ R4, andA ∈ M3×4(R), with coefficients
given by the Eq. (8) for i = 1, 3 andj = 1, 4. To solve the
direct problem, the matrixA and the functionf are assumed
to be known in order to calculate the values ofλ. For this,
an approximation of the continuous functionf(D) is consid-
ered, given by [8]:

f(D) =
Np

Dσ
√

2π
exp

{
− [ln(D)− ln(Dg)]

2

2σ2

}
, (13)

with Np = 1.2× 1012 part./cm3; Dg = 80 nm; andσ = 0.1.
The continuous distribution of Eq. (13) may be changed by
the equivalent discrete functionf(Dj) given by Eq. (14), tak-
ing into account the diametersDj and the wavelengthsλi.
Thef(Dj) values are then calculated using the following ex-
pression:

f(Dj) =
1.2× 1012 #part./cm3

Dj(0.1)
√

2π

× exp

{
− [ln(Dj)− ln(80)]2

0.02

}
. (14)

FIGURE 3. Particle size distribution functionf(D).

For the particular case in whichj = 1, 4,

f(D) =




5.9470× 1010

5.4496× 1010

5.1977× 1010

4.8776× 1010


 . (15)

Now, to find the coefficients of matrixA, we first calcu-
late the refractive indices of the particles,np(λi), the refrac-
tive indices of the mediumnm(λi), and the relative refrac-
tive indicesmi, considering the given wavelengthsλi (see
Table I.

The particle size parametersxi and the light extinction
coefficientsQext(xi,mi) is calculated from the above datay
are shown in Table II.

TABLE I. Values of the refractive index of the mediumnm(λi),
values of the refractive index of the particlenp(λi) and relative
refractive index valuesmi.

λi nm(λi) np(λi) mi

300 nm 1.3578 1.5638 1.1517

450 nm 1.3390 1.5250 1.1389

600 nm 1.3325 1.5115 1.1343

TABLE II. Particle size parameter valuesxij and the light extinc-
tion coefficientsQext(xij , mi).

xij Qext(xij , mi)

x11 = 1.1432 Qext(x11, m1) = 0.0439

x12 = 1.1774 Qext(x12, m1) = 0.0493

x13 = 1.1887 Qext(x13, m1) = 0.0513

x14 = 1.2015 Qext(x14, m1) = 0.0535

x21 = 0.7516 Qext(x21, m1) = 0.0069

x22 = 0.7740 Qext(x22, m1) = 0.0078

x23 = 0.7815 Qext(x23, m1) = 0.0081

x24 = 0.7899 Qext(x24, m1) = 0.0084

x31 = 0.5609 Qext(x31, m1) = 0.0020

x32 = 0.5777 Qext(x32, m1) = 0.0023

x33 = 0.5833 Qext(x33, m1) = 0.0023

x34 = 0.5895 Qext(x34, m1) = 0.0025

Rev. Mex. Fis.70021304
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In this way, using Eq. (8) and the values found previously,
theaij coefficients of matrixA are found given by:

A =




96.7045 115.3699 122.2216 130.3319
15.2341 18.1745 19.2538 20.5315
4.4296 5.2846 5.5984 5.9699


 .

With the obtained results in this section, the direct problem
of estimating the particle sizes distribution has been solved,
and its solution is given by:

τ = Af =




24.7479046889131× 1012

3.89858946984298× 1012

1.13358678358970× 1012


 .

The solution of the direct problem will be used as input data
to solve the inverse problem.

4.2. Solution to the inverse problem

Let τ ∈ R3 and the matrixA ∈ M3×4(R) known data; also,
a relative errorε is considered, such thatτ = Af + ε. In this
section, we implement the Penrose inverse and the Tikhonov
regularization method to find the exact solutionf ∈ R4.

4.2.1. Solution obtained by the Penrose inverse

Equation (10) is employed to find the Penrose inverse matrix
of A. In this case,m = 3 and n = 4; furthermore, ma-
trix A is of full range by rows, which means thatdimRA =
rank(A) = 3. SinceA ∈ M3×4(R), thenA∗ = At. There-
fore, doing the calculations for matrixA, the Penrose inverse
matrix ofA is given by:

Y =At
[
AAt

]−1 =




−0.0925 0.6226 −0.1210
−0.0514 −0.4166 2.5555
0.2348 −1.4884 −0.0064
−0.1060 1.3026 −2.1663


×104.

The matrixY satisfies the Penrose conditions. Then, the ma-
trix Y is used to find an approximation to the solution of the
inverse problem given by:

f̂ = Y τ =




0.000182477455386
0.000084237889068
0.001238859978678
0.000527147719822


 .

Note that the estimated solution̂f is different from the origi-
nal solutionf . In practice, measurement errors are generally
common, so it is necessary to determine their effect on the
solution. For this, the vectorτ(λi) changes by adding a term
with a small value,i.e., ε = 1 × 10−4, which represents the
error in the measurements, thus:

τ̂(λi) = τ(λi) + ε =




0.247579046889131
0.0390858946984298
0.0114358678358970


 .

Now, we calculate the estimation of the vector with parame-

ters ˆ̂
f by considering the vectorτ :

ˆ̂
f = Y τ̂ =




0.409293417919107
2.087583172718300
−1.258845877485565
−0.969210418586275


 .

The errors are
∥∥∥f̂ − ˆ̂

f
∥∥∥ = 2.65579 and‖τ − τ̂‖ = 1×10−4.

Note that small variations in the vector of measurementsτ
cause large errors in the estimated solutionˆ̂

f since the in-
verse problem is ill-conditioned, as explained next. We con-
sider the matrixA ∈ M3×4(R) as the matrix representation
of the linear operatorK : R4 → R3 and the transposed ma-
trix At ∈ M4×3(R) as the matrix representation of the ad-
joint linear operatorK∗ : R3 → R4, on the canonical bases
of R3 andR4. To find the singular valuesσk (k = 1, 4) of
matrix A, singular value decomposition is applied, and we
obtain:

σ =




236.760785418670
60.5937041072596× 10−6

27.6654149258401× 10−6

0


 . (16)

Only the non-zero singular values are to be consid-
ered; therefore, we have thatmax

k
|σk| = 236.76079 and

min
k
|σk| = 27.66541 × 10−6. Hence, the condition number

of matrixA is:

c(A) =
max

k
|σk|

min
k
|σk| = 8.558006× 106.

Since c(A) À 1, the inverse PSD problem is ill-
conditioned. Consequently, calculating only the Penrose in-
verse is not enough; it is necessary to regularize the problem.
For this, a new well-posed problem is solved such that its
solution correctly approximates the original solution.

4.2.2. Solution obtained by the Tikhonov regularization

In order to apply the Tikhonov regularization method, we
choose a collection of well-posed problems that depend on
the regularization parameterα. For each value of the param-
eterα, different problems are obtained and, consequently, a
different regularized solution. The solutions of well-posed
problems are in terms of the regularization parameter, which
may be chosen by applying Morozov’s discrepancy principle
or theL-curve method.

In this case, the data given by the turbidity spectrum vec-
tor τ and the matrixA are known, so the regularization prob-
lem consists in finding the regularized solutionfα ∈ R4 that
minimizes the Tikhonov functional given by:

Jα(f) : = ‖Af − τ‖2 + α2 ‖f‖2 ,

∀f ∈ R4, τ ∈ R3 y α > 0. (17)

Rev. Mex. Fis.70021304
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Appendix A demonstrates the existence of the minimum of
the Tikhonov functional, which will be used to solve the
synthetic application shown below. Let the exact solution
f(D) ∈ R4 given by:

f(D) =




5.9470× 1010

5.4496× 1010

5.1977× 1010

4.8776× 1010


 ,

which we want to approximate by the regularized solution
fα; in addition, it is true that the smaller the size of the reg-
ularization parameterα, the regularized solutionfα is closer
to the exact solutionf(D); that is,‖fα − f(D)‖ → 0 when
α → 0. In general, it is known that the regularized solution
fα can be obtained using the singular value decomposition of
the matrixA, given byA = USV, where:

U=

[−986.80841 160.03908 24.42638
−155.45419 −894.59020 −418.97778
−45.20122 −417.24798 907.66788

]
× 10−3,

S=

[
236.76079 0 0 0

0 60.59370× 10−6 0 0
0 0 27.66541× 10−6 0

]
,

V =



−0.413908 −0.315888 −0.103176 −0.847496
−0.493799 −0.425291 0.689643 0.315727
−0.523125 0.831208 0.172510 −0.075330
−0.557838 −0.168630 −0.695692 0.419991


 .

The regularized solution that minimizes the function (17) is
given by Eq. (39). In this case, it is true thatr = rank(A) <
n, so the sum of the regularized solution goes fromi = 1, r.
Given thatrank(A) = 3, then it is possible to write the regu-
larized solution to the inverse problem of estimating the PSD
using the SVD of matrixA as:

fα =
3∑

i=1

[
σi

α2 + σ2
i

ut
iτ

]
vi. (18)

Since the matrixA ∈ M3×4(R) is the matrix representa-
tion of the compact linear operatorK : R4 → R3, At ∈
M4×3(R) is the matrix representation of the adjoint operator
K∗ : R3 → R4, and the vectorsσ1 ≥ σ2 ≥ σ3 > 0, which
are given by Eq. (16), are the non-zero singular values of the
matrix A, then, there exist orthonormal sets{ui} ⊂ R3 and
{vi} ⊂ R4 given by the columns of the matrixU and ma-
trix V , respectively. Said orthonormal systems satisfy that
Avi = σiui andAtui = σivi with i ∈ I = {1, 2, 3} ⊂ N.

Similarly, it is known from the singular value decompo-
sition of A that there are more vectors to the rightvi than
vectors to the leftui to know; vectorsvi on the right are used
to find the regularized solutionfα, and they must satisfy that
ui = Avi/σi, with i = 1, 3. In this case, the condition is
true for columnsv1, v2, andv3, and for columnv4, Av4 ≈ 0.
Therefore, the orthonormal system(vi) is formed by the first
three columns of the matrixV of the DVS ofA. The reg-
ularization parameter is chosen adequately to calculate the

solutionfα. If we give values toα in such a way that each
case it is smaller, the following is obtained:

• Paraα = 1 :

fα =




4.38421797581138× 1010

5.23043693814276× 1010

5.54106671580672× 1010

5.90875761045696× 1010


 .

• Paraα = 0.5 :

fα =




4.38427660522684× 1010

5.23050687725977× 1010

5.54114092962522× 1010

5.90883665273824× 1010


 .

• Paraα = 0.3:

fα =




4.38428905001994× 1010

5.23052170833471× 1010

5.54115692854422× 1010

5.90885348533342× 1010


 .

With this, we have found the approximate solution to the in-
verse problem of estimating the PSD using the optical tech-
nique of turbidimetry.

5. Conclusions

The functionf(D) and the matrixA of the system are as-
sumed to be known to solve the direct problem related to the
inverse problem of estimating the particle size distribution.
Then, using the inverse Penrose matrix, the inverse problem
is solved, and is obtained that the estimated solution is differ-
ent from the exact solutionf(D). Therefore, the problem is
regularized by implementing Tikhonov’s regularization. Sin-
gular value decomposition is applied to matrixA, and val-
ues are given to the regularization parameterα. With this, an
adequate approximation to the original solutionf(D) is ob-
tained, which verifies that the particle size distribution is of
the logarithmic-normal type. There are specific methods to
obtain the regularization parameterα in such a way that it is
optimal; the study of these methods is beyond the scope of
this article, so it is left as a pending problem.

This work establishes a precedent for the use of the
inverse Penrose matrix and the Tikhonov regularization to
solve the inverse problem of estimating the particle size dis-
tribution since this problem has been studied in the literature
using least squares and neural networks. The limitations that
they found when solving the inverse problem are the lack of
a data bank that adjusts to the studied model and the lack of
a spectrophotometer to validate the results. For this reason, a
synthetic application has been solved.
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Appendix

A. Existence of a minimum for the Tikhonov
functional

To prove the existence of the minimum of the Tikhonov func-
tional, it needs to be proved that it is the limit of a Cauchy
sequence. To do this, we consider a minimizing sequence
{xn} ⊂ X, which satisfies that:

lim
n→∞

Jα(xn) = I = inf
x∈X

Jα(x). (A.1)

Let m,n ∈ N, then forxn andxm it is true that:

Jα(xn) + Jα(xm) = ‖Kxn − y‖2 + ‖Kxm − y‖2

+ α2 ‖xn‖2 + α2 ‖xm‖2 . (A.2)

Applying the binomial formula, we obtain:

α2

2

(
‖xn − xm‖2 + ‖xn + xm‖2

)

= α2 ‖xn‖2 + α2 ‖xm‖2 . (A.3)

Then, by substituting Eq. (A.3) into Eq. (A.2), we get:

Jα(xn) + Jα(xm) = ‖Kxn − y‖2 + ‖Kxm − y‖2

+
α2

2
‖xn − xm‖2 + 2α2

∥∥∥∥
xn + xm

2

∥∥∥∥
2

. (A.4)

On the other hand, we know that:

2
∥∥∥∥K

(
xn + xm

2

)
− y

∥∥∥∥
2

= 2
∥∥∥∥K

(
xn + xm

2

)
− 1

2
y − 1

2
y

∥∥∥∥
2

=
1
2
‖(Kxn − y) + (Kxm − y)‖2 . (A.5)

Furthermore, applying the binomial formula again to the last
term of (A.5), it is obtained:

‖(Kxn−y)+ (Kxm−y)‖2 + ‖(Kxn−y)− (Kxm−y)‖2

= 2 ‖Kxn−y‖2 +2 ‖Kxm−y‖2 . (A.6)

Then, by substituting Eq. (A.5) into Eq. (A.6), we get:

2
∥∥∥∥K

(
xn + xm

2

)
− y

∥∥∥∥
2

+
1
2
‖Kxn −Kxm‖2

= ‖Kxn − y‖2 + ‖Kxm − y‖2 . (A.7)

By substituting Eq. (A.7) into Eq. (A.4), we obtain:

Jα(xn) + Jα(xm) = 2
∥∥∥∥K

(
xn + xm

2

)
− y

∥∥∥∥
2

+
1
2
‖K(xn − xm)‖22 +

α2

2
||xn − xm||2

+ 2α2

∥∥∥∥
xn + xm

2

∥∥∥∥
2

. (A.8)

Given that:

2Jα

(
xn + xm

2

)
= 2

∥∥∥∥K

(
xn + xm

2

)
− y

∥∥∥∥
2

+ 2α2

∥∥∥∥
xn + xm

2

∥∥∥∥
2

,

the Eq. (A.8) can be rewritten as:

Jα(xn) + Jα(xm) = 2Jα

(
xn + xm

2

)

+
1
2
‖K(xn − xm)‖2 +

α2

2
‖xn − xm‖2 .

Moreover, as

lim
n,m→∞

Jα

(
xn + xm

2

)
= I,

then is must be satisfied thatJα(xn) + Jα(xm) ≥ 2I +
(α2/2) ‖xn − xm‖2 . Also, Jα(xn) + Jα(xm) → 2I, when
n, m → ∞. Therefore, we have that0 ≥ ‖xn − xm‖ ≥ 0.
This means that the sequence of vectors{xn} is a Cauchy
sequence. Therefore the sequence{xn} converges to some
xα ∈ X. Since the Tikhonov functional is continuous, then
Jα(xn) → Jα(xα); so, for Eq. (A.1), it is obtained that
Jα(xα) = I, and this proves the existence of a minimum
of Jα.

On the other hand, ifxα is considered to be the minimum
of Jα, then it must be fulfilled that:

Jα(xα) ≤ Jα(x), ∀x ∈ X. (A.9)

In addition, from Eq. (11), we have that:

Jα(x)− Jα(xα) =
(
‖Kx− y‖2 − ‖Kxα − y‖2

)

+ α2
(
‖x‖2 − ‖xα‖2

)
.

Given that:

‖Kx− y‖2 − ‖Kxα − y‖2

= 2Re(〈K∗(Kxα − y), x− xα〉)
+ ‖K(x− xα)‖2 ;

then,

Jα(x)− Jα(xα) = 2Re(〈K∗(Kxα − y), x− xα〉)

+ ||K(x− xα)||2 + α2
(
‖x‖2 − ‖xα‖2

)
. (A.10)
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By the binomial formula, we have that:

‖x‖2 = ‖xα + x− xα‖2 (A.11)

= ‖xα‖2 + ‖x− xα‖2 + 2Re (〈xα, x− xα〉) .
(A.12)

By substituting Eq. (A.11) into Eq. (A.10) and factoring
terms, we obtain:

Jα(x)− Jα(xα) = 2Re
(〈K∗(Kxα − y) + α2xα, x− xα〉

)

+ ‖K(x− xα)‖2 + α2 ‖x− xα‖2 .
(A.13)

Then, by substituting Eq. (A.12) into inequality (A.9), we
have:

0 ≤2Re
(〈K∗(Kxα − y) + α2xα, x− xα〉

)

+ ‖K(x− xα)‖2 + α2 ‖x− xα‖2 , ∀x ∈ X. (A.14)

In particular, ifx = xα + αz, for anyz ∈ X we have that:

0 ≤ 2Re
(〈K∗(Kxα − y) + α2xα, αz〉) + ‖K(αz)‖2

+ α2 ‖αz‖2 = 2αRe
(〈K∗(Kxα − y) + α2xα, z〉)

+ α2 ‖Kz‖2 + α4 ‖z‖2 .

Dividing by α > 0 and taking the limit asα → 0, we
conclude thatRe(〈K∗(Kxα − y) + α2xα, z〉) ≥ 0, for all
z ∈ X, henceK∗(Kxα − y) + α2xα = 0; that is,xα is a
solution to the normal equation:

α2xα + K∗Kxα = K∗y. (A.15)

Furthermore, the solutionxα is unique. That is, ifxl is a
solution of the normal Eq. (A.15), thenα2xα + K∗Kxα =
α2xl + K∗Kxl is obtained, which is only true ifxα = xl.
Thus, the following result is proven.
Theorem 1. Let K : X → Y be a linear and bounded
operator on Hilbert spaces andα > 0. Then the Tikhonov
functionalJα has a unique minimumxα ∈ X. This minimum
xα is the only solution of the normal equation:

α2xα + K∗Kxα = K∗y.

In particular, if matrixA is the matrix representation of
the linear and bounded operatorK : Rn → Rm and ma-
trix At is the matrix representation of the adjoint operator
K : Rm → Rn, on the canonical basis ofRn andRm, then
the normal equation given in Eq. (A.15) may be written as:

(
α2In + AtA

)
xα = Aty, α > 0, (A.16)

whereA ∈ Mm×n(R) andIn denotes then×n identity ma-
trix. If we consider the singular value decomposition of the
matrixA ∈ Mm×n(R) given byA = UΣV t, we have:

At = V ΣtU t. (A.17)

Then,AtA = (V ΣtU t)(UΣV t). Since the matricesU and
V are orthogonal, that is,U tU = Im andV V t = In, then
AtA = V ΣtΣV t. From here, we have:

α2In + AtA = V (α2In + ΣtΣ)V t; (A.18)

however,α2In + ΣtΣ = diag(α2 + σ2
1 , . . . , α2 + σ2

n); then,
Eq. (A.18) is equivalent to:

(
α2In + AtA

)
V

= V diag
(
α2 + σ2

1 , . . . , α2 + σ2
n

)
. (A.19)

Sinceα > 0, then the eigenvalues ofα2In + AtA are posi-
tive, that is, the matrixα2In +AtA is positive definite. Since
every positive defined matrix is invertible, thenα2In + AtA
is invertible, and from Eq. (A.19), its inverse is given by:

(
α2In + AtA

)−1

= V diag

(
1

α2 + σ2
1

, . . . ,
1

α2 + σ2
n

)
V t. (A.20)

Then, from Eq. (A.16), we obtain:

xα =
(
α2In + AtA

)−1
Aty; (A.21)

and by substituting Eqs. (A.20) and (A.17) into Eq. (A.21),
we have that the regularized solutionxα is given by:

xα = V diag

(
1

α2 + σ2
1

, . . . ,
1

α2 + σ2
n

)
V tV ΣtU ty.

Since the matrixV is orthogonal and

ΣtU ty =




σ1u
t
1y

...
σnut

ny


 ,

then it must fulfill that:

xα =
(
v1 . . . vn

)

× diag

(
1

α2 + σ2
1

, . . . ,
1

α2 + σ2
n

)



σ1u
t
1y

...
σnut

ny


 .

Therefore, the regularized solution using decomposition in
singular values is:

xα =
n∑

i=1

[
σi

α2 + σ2
i

ut
iy

]
vi. (A.22)
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i. Type of heterogeneous mixture made up of small particles of a
solid, dispersed in a liquid medium in which they cannot dis-
solve.

ii. Heterogeneous system consisting of two immiscible liquids.

iii. System in which distributed particles of one material is dis-
persed in a continuous phase of another material.

iv. Heterogeneous mixture formed by a solid powder or by small
insoluble particles that are dispersed in a liquid medium.

v. Characterized by particles of uniform size in a dispersed phase.

vi. Isotropic materials have identical material properties in all di-
rections at every given point.
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cana. 21 (2019) 81,www.smm.org.mx .

12. I. M. Cruz, Problemas lineales discretos mal planteados y sus
aplicaciones en restauración de iḿagenes digitales, Master’s
thesis, Universidad Nacional Autónoma de Ḿexico, Ciudad de
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