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Bright soliton of Stochastic perturbed Biswas-Milovic equation with
cubic-quintic-septic law having multiplicative white noise
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For the first time, the adopted stochastic form of the perturbed Biswas-Milovic equation with cubic-quintic-septic law having spatio-temporal
and chromatic dispersion in the presence of multiplicative white noise in Itô sense was presented and examined. The Biswas-Milovic equation
models numerous physical phenomena occurring in optical fiber. We analyzed the optical soliton solutions of the stochastic model with the
aid of a subversion of the new extended auxiliary equation method. Furthermore, we investigated the evaluation of the noise impacts and the
effects of some model parameters on the dynamics of the generated soliton. Finally, graphical depictions of the derived soliton types were
represented for some solution functions. The stochastic model and the derived results will contribute to the comprehension of the nonlinear
dynamics of pulse propagation in optical fibers which has great importance for the advancement of optical communication engineering.
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1. Introduction

The nonlinear stochastic partial differential equations
(SPDEs) consist of stochastic derivatives or noise terms. The
noise terms represent the random fluctuations or uncertainties
inherent in the system being modeled. SPDEs are of great
importance in the modeling of events with optical fibers, es-
pecially in optical communication. The existence of stochas-
tic terms gives rise to extra challenges and needs specialized
approaches for their analysis and solution. So, interpreting
physically the SPDEs, optical soliton solutions of SPDEs
have lately become the focus of attention in the literature.
In particular, adopted stochastic models are constantly being
developed in the literature in terms of models developed in
the fields of telecommunication, fibers, nano-fibers, optics,
and optoelectronics due to the importance of optical solitons.

The nonlinear Schrödinger equations (NLSEs) have a
principal role in engineering and various fields [1]. There-
fore, various models based on the Schrödinger equation have
been developed in the literature [2-9]. The stochastic NLSEs
which contain the stochastic term with multiplicative noise
have also a substantial role in engineering and scientific
fields. So, stochastic examinations on NLSE have been es-
pecially performed utilizing analytic approaches in recent
times. Some of these are as follows: Neirameh and Es-
lami examined stochastic chiral NLSE in Ref. [10]. Zayed
et al., studied the stochastic Sasa-Satsuma equation involv-
ing a multiplicative noise [11]. Cakiciogluet al. intro-
duced the stochastic dispersive Schrödinger-Hirota equation

with parabolic law nonlinearity [12]. Zayedet al., discussed
(2+1)-dimensional NLSE with spatio-temporal dispersion
(STD) [13]. Secer gained the stochastic optical soliton of
NLSE with Kerr law nonlinearity in Ref. [14]. In Ref. [15],
Mohamedet al., generated new optical soliton solutions of
the perturbed stochastic NLSE having generalized anti-cubic
nonlinearity. Stochastic solitons to Biswas-Arshed equation
with multiplicative white noise were earned in Refs. [16,17],
which includes the Wick-type stochastic NLSE with the con-
formable derivative. [18] presents the stochastic dark solitons
to higher-order NLSE. Additionally, optical soliton solutions
of various forms of NLSEs have been derived taking into ac-
count different conditions in Refs. [3,19-34].

The Biswas-Milovic equation (BME) [30], a generalized
version of the NLSE, is of key significance in modeling
the wave propagation of soliton transmission over long dis-
tances. Moreover, various versions of the BME have been
improved and examined in the literature. Some of these are
(2+1)-dimensional BME having Kerr, power, and parabolic
law nonlinearities [35], (2+1) and (3+1)-dimensional BME
[36], BME with STD and parabolic law [37], BME in pres-
ence dual-power law nonlinearity and multiplicative white
noise via It̂o calculus [38], the perturbated BME with
Kudryashov’s law of refractive index [39], BME having Kerr
law, parabolic law, power law, and dual power-law nonlin-
earities [40], BME in presence quadratic-cubic and parabolic
nonlinearities [41], time fractional BME [42, 43], and BME
with STD [44].
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In this paper, we aim to explore the optical soliton so-
lutions of the stochastic perturbed BME with cubic-quintic-
septic law in the presence of STD and chromatic disper-
sion having multiplicative white noise in Itô sense via sub-
version of the new extended auxiliary equation method
(SAEM246) [45].

Governing model

The adopted stochastic form of perturbed Biswas-Milovic
equation with cubic-quintic-septic law having chromatic dis-
persion and spatio-temporal in the presence of multiplicative
white noise in It̂o sense is put forth, for the first time, as:

i (ϑn)t + α (ϑn)xt + β (ϑn)xx + (c1|ϑ|2 + c2|ϑ|4

+ c3|ϑ|6)ϑn = i(λ
(|ϑ|2ϑn

)
x

+ τ
(|ϑ|2)

x
ϑn

+ µ|ϑ|2 (ϑn)x)− σ(ϑn − iα(ϑn)x) Wt(t), (1)

in whichn is BME to NLSE generalization parameter,α and
β symbolize the STD and group velocity dispersion coef-
ficients, c1, c2, c3 express cubic, quintic, and septic law of
nonlinearities of self-phase modulation, respectively. Fur-
thermore,τ is defined as a self-frequency shift coefficient
whereasλ, andµ are the coefficients of self-steepening and
nonlinear terms, respectively. Herein,σ stands for the noise
strength, andW (t) is the standard Wiener process which is
expressed as [46]:

W (t) =
∫ t

0

Φ(η)dW (η), η < t, (2)

whereη is defined as the stochastic variable. In particu-
lar, stochastic studies on equations modeling optical soliton
behavior come into prominence and become widespread in
recent years. However, stochastic studies on the BME are
scarcely any. Regarding the perturbed BME, there has been
no research reflected in the literature. In this aspect, as far
as we know, Eq. (1) has not been introduced before in the
literature.

The paper is arranged into five sections. Section 2 ex-
presses the mathematical analysis of Eq. (1). We describe
SAEM246 and its utilization to gain the soliton solutions of
the stochastic model in Sec. 3. Section 4 summarizes the
main findings and their significance. In Sec. 5, conclusions
are given.

2. Mathematical analysis of Eq. (1)

The following transformation is taken into account for the
model in Eq. (1):

ϑ(x, t) = U(ζ) eiφ(x,t),

φ(x, t) = −kx + ωt + σ(W (t)− σt) + ϕ0,

ζ = x− νt, (3)

in which ϑ(x, t) is the soliton pulse profile,U(ζ) states real
function which represents amplitude,ϕ0 is phase constant,
andk, ω, ν are frequency, wave number, and speed, which are
non-zero real values. Inserting Eq. (3) into Eq. (1), the imag-
inary and real parts of the resultant equation are presented in
the following structure, respectively:

n

(
σα(n− 1)

dW (t)
dt

+
((

kν − σ2 + ω
)
α− 2βk

)
n− ν

)
U ′Un+1 − ((λ + µ)n + 2λ + 2τ)U ′Un+3 = 0, (4)

(
σ (n− 1) (αkn− 1)

d

dt
W (t)− n

(((
σ2 − ω

)
α + kβ

)
kn− σ2 + ω

))Un+2 + c2Un+6

+ (c1 − k (λ + µ) n)Un+4 + c3Un+8 + nU ′′Un+1 − n (n− 1) (αν − β)Un (U ′)2 = 0, (5)

whereU = U(ζ) and Eq. (4) presents the following con-
straints:

ν =

(
ασ2 − αω + 2βk

)
n

αkn− 1
, τ = − (λ + µ) n + 2λ

2
. (6)

Herein, we need to add the following comment regarding
Eq. (4). Considering the first term of Eq. (4), we derive the
following expression as an algebraic condition:(

σα(n− 1)
dW (t)

dt

)
U ′Un+1 = 0. (7)

In Eq. (7), U ′ andUn+1 cannot be zero becauseU is non-
zero and has the second-order derivative as a solution func-
tion. SinceW (t) has a first-order derivative as the Wienerr
process, it is not possible fordW (t)/dt to be zero. Because

σ is noise strength andα is the model parameter, they are not
zero. Therefore,n must be 1. So, it can be simply interpreted
that the cubic-quintic-septic form of Eq. (1) is considered as
the NLSE form for BME. Moreover, this evaluation is pre-
sented for the first time in this study. So, by considering the
n = 1, Eq. (5) turns into the following form:

− (((
σ2 − ω

)
α + kβ

)
k − σ2 + ω

)U3 + c2U7

+ (c1 − k (λ + µ))U5 + c3U9 + U ′′U2 = 0. (8)

Balancing the termsU ′′U2, U9 in (8) by considering
Eqs. (13), (14), the balance constant is determined asJ=1/3.
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So, we obtain the requirement to perform the following trans-
formation:

U(ζ) = V1/3(ζ). (9)

Rearrangement of Eq. (8) and using Eq. (9) yields the follow-
ing nonlinear ordinary differential equation:

9 (c1 − (λ + µ) k)V(η)
8
3 + 9c2V 10

3 + 9(c3V2 − β k2

+ α
(
ω − σ2

)
k + σ2 − ω)V2

+ 2 (αν − β) (V ′)2 − 3 (αν − β)VV ′′ = 0. (10)

For integrability of Eq. (10), we must set,

c1 = k (λ + µ) , c2 = 0. (11)

As a result, the NLODE in Eq. (10) is formed as follows:

9
(
c3V2 + α(ω − σ2)k − βk2 + σ2 − ω

)V2

+ 2 (αν − β) (V ′)2 − 3 (αν − β)VV ′′ = 0. (12)

Balancing the termsV ′′V, V4 in Eq. (12), the balance con-
stant is determined as positive integer.

3. A subversion of the new extended auxiliary
equation method (SAEM246)

The SAEM246 [45] is derived from the subversion of well
known auxiliary equation [47-49]. The method offers that
Eq. (12) has a solution as the following truncated series form:

V(ζ) =
J∑

j=0

ΛjN j(ζ), ΛJ 6= 0, (13)

in which Λj are real constants,J is the positive integer bal-
ance constant to be computed considering the Eqs. (12), (13),
and (14) which is obtained as 2. The functionN (ζ) admits:

(
dN
dζ

)2

= ρ2N 2(ζ)
[
1− χ1N 2(ζ)− χ2N 4(ζ)

]
, (14)

in which ρ, χ1, χ2 are nonzero real values. One of the solu-
tions for Eq. (14) is given with the following structure [45]:

N (ζ) =

√
16e2ρζ

(e2ρζ + 4χ1)2 + 64χ2
. (15)

Considering thatJ is 2, Eq. (13) is rewritten in the fol-
lowing form:

V (ζ) = Λ0 + Λ1N (ζ) + Λ2N 2 (ζ) , Λ2 6= 0. (16)

Inserting Eq. (16) and its corresponding derivatives in
Eq. (12) and taking the identical various powers ofN (ζ) as
zero, the following system is earned:

N 0(ζ) :Λ2
0Ω1 = 0,

N 1(ζ) :
(
ρ2Ω2 − 6c3Λ2

0 + 6Ω1

)
Λ0Λ1 = 0,

N 2(ζ) :
(
ρ2Λ2

1 + 12ρ2Λ0Λ2

)
Ω2 − 9c3Λ2

0(Ω3 + 4Λ2
1)− 9Ω1Ω3 = 0,

N 3(ζ) :
(
15ρ2Ω2 − 18c3Λ2

0 − 18Ω1 − 8ρ2
)
Λ1Λ2 − 6

(
ρ2χ1Ω2 + 6c3Ω3

)
Λ0Λ1 = 0,

N 4(ζ) :2ρ2Ω2

(
2Λ2

2 − 4χ1Λ2
1 − 9χ1Λ0Λ2

)− 9c3

(
Λ2

0Λ
2
2 + 8Λ0Λ2

1Λ2 + Ω2
3

)− 9Λ2
2Ω1 = 0, (17)

N 5(ζ) :16ρ2χ1Ω2Λ1Λ2 + 9ρ2χ2Ω2Λ0Λ1 + 36c3Λ0Λ1Λ2
2 + 36c3Ω3Λ1Λ2 = 0,

N 6(ζ) :10ρ2χ1Ω2Λ2
2 + 7ρ2χ2Ω2Λ2

1 + 24ρ2χ2Ω2Λ0Λ2 + 36c3Λ0Λ3
2 + 54c3Λ2

1Λ
2
2 = 0,

N 7(ζ) :
(
25ρ2χ2Ω2 + 36c3Λ2

2

)
Λ1Λ2 = 0,

N 8(ζ) :
(
16ρ2χ2Ω2 + 9c3Λ2

2

)
Λ2

2 = 0,

in which

Ω1 = Λ2
0c3 + α

(
ω − σ2

)
k − β k2 + σ2 − ω, Ω2 =

(
−α

((−σ2 + ω
)
α− 2kβ

)

kα− 1
− β

)
,

and

Ω3 =
(
2Λ0Λ2 + Λ2

1

)
.

Solving the system in Eq. (17), we get:
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ω =
σ2(Υ + 9α2k2) + 4β ρ2(αk + 1) + 9 k2β(αk − 1)

Υ

χ1 = 0, Λ0 = 0, Λ1 = 0, Λ2 = −4
√

c3Υβχ2 ρ

c3Υ





. (18)

whereΥ = 4α2ρ2 + 9α2k2 − 18αk + 9 andc3Υβχ2 > 0. Unification of Eqs. (3), (9) (15),(16) allows to reach the solution
of Eq. (1):

ϑ1(x, t) = 16
1
3




Λ2e
2ρ

(
x+

((ω−σ2)α−2kβ)t

αk−1

)

(
e
2ρ

(
x+

((ω−σ2)α−2kβ)t

αk−1

)

+ 4χ1

)2

+ 64χ2




1
3

ei(−kx+ωt+ψ0+σ(W (t)−σt)), (19)

whereω, χ1, Λ2 are given in Eq. (18).

4. Results and discussion

This section consists of various graphics indicating the effectiveness of SAEM246 in gaining soliton solutions. Figure 1
consists of nine subfigures for the parametersα = 1, β = c3 = k = 0.5, ρ = 0.2, χ2 = 2, ψ0 = σ = 0: a) expresses the 3D
square of the modulus, b) depicts the contour view, c) illustrates the 2D square of the modulus, d) indicates the 3D imaginary
component,

FIGURE 1. Various views ofϑ1(x, t) for α = 1, β = c3 = k = 0.5, ρ = 0.2, χ2 = 2, ψ0 = σ = 0.
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FIGURE 2. The various projections ofϑ1(x, t) under the effect of noise effect.

e) demonstrates the contour view for the imaginary compo-
nent, f) represents the 2D imaginary component, g) indicates
the 3D real component, h) illustrates the contour view for the
real component, i) depicts the 2D real component. Figure 1a)
and 1c) display the bright solution ofϑ1(x, t) in Eq. (19).

Figure 2 is devoted to the examination of the impact of
σ. Figures 2a) and 2b) state the depictions of the real and
imaginary parts of Eq. (19), respectively, where the effect of
σ can be clearly observed. This effect is seen more clearly
when the graphs drawn forσ = 4 are compared with graphs
indicated in Figs. 1d)-1g) forσ = 0. The resulting effect
demonstrates itself in the structure of fluctuations. However,
in order to understand the impact ofσ more clearly, that is,
the situation occurring for increasing values ofσ, 2D portraits
are drawn. In Figs. 2c) and 2d), we indicate 2D projections
of Re(ϑ1(x, t)) and Im(ϑ1(x, t)) for σ = 0, 1, 2, 3, 4. In
Fig. 2d), firstly, the graph of Eq. (1) forσ = 0 (there is no
noise effect) is depicted (blue line). This depiction basically
has the same character as the wave behavior with Fig. 1i).
Then, the values of1, 2, 3, and4 for σ were given gradually
and theRe(ϑ1(x, t)) graph was hidden each time (solid red
to purple lines) in Fig. 2c). From Fig. 2c), oscillation (fluc-
tuation) is observed with a decrease in the amplitude of the

wave depending on the increasingσ values, and this fluc-
tuation decreases asσ approaches to zero. It is possible to
observe the effect for other values ofσ which are not limited
to theσ = 4 given in the graphic drawings. A similar exam-
ination with Fig. 2d) has been carried out forIm(ϑ1(x, t)).
This study also points out a situation similar to the comments
made forRe(ϑ1(x, t)). Therefore, as a general interpreta-
tion, it has been observed that for increasing values ofσ, it
has a fluctuating impact on the soliton in diverse values of
t. Investigations on whether this effect causes a constantly
increasing fluctuation depending on increasingσ values, and
whether the fluctuation continues (or decreases) after a cer-
tain σ value, are some of the topics that can be researched
for both the model presented in this study and other optical
models.

5. Conclusion

In this research paper, the optical solitons of the stochastic
perturbed Biswas-Milovic equation with cubic-quintic-septic
law in the presence of STD and chromatic dispersion having
by multiplicative white noise in It̂o sense were scrutinized
via SAEM246. We successfully reached the bright soliton.
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3D, contours, and 2D depictions were additionally drawn to
figure out the behavior of soliton for the generated solution.
Moreover, we intended to analyze the noise influence in terms
of Itô sense on soliton solution and presented the depictions
of the resultants in detail. In this research paper, it has been
observed that the effect ofσ is indicated as a fluctuation on
the soliton, this fluctuation increases depending on the in-
creasingσ values or decreases when it approaches the value

of t 6= 0. For both Eq. (1) and other equations, whether theσ
effect will continue as a continuous fluctuation depending on
the increasingσ value, whether there is a critical value where
the fluctuation stops, and the analysis of the fractional order
form of the Eq. (1) are open topics that can be researched
in the future. Because of introducing this stochastic problem
for the first time in this article, it reveals that the work will
conduce to some researchers working in this field.
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