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ATTEMPTS AT QUANTIZATION OF THE GRAVITATIONAL FIELD * +

Frederik J. Belinfante
Department of Physics, Purdue Universify, | afayette, Indiana, U.S. A.

The discovery of many new types of strange particles during recent years
has drawn new attention to the fact that we really don’t understand why those parti-
cles exist with the properties we observe. Why is a proton 1836 times heavier than
on electron? Why is there no neutral u meson of mass 200? Why is hc/e”
equal to 137? An ultimate theory of matter should explain such things.

Hlaeiﬁ'.e-.nl:u'.erg:L thinks that such an ultimate theory will describe all particle s
and all of their interactions by the behavior of one single field. Such a field theory
would necessarily be non-linear; otherwise, it could not account for the interactions.
Describing everything, it must also describe gravity. In order to get used to these
two features of the ultimate theory of matter, we do well if we prepare for the future
by studying now the non-linear theory of gravitation which we do already possess.

2

What keeps elementary particles together? Pais once suggested a glu e

made out of hypothetical *‘ f-particles ‘. Others " ® have suggested that perhaps

* Supported by National Science Foundation.

+|nvitad paper read before the joint meeting of the Mexican and American Physical Societies
in Mexico, August 31, 1955,
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it is the crookedness of spacetime itself which under interaction with the fiel d-
cannot untangle itself. This makes it interesting to consider gravity in the domain
of the quantum. The ultimate problem is complicated by the fact that perturbation
methods probably cannot handle it.

A complete and rigorous solution of the problem of interaction of all quantum
fields known, including gravity, is beyond our present capacity. All that the scien
tist can do is nibble at the circumference of aur present knowledge. Such nibbling
sets definite goals; insufficient goals in themselves; but, anyhow, we hope that th e
small results which we can attain will help us ot least fowards the ideal we have
in mind. The question | have been asked to discuss with you to-day, then, is how
far we have already nibbled, and, perhaps, at what we may be nibbling next,

For saving time, let me be schematic. The attempts at quantizing the gravi-
tational field | want to divide into three groups, as follows:

(1) Linear theories of gravitation in flat space, which seek to be conplete

in themselves,

(2) Thecries, usually in flat space, which seek to be approximations ta
Einstein’s theory, or a perturbation-theoretical treatment of Einstein’s
theory,

(3) Einstein’s non-linear but generally-covariant theory itself.

Our ultimate goal may be this third theory, but it also is the hardest of the
three. For an easy start,.one would prefer a theory of type (1). This is just the
problem at which we worked at Purdue until last year. Some of it has been published
in a report based on the doctor’s thesis of Swihart .

Such a linear theory of gravitation obviously cannot be generally covariant,
s0 we postulate Lorentz-covariance only, We start by postulating the most general
Lorentz-covariant Lagrangian for the gravitational potential tensor, that is compatible
with a linear theory and with the other usual requirements of simple field theorie s.
Because the heavy mass of matter is to be equal to the inert mass, the gravity field
should interact with the energy density tensor of other fields; possibly also wi t h
its trace as calculated neglecting gravity: This gives two interaction constant s

for the theory; and the free-gravity Lagrangian contains four un-known coefficients.
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1ese six constants, or, rather, their five ratios, then are to be adjusted later so as

to fit the experimental data.
7
Our theory therefore is a generalization of Moshinsky's theory of 1950, whose

Lagrangian had specific values for our constants. For the gravity field created by
given matter, Moshinsky’s Lagrangian led to Birkhoff’'s equations °. Forthe force
by which gravity acts back on matter, Moshinsky’s Lagrangian leads to a result diffe
rent from that postulated by Birkhoff. Birkhoff's postulate, in fact, probably violates
the principle of action and reaction. Moshinsky’s interaction of gravity with matter
would lead to an advance of the perihelion of planets which is six times too small.

We use the following principles for determining the values of the five ratios
of the six constants in our Lagrangian. Obvious requirements are:

1) In first approximation, the theory must predict the Kepler orbits forplanets;

Z) In second approximation, the perihelions of such orbits have to advance

in the observed way®
3) The bending of light rays passing the sun at some distance should take

10-11

the experimental value , which is equal to or larger than Einstein’s

theoretical value.

4) & 5) Merely for convenience, we have arbitrarily postulated that the
static gravitational potential tensor at a point P, near the sun stationary
at O, shall be independent of the direction of OP. This considerably
simplifies the theory, and allows us to put one of our constants equal to
zero, if af the same time we use ow fifth freedom of choice by putting
another constant equal to zero, Thus, in the free-gravity Lagrangian only
those terms are left, in which the two gradient operators are contracted
with each other.

We connot freely choose the value to be predicted by our theory for the gra-
vitational red shift., Our theoretical value for this red shift is already uniquely de-
termined by our first requirement of obtaining approximately Kepler orbits for th e
planets. We thus find for the red shift the same value as predicted by Einstei n's
theory. If Freundlich’s experimental criticism of this value would be correct o 1?

this would defeat not only Einstein’s theory , but it would kill our linear theory as
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well,

We thus dbtain a Lagrangian different from a mere linear approximation to
Einstein's theory, and also different from Moshinsky’s Lagrangian. Moshinsky's
Lagrangian should lead to only half the observed bending of light rays. The only
reason why he got in his paper the full observed amount, and why from his spinor matter
interaction he would have found a perihelion motion only three instead of six ti mes
too small if he had calculated it, is because he used Birkhoft's assumption of a
pressure inside the perfectly fluid sun probably some million times too large """, The
effect of the difference between his and our interactions be tween light and gravity
is negligible.

Once the Lagrangian has been determined, one can quantize. We found a

canonically conjugate momentum for every gravitational potential component. As |

. . a - " . 13-14
will mention later, this is never so in a generally covariant theory

,and thus
it seems that our linear theory cannot possibly be an approximation to Einstein’s
theory, whatever otherwise its merits may be.

We have completed the entire quantization program for our theory. We have
given a proof of the existence of an interaction representation, and thus we have
demonstrated the Lorentz-covariance of the commutation relations. This proof turn
ed out to be extremely complicated, and fook us many months. Just one source
of complication was in the fact that in Heisenberg representation one cannot simply
use the Cirac wave function ' as a probability amplitude to be quantized in the
usual way. First a new wave function has to be introduced. The work of the
DeWitt's "~ has shown that a similar difficulty arises in the generally-covariant
theory of interaction between the electron spinor field and Einstein’s gravita tional
field,

When we expressed our free-graviton energy in terms of occupation number
operators, it became clear that for avoiding negative-energy gravitons one shou | d
use a Gupta indefinite mefricie'w, and then impose an auxiliary condition on the
state vector. Unfortunately, this auxiliary condition is not rigorously conserved.

This is due to the fact that the source of the gravitational field in a linear theory

cannot be conserved. For, on the one hand, one would destroy the linearity of
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the theory, if one would include among the sources of gravity the gravitationat ener
gy itself; while, on the other hand, a falling stone transforming gravitational energy
into matter energy shows that, without such inclusion of gravitational energy, the
matter energy alone is not conserved,

The best we would do in our linear theory was postulating that the auxiliary
condition was satisfied when God created the universe. Since then, its validity slow
ly may have been worsening. This turns out to be equivalent with postulating that,
since the creation of the universe, matter may have been radiating retarded gravita -

tional fields*®. Therefore one may ask how much energy has been lost by acosler

ated matter such as a rotating double star in, say 10 %, or 10 *° years of existence
of the universe. L uckily | found this omount to be so small that there is no'reason
for worry. More important is that matter in absence of incident external gravitational
fields can be shown fo emit diways a bit m'e'.‘posifiw gravitational energy than negative
gravitational energy. Therefore, there is no danger either of an explosion of th e
universe in which matter suddenly goes wild under emission of negative-ener g y
gravitons.

Thus our theory saves face; but | agree that it is not a nice solution.
T herefore, let us now consider theories of type(d; those that are meant as approxi-
mations to Einstein’s rigorous theory

The eorliest attempts simply took the first linear approximation in on e x-
ponsion of Einstein’s theory in powers of the difference between the actual metric

Vey This leads to
an advance of the perihelion of planetary orbits, but not quite jenough of it. Therelore

Oy - ond its Lorentz-invariant flat-space appoximation

one does not feel happy unless one knows ot least how to dec! with the s e c ond
app roximation.

Progress was made by Papapetrou “©in 1948. He used a mathematical

trick first proposed and later mis-used by Rosen 2. The trick consists infir sit
choosing some preferred frame of reference, and then in that frame introducing the
Lorentz flat-space metric Yy besides the actual metric 9,, ° Under general
transformations then, Vv transforms as a tensor, and will lose its simple form,

except in a Lorentz manifold of frames of reference of which the original frame was
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one. |f somebody else uses a different Lorentz manifold as his starting poin t,

this would amount to o kind of gauge transformation of y °

Next, using this <y -metric, Papapetrou defined u#n:w energy-momentum densi-
ty tensor of matter and gravity together, which had the following two interestin g
properties: First, was rigorously conserved on account of the Einsteinian gra vi-
tational field equations. And, second, it was a symetric tensor.

Essentially, this energy density tensor was little else than the sum of the old-
fashionec symmetric matter tensor and non-symmetric gravity energy tensor plus what
one might call the ‘‘gravity spin energy density tensor’. Thus, one obtains a mixed
tensor, if the first index distinguishing energy from momentum is pulled down by
g,, Os acovariant index, and the other index referring to density or flux is kept
in a contravariant top position. Then, if in the result the first covariant index i s
pushed up again, but now by the 7metric , one obtains the symmetric tensor just
mentioned,

Papapetrou then re-wrote Einstein’s gravitational field equations using the
contravariant density tensor germon- qp' Y . superscripts instead of the variab les
ordinary- g #v-subscripts. He found this to take the form of a second-order diff er-
ential equation much alike that for the potentials in Lorentz-covariant Ma x w el |
theory. His new symmetric energy tensor figured in it as source of the field. | n
the Maxwell case, the differential operator simplifies to the Dalembertian, if on e
imposes the Lorentz condition on the potentials. Similarly, the differential operator
in Papapetrou’s equation simplifies to the Dalembertian, if one imposes De Donder’s

coordinate condition 3 ¢**/3x =0,

These facts served as the basis of Gupta's work on gruvity”-m. He starts
by suggesting that Papapetrou’s equation may be used for solving for the gravi -
tational field in successive approximations, using the lower approximations to the
gravity field in the Papapetrou energy tensor, for calculating then the next-higher
approximation as retarded solution from the simplified field equation.

Unfortunately, such a procedure brecks down, because the intermediate ap-
proximations to the Popapetrou stress tensor do not satisfy a conservation law in

this way, and then are meaningless as source for a gravitational field.

197



As to Gupta’'s quantization of the field, let me tirst remark that Gupta never
proved the Lorentz-covariance of his commutation relations. This Lorentz-covarian
ce is not entirely obvious, since Gupta, after expanding his L.agrangian, destroyed
its general covariance by using the auxiliary condition for simplifying if, much |ike
Fermi’s simplification of the Lorentz-covariant Lagrangian of Maxwell’s theory.

There is also an arbitrariness in the extent to which this simplificationis to
ce used in the higher-order terms.

Finally, Gupta's proof of conservation of the De Donder auxiliary condit i on
is incorrect, as it ignores the fact that the change of the Lagrangian leads to a - -

change in the conserved symmetric Papapetrou energy tensor as well. One can give
a more comp licated proof of the conservation of the De Donder condition; but with
Cupta's quantum-mechanical interpretation of the auxiliary condition that proof - -

breaks down, too. A way out of this difficulty is by first replacing all ordinary de-
21

1

rivatives in the term added to the Lagrangian by Rosen’s ‘y-covariant derivatives
| Y :

and then quantizing the yuv-field as well as the g -field. But the result is a

generally covariant theory even more complicated than Einstein’ s theory itself.

Therefore, let us rather roceed to the real problem: Guantization of --

Einstein's theory itself. The work done by Dirac” ", by Schild, Pirani, and Skinner s

by the DeWitt's ™ " but before and after all by Bergmann and his schoot 1420098

L

is of utmost interest, even if it has not been able yet to give the theory o practi-
cable form. What these workers have shown, though, is that in principle it is possible
to establish a consistent and covariant set of commuteation relations for the generally
covariant theory of gravity.

This result is obtained mainly by a careful study of the non-quantized -
theory, The fundamental difficulty, which quantization meets, was first discovered
by Rosenfeld™" in @ much neglected paper of 1930, and was later red iscovered by

1
dergmann

*in 1949. This difficulty consists in the fact that, in any theory in-
variant under a group of transformations characterized by arbitrary functions - -
£{xyzt) -and not just by constants v -, there necessarily must exis? identities

which hold between the canonical variables of such atheory. In electrodynamics

you all know such a relation: due to its gauge invariance, the momentum P4 cao-
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nonically conjugate to the electric potential @ vanishes. JSimilarly, due to th e
general covariance of Einstein’s theory of gravitation, there hold four so-called "’co

ordinate constraints’’ between the field variables and their conjugate momenta

-Tha

17:22
’

283 v
. - . - 15 2'4’
These constraints, also called’’'¢-equations’’ =, can be given explicitly ’

6
reason why they did not appear in my work with Swihart *, or in Gupta's work
is that we never had general covariance, and that Gupta destroyed his.

. 23
Dirac

has shown that these so-called *‘ primary‘’ constraints should appear
odded to the Hamiltonian with arbitrary coefficients. The Hamiltonian equation of

motion then express these arbitrary coefficients in terms of time derivatives of the
field variables, the so-called ** velocities*' . An important feature of Dirac’s theo
ryis that , ffom the start, it distinguishes so-called ** strong’ equations,w h i ¢ h

shall remain valid after quantization, from ‘‘weak‘’ equations, which become auxilia-
ry conditions. The quantum-mechanical interpretation of the |latter, and Dirac’s rule
that the product of two weak equations shall be strong, are points which need some

31:34
qualification, and have been explained by Bergmann

396,38

on the basis of ideas earlier
used by myself in quantum electrodynamics , and which essentially mean using
only a subspace of the conventional Hilbert space.

Typical for Dirac's work is that he considers all field equations to be only
weak equations, and so also the equations which define the canonical momenta i n
terms of velocities are weak.

Dirac points out that besides the primary constraints or ¢-equations, one

28 - ‘ '
number of suondary constraints or IlX-et::IUl::lh1|:::ns""'

must at t=0 also impose a finite
between the canonical variables, in order to preserve the constraints for later times.
An example of such a X-equation is divE = 4mp in Maxwell’s theory ;they usually
depend on interactions, while the ¢-equations do not. For gravity, these X-constraints

. 24
are formidable expressions .

The primary and secondary constraints fogether are again subdivided i nto
tfrst-class’’ and ‘‘second-class’’ constraints. First-class constraints are those
that have zero Poisson brackets with all other constraints, while second-class cons-
traints have some non-vanishing Poisson bracket with another second-classe cons-

traint, Examples of second-class constraints are the ones telling that the Dirac elec
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* *
fron wave function i is the canonical conjugate to 1) , while Y is th e

15 : . 23
canonical conjugate to "~ ; or also the relations telling in vector-meson theory

that some of the field variables are so-called ‘‘derived variables**®’. My own work

of 1940 tells that such derived variablies should not be quantized independently, but
should be treated as"fur;;:tions"a,of the variables from which they are derived. Dirac
arrives at this same result in a more sophisticated way. For this purpose he | ntro
duces a modification of the classical Poisson brackets, which others recently have

. 18,3 . A
called ‘’‘Dirac brackets*" *. Please do not confuse these Dirac brackets -° 34'

with Dirac’s bra’s and ketsaa

used in quantum-mechanical transformation theory for
indicating state vectors and labels on matrix elements.

The advantage of Dirac’s modified Poisson brackets is that, if they instead
of the conventional Poisson brackets are changed into quantum- mechanical comm v -

tators, this lead s auvtomatically to the proper quantization of derived variables.

The secon-class constraints then may be considered strong equations. The
work of Bergmann «:Im:llGalt:lberg:M has further justified this interpretation. They re-
defined the Dirac bracket, formally independent of the subdivision of constraints info
first-class and second-class ones, but under the condition that as Hilbert operator s
in quantum theory one does not consider just every field variable, but only tho se
combinations of them which generate a mapping of the physical subspace of Hilbert
space on itself. By ‘‘physical subspace’’ | mean here that part of Hilbert space
where all constraints are satisfied,

This excludes from being Hilbert variables not only all constraints, but also

what one may call their canonical conjugates. Let me give an example. In electro
dynamics, P, is a primary constraint variable , and (div E - 479 is a secondary
one. Fromregular quantization we therefore exclude not only P, and div E ,
but also their conjugates @ and divA . Thus, only the transverse waves in
A andin E are quantized in the usual way. This amounts exactly-to the s o-
called *‘ gauge-independent’’ quantum electrodynamics proposed in my work w i t h
Lomont a few years ngo“.

Bergmann suggests a similar treatfnent for the quantization of the gravitational

field” ' ®*, As there are 10 pairs of canonical variables, four ¢-constraints, and

200



four X-constraints, this will leave only two pairs of canonical variables to b e
quantized.

One can easily predict the consequence of this for a linear approximation of the
Theory in flat space. If in the Fourier expansion of the tield one use:s Kramers' decom
position of the transverse waves into left and right-hand circularly polarized vmssf
for each of the two indices of the space-space part of the g“-field, then aonly left-
left and right-right components are to be quantized Y7, All other components o f

g”? should be considered functions of the matter field or be eliminated by a
change of variables, as ® and div A in gauge-indepencient quantum el ectro
dynamics %8,

Let me conclude with a few sentences about the present outlook on the
quantum theory of gravitation. The trouble is that the constraints are so complicated
that nobody has yet succeeded|in proposing new variables which make the consiraints
to canonical variables which then could be equated to zero wherever they occur.
In the work on the rigorous Einstein theory, nobody seems to get beyond writin g
down some commutationrelations, and nothing practical has been done with t h e
latter. The only known method of introducing occupation-number operators, an d
thence obtaining a representation for creation and annihilation operators, as yet
seems to be that used by Gupta 17'22, which splits off, from the total Hamil tonian,
its larger part which is bilinear in the field, It may be necessary to follow such a n
approximation method for obtaining immediate results in the formulation of & quantum-
gravitational perturbation theory. This appoximation method should then also b e
applied to the discussion of the constraints, and for detfining in successive approxima-

36/ 34 ,
. During

tions the variables for a ‘gauge-independent’’ treatment of the theory
such work one should keep aware continuously of the results already obtained i n
the rigorous theory, which at each stage should be app roximated by the ex p a nsion

method.

For most any uninteresting application, the .expansion method will suffice.
A critical question will be whether its classical analogue will be able to yield the
advance of the planetary perihelion and the bending of light rays correctly. The most

interesting application of the theory of gravitation, to the theory of elementary parti-
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cles, however, is likely to requiere a more rigorous treatment.

DISCUSSION
QUESTION:

It was asked, to what extent the linear theory with its many constants sati s-

fies the principle of equivalence of heavy and inertial mass.

ANSWER:

By use of the condition imposed on the constants, that in first approximation

the planets shall describe Kepler orbits, the acceleration of a freely falling bo dy

may be written as

243'“,_9,[]+(f/2' N v2/c?] -fx,(y;g)/cQ,

if f is the numerical constant appearing in the formula fGM/c? R for the bending
of a light ray passing ot a distance R from the center of the sun of mass M .
For f= 4, this is the Einsteinian result. The value of the second interaction
constant does not matter as long as it satisfies the ‘‘Kepler‘‘condition. (It does
not even affect the constant f.) A beam of particles traveling horizontally a distance
L is deflected by Eﬂtﬂ/2 = QJGLQ/QV ?  instead of by g L?/2v?. Thediffer
ence (f/2-1) .Q,LQ /2¢? is too small for measurement except for astronomical
L -values; for instance, it amounts to between 10 and 20 gngstrﬁm‘units for L= 5

kilometers. Thus, particles of all velocities seem to fall equally fast.

QUESTION:
What about nucleons traveling with speed about one tenth of the speed o f
light inside a nucleus? Would not they make atoms with more intranuclear motion

drop faster than say hydrogen? |t is known from experiments that very accuratelythe

gravitational acceleration is the same for all matter.

ANSWER:
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This seems a serious argument. |t should be investigated what effect

the binding forces have on the gravitational acceleration of such compound matter.

FURTHER ANSWER ADDED BY INVESTIGATION IN SEPTEMBER:
Consider two apposite charges e; and e, circling around their common

center of mass. In absence of gravity, this motion may be described by coordinates

£, and £ as functions of a time 7, with d&,/dT= wx g, , di'éa/dT?

= -a:QWQ , | §1‘ + \é‘z‘ = | §d| , Where £d= iﬂ-éi is the mutual distance
of the particles. Trial solutions for the helical motion :‘1(11) and x,(t,) of

these two particles in presence of the gravitational field with potential h =

= GM/c?R % h_+gx/c® are obtained from  £,(7) and £, (7) by the trans-

O aviaW
formation

fi"-"(]"'Shi)T ’ 12=(]+Sh2)T '

X
s

15.:*51(14‘ Dh,) + kiff/Qcﬁ"' biitf/2 ,

where h1 =h°+g-x1/c2, etc, and where S, D, K, b, , b are ye

AYEN .V
undeter mined constants to be adjusted later.

2

The equations of motion for a charged particle in the gravitational fie | d

( of which the square is neglected systematically ) turn out to give for the acceleration

= ag*t(e/m) {(E+vxB/e)[1+h(1-f-fv¥/2c2(1-v¥/c") ]-

a
Mo Y

-v(E.v/c®) [1+h-fhv2/2c*3(1-v?/c%)] 1},

with a, given above, and with m , = mo/\l 1-v2/c2 .
Y
For simplicity's sake we have systematically neglected all magnetic, retar-

dation, and other radiative effects, except for the essential confribution-e b a/c?r
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to E due to the acceleration b g of the sowrce introduced by our trial solution . (We
neglect the much larger radial acceleration of the charge e, which is not the gr avi-
tational effect for which we are looking.) In this crude approximation, Max well’'s
equation for £ at the point x,= x + r, caused by the charge e, at x, ,are
solved by

E, (2)% eigt/r SN l-f(hn-g:ii/cg)/Q-(fi/Z + b 12,)'L/262] +

AW

+(e,/r) [fg/?-big]/2c2 .

We insert this ,51(2) containing b, inthe equationfor g, in the
approximation mentioned, and similarly 52(1)' containing b, is substituted for

E in the equation for a, . Weomitthe vxB term and the terms with E v2
g Y v

Y

or 5 yv_ in the equation of motion. We attempt to solve our equations for a,
and for 9, by our trial solution; by the fr&‘nsformnﬁons given, we firstexpre ss
all Xy and Xy in terms of §1, f thence also L= Xo= Xy while we exress
v, (dx /d'r)/(df /d'r) (dv /d'r)/(dtQ/d'r) etc., allinterms o f
ﬁ;‘ f and w. We choo:e the radn |§1| anc |<:,2 | of our trial solution
in s ﬁgh a way ﬂ:;t

3_ 4 — + 2
°1°2£d/‘§d =m w £, = m @ 51 .

Ay

We then find that for small values of t our trial solution solves the e-

quations of motion, if we choose the constants according to

k = (§/2-1), S=b =b,=1.

This shows that the particles describe a helical motion, in which the *‘ center o f

rotation ‘* of each particle has an acceleration bg =g (and NOT equal to -iﬁ)'
s o

Therefore, rotating electric dipoles fall all with the same gravitational acceleration

g, independent of the value of w, thatis, of the amount of internal kinetic

Y
energy.

restriction is imposed on the constants of the linear theory of gravitation by the

This result is obtained here for arbitrary value of f, so that no further
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postulate of the validity of the equivalence principle.

For f=4 we obtoin the (linearized) Einstein case. In this case, o v r
transformation from é , T to x,t just amounts fo the transformation from o freely
falling local inertiql frame of reference to the laboratory frame of reference occording
to the rules of the theory of general relativity, and our solution for E in that case
is obtained by this general coordinate transformation from the Coulomb field without

retardation in that local inertial system.
It is trusted or hoped that a calculation using half-retarded, half-ad vanced
fields and including magnetic effects and Ev® terms, will lead to essenti a 11y

similar resuylts.
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