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The spectra masses for heavy pentaquark using
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The Nikiforov-Uvarov method is an efficient technique for solving of heavy diquark systems. It has been used to derive analytic-exact energy
eigenvalues and eigenfunctions in fractional forms, which are useful in describing such systems. The potentials employed including the
Cornell potential, harmonic potential, and spin-spin interaction; have been updated with respect to previous studies. Mass spectra of heavy
pentaquarks were also calculated and compared to previous studies. The present results exhibit good experimental data agreement and are
improved. We deduce that the fractional models contribute greatly to the heavy pentaquark masses.
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1. Introduction

In 1962, Okun [1] introduced the idea of hadrons. In sepa-
rate developments, Gell-Seminal Mann [2] and Zweig [3, 4]
evaluated the quark model, that described common mesons
(qq̄) as [5] and baryons (qqq) as Refs. [6- 8]. Tetraquarks
(qqq̄q̄) and pentaquarks (q̄qqqq) are two examples of the
exotic hadrons that are composed of four or more quarks,
were initially proposed in [2], but [9] the first supposed dis-
coveries of exotic hadrons were not manufactured till the
start of 21 st century. Although the majority of ground-
state mesons and baryons are experimentally fully defined,
a few recently discovered states are in inquire about since
it is unknown which quark content and/or spin/parity they
contain [10-14] for a study of potential exotic states. The
hidden-charm pentaquarks are the most notable states of pen-
taquarks in recent years. In 2015, two hidden-charm pen-
taquark states, Pc(4380) and Pc(4450), were discovered by
the LHCb Collaboration in theJ/ψp invariant mass spec-
trum ofΛ0

b → J/ψ +p+K− [15]. The LHCb Collaboration
confirmed their results four years later, and thePc(4450) was
separated into thePc(4440) andPc(4457) states [16].

Up till now, an array of theories have been put forth
for the characteristics of pentaquarks. A diquark-diquark-
antiquark description of pentaquarks, for example, [17] uses
two interpolating currents to determine the mass of theE−−

state using the QCD sum rules. The perturbative chiral quark
model was used to examine the mass spectrum ofJp = 3/2
pentaquarks [18]. The authors in Ref. [19] determined the
masses of pentaquarks using a modified mass formula that
was applied to the masses of baryons. Some characteris-
tics of qqqq̄q pentaquark states, like their magnetic moments
and masses, which discovered with a complete description
of these particles in a constituent quark model [20]. A for-
mula was provided by Karliner and Lipkin [21] to obtain the
masses of pentaquark states. Charmonium-pentaquark states

were clarified using the diquark-triquark model [22]. The
main characteristics correspond to the experimental findings
found in [23] and are depended on the antiquark-diquark-
diquark scheme. Based on the idea that the QQqqq̄ pen-
taquarks are composite features of two diquarks and one an-
tiquark, a hypothetical model is used to study them. This
model contains Cornell potential, which is represented by the
equationVCornell = (−a/r) + br + c [24]. The pentaquark
model was constructed by the authors utilizing a number of
theories, despite the same potential being employed [25].

According to [26], the author solved a derivative Caputo
fractional Schr̈odinger wave equation using the quantitative
characteristic of the classical nonrelativistic Hamiltonian. A
common research topic in applied sciences, fractional-order
derivatives are essentially a natural extension of ordinary
derivatives [27, 28]. The Nikiforov-Uvarov approach has
been used to study the fractional radial Schrödinger equation
[29], and provides an analytical derivation of the eigenstate
solutions for the Woods-Saxon potential, harmonic oscilla-
tor potential, and Hulthen potential. The estimated bound
state of the N-dimensional fractional Schrödinger equation
was used by Daset al. [30] to calculate the mass spectra
of quarkonia. The fractional Schrödinger equation [31] is
obtained by using the Schrödinger equation in the normal
space and a fractional derivative of the Jumarie type in a
one-dimensional infinite potential. By using two reliable
analytical techniques, the conformable space-time fractional
Benney-Luke equation was determined [32].

The energy eigenvalues and related eigenfunctions for the
DFP were computed by the author as a formula of the frac-
tional parameter for any vibrational and rotational quantum
number values in N-dimensional space [33]. The fractional
Zakharov-Kuznetsov problem could be obtained via the con-
formable derivative and the Riccati technique [34]. Using the
conformable fractional Nikiforov-Uvarov approach, it illus-
trates that to solve the fractional radial Schrödinger equation
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analytically for the hot medium interaction potential [35]. In
order to get obvious solutions to fractional differential equa-
tions, the author [36] also offered a new generalized defini-
tion of the fractional derivative which offers advantages over
other earlier definitions.

Given that a pentaquark is the bound state of two diquarks
and an antiquark, we calculate the masses of pentaquarks
in the ground state in this work. The fundamental concept
that underlies the description of the diquark is the union of
any two quarks into a colorful quasi-bound state. First, uti-
lizing this method allows us to talk about the possibility of
applying the diquark principle in this situation. Second, to
determine more brief knowledge for the masses, expressions.
We used the generalized fractional Schrödinger equation with
the potential energy of quark interaction the Cornell poten-
tial, the harmonic potential, and the spin-dependent potential.
To our best knowledge, the fractional Schrödinger equation
is not considered in other works for calculating pentaquarks
masses. Our numerical results for the ground masses for the
various pentaquarks models with spin(1/2)−, (3/2)− and
(5/2)− are presented. Our results are consistent with the out-
comes of other researchs.

The paper is organized as follows: In Sec. 2, the extended
Nikiforov-Uvarov (ENU) method is briefly used to study the
generalized fractional derivative. In Sec. 3, the generalized
fractional Schr̈odinger equation (GFD-SE), which will be ob-
tained using the ENU, will be created by applying the gener-
alized fractional derivative (GFD) concept to the Schrödinger
equation for the current potential. In Sec. 4, both the heavy
diquark system and the pentaquark system will be utilized for
examining the method, and the findings will be presented. At
the end where the conclusion is stated.

2. The generalized fractional derivative with
the extended Nikiforov-Uvarov method
(GFD-ENU)

The extended Nikiforov-Uvarov (ENU) method is a gen-
eralization of the Nikiforov-Uvarov approach. As seen
in Ref. [37], both are typically employed in quantum
physics to acquire the eigenvalues and eigenfunctions of the
Schr̈odinger or Dirac equations in addition to any other equa-
tions which have to be translated into a hypergeometric form
for review. The applicability of the approach was effectively
demonstrated in a few physical situations after the NU was
generalized in Ref. [38] to the conformable fractional deriva-
tive. This section aims to expand the ENU within the GFD
construction. Take into account the following generalized
fractional differential equation in the standard form [33];

DGFD[DGFD[ψ(s)]] +
τ̃(s)
σ(s)

DGFD[ψ(s)]

+
σ̃(s)
σ2(s)

ψ(s) = 0, (1)

whereτ̃(s), σ(s), andσ̃(s) are polynomials with degrees of
no more than second, third and fourth, respectively. BY using
GFD [36], we express

DGFD[ψ(s)] =
Γ(β)

Γ(β − α− 1)
s1−α ψ́(s), (2)

DGFD[DGFD[ψ(s)]] =
(

Γ(β)
Γ(β − α− 1)

)2

×
(
(1− α) s1−2α ´́

ψ(s) + s2−2α ψ́(s)
)

. (3)

where0 < α ≤ 1, 0 < β ≤ 1, ψ́(s) in first derivative ofψ(s)
by using Eqs. (2), (3), we get;

´́
ψ(s) +

(1− α) s1−α σ(s) + τ̃(s)
s1−α σ(s)

´ψ(s)

+
(

Γ(β)
Γ(β − α− 1)

)−2
σ̃(s)

s2−2ασ2(s)
ψ(s) = 0. (4)

by describing the parameters for fractional;

τ̃f (s) = (1− α)s1−ασ(s) + τ̃(s), σf (s) = s1−ασ(s)

σ̃f (s) =
(

Γ(β)
Γ(β − α− 1)

)−2

σ̃(s). (5)

The generalized fractional extended Nikiforov-Uvarov
(ENU) equation is obtained in standard form,

´́
ψ(s) +

τ̃f (s)
σf (s)

´ψ(s) +
σ̃f (s)
σ2

f (s)
ψ(s) = 0. (6)

We use the next transformation to determine the solution to
Eq. (1);

ψ(s) = φ(s)X(s), (7)

It transforms Eq. (6) into a hypergeometric equation, where
φ(s) andX(s) are hypergeommetric functions.

σf (s) ´́
X(s) + τf (s) ´X(s) + λf (s) X(s) = 0, (8)

whereφ(s) satisfy

´φ(s)
φ(s)

=
πf (s)
σf (s)

, (9)

λf (s)− ´πf (s) = K(s), (10)

and the hypergeometric type functionX(s) is a polynomial
function that satisfies the Rodrigues relation.

Xn(s) =
Bn

ρ(s)
dn

dsn
(σn

f (s)ρ(s)), (11)

with the normalization constant isBn, the weighting function
is ρ(s), and the condition are achieved.

σ́fρ + ρ́ σf = τfρ. (12)
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The definition of the functionpif (s) is

πf (s) =
σ́f (s)− τ̃f (s)

2

±
√(

σ́f (s)−τ̃f (s)
2

)2

− σ̃f (s) + K(s)σf (s). (13)

Whenπ(s) is a second degree polynomial, it is an essential to
identify K(s) in order to calculateπ(s). Theλn(s) function
also uses the relation.

λn(s) = −n

2
τ́f (s)− n(n− 1)

6
´́σf (s). (14)

where

τf (s) = τ̃f (s) + 2πf (s). (15)

We determine the energy eigenvalues by solving Eqs. (10)
and (14) together.

3. The quark model

The Schr̈odinger equation describing two particles interact-
ing with symmetric potential illustrates how quark-antiquark
systems interact in the 3-dimensional space Refs. [39].

[
d2

dr2
+

2
r

d

dr
− l(l + 1)

r2

]
Rn,l(r)

= −2µ[E − V (r)] Rn,l(r). (16)

where l is the angular momentum andµ =
m1m2/(m1 + m2) represents the reduced mass for the di-
quark. The wave function consists of the following:

Rn,l(r) = r−1ψn,l(r), (17)

and we utilize the harmonic, spin-spin interaction, and Cor-
nell potential as our potential models.

V (r) = V (r) + Vspin(r), (18)

V (r) = ar2 + br +
c

r
, (19)

Vspin(r) = ηe−σ2r2
, η =

Aσ3S1.S2

2π3/2m1m2
. (20)

We use the basic approximation to solve the following equa-
tion analytically while taking into account thatr < 1 fm.
The following potential equation results from the function
approximatione−σ2r2 ≈ 1− σ2r2 + . . .

V (r) = η + +br + (a− ησ2)r2 +
c

r
. (21)

The parameter in this case determines how the smeared delta
should behave, and we use the formulaσ = 1.209 GeV [24].
Ac = 7.920 andAb = 3.087 [25] are connected to the strong
constant couplingαs in the one gluon exchange approxima-
tion, respectively.

The spins of the interacting particles in a spin-spin inter-
action areS1 andS2. S1.S2 = (1/2)[S(S + 1) − S1(S1 +
1)− S2(S2 + 1)], S is the total spin.

Two contributions are often present when two colored ob-
jects interact. One of them depends on theqq̄ potential found
in quantum physics through the gauge/string duality method,
while the other one defines the interaction between spins.
Color interaction is the name given to this potential, which
was identified using a virtual model based on a Cornell po-
tential [24].

Equation (16) becomes as the following form
[

d2

dr2
+ 2µ(E − V (r))− l(l + 1)

r2

]
ψn,l(r) = 0. (22)

Equation (22) is then expressed in the form of a dimensional fractional by taking the valuesr = z/A, µ̀ = µ/A andÈ = E/A
(whereA = 1 GeV);

DGFD[DGFD[ψn,l(z)]] +
(

2µ̀

[
È − V (z)

A

]
− l(l + 1)

z2α

)
ψn,l(z) = 0. (23)

We use the formulaw = Γ(β)/Γ(β − α− 1). For the solution of the fractional Schrödinger equation (23), use the formulas,
à = (a− ησ2/A), b̀ = b/A andc̀ = c/A. Equation (3) is applied.

d2ψn,l(z)
dz2

+
1− α

z

dψn,l(z)
dz

+
1

w2
[2µ̀ (È − ὴ) z2α−2 − 2µ̀ à z4α−2

− 2µ̀ b̀ z3α−2 − 2µ̀ c̀ zα−2 − l(l + 1)
z2

] ψn,l(z) = 0.

(24)

Equation (24) is reduced to utilizing the radial fractional wave functionψn,l(z) = z−αφn,l(z),

´́
φn,l(z)n,l +

1− α

z
´φn,l(z) +

1
z2

[−c1 z4α − c2 z3α − c3 z2α − c4 zα − c5] φn,l(z) = 0, (25)
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where

c1 =
2µ̀ à

A3w2
, c2 =

2µ̀ b̀

A2w2
, c3 = −2µ̀ (È − ὴ)

w2
, c4 =

2µ̀ c̀

w2
, c5 =

l(l + 1)
w2

. (26)

Using the ENU- GFD approach, and by contrasting Eqs. (6) and (25), we discover

τ̃ =(1− α), σf = z, σ̄f = −c1z
4α − c2z

3α − c3z
2α − c4z

α − c5. (27)

Then we have

πf (z) =
α

2
±

√
c1z4α + c2z3α + c3z2α + c4zα + c̄5 + z K(z). (28)

wherec̄5 = c5 + (α/4), we obtain a linear functionK(z) = (Az2α−1 + Bzα−1), which causes the function under the root in
the previous formula to be quadratic(Qz2α + Pzα + F )2 So,

πf (z) =
α

2
± (Qz2α + P zα + F ) (29)

We get the subsequent solutions after comparing the values of the coefficients of Eqs. (28) and (29).

Q =±√c1, P =
±c2

2
√

c1
, F = ±√c̄5, A =

c2
2

4c1
± 2

√
c1c̄5 − c3, B = ± c2√

c1c̄5
− c4. (30)

Thus

τf (z) = 1± 2
(
Q z2α + P zα + F

)
. (31)

By Eq. (10), we find

λ(z) = Az2α−1 + Bzα−1 + 2Qα z2α−1 + α P z2α−1, (32)

and by using Eq. (14), we find

λn(z) = −n
(
2Qα z2α−1 + α P z2α−1

)
. (33)

The energy eigenvalue of Eq. (25) is given by Eqs. (32) and (33).

En,l = −A2w2

(
b2

4(a− η2)
−

√
2(a− η2)

µ

[
α(n + 1) +

√
l(l + 1)

w2
+

α2

4

])
+ η. (34)

The expression for the functionφ(z) in Eq. (9) appears to be this:

φ(z) = z
F α
2 e( P

α zα+ Q
2α z2α), (35)

where Eq. (30) provides P, Q, and F, and Eq. (12) provides the functionρ(z);

ρ(z) = z2F e(2Pαzα+ Q
α z2α), (36)

and then the functionXn(z) is

Xn(z) = Bn z−2F e(−2P
α zα−Q

α z2α) Dn

Dzn
[ z2F+n e( 2P

α zα+ Q
α z2α) ], (37)

thenψnl(z) = φ(z)X(z) the fractional radial eigen-function get as;

ψn,l(z) = Nnl z
α F
2 −2F−α e(−P

α zα− Q
2α z2α) Dn

Dzn
[z2F+n e( 2P

α zα+ Q
α z2α)]. (38)

For eachn = 0, 1, 2, 3, ..., we will determine the eigenvalue energy and related eigen-function.
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TABLE I. The diquark masses(in GeV).

Diquark M (our) MExp Error % Diquark M (our) MExp Error %

[bu]s=0 5.28 5.279 0.012 [cu]s=0 1.87 1.864 0.32

{bu}s=1 5.324 5.325 0.019 {cu}s=1 2.422 2.42 0.08

[bb]s=0 9.396 9.389 0.07 [cc]s=0 2.95 2.98 0.99

{bb}s=1 9.46 9.461 0.01 {cc}s=1 3.094 3.096 0.06

FIGURE 1. The S-states mass spectra for charmonium and bottomonium (in GeV) at different fractional orders.

4. Result and discussion

4.1. Diquark

In this part, we calculate the heavy diquark masses in 3-
dimensional using equation (39), as given in Table I. The fol-
lowing notation considered that the[Qq] and{Qq} diquarks
have spins of0 and 1, respectively.

M = m1 + m2 + En,l, (39)

whereEnl is determined by Eq. (34). The potential param-
eters a, b, and c are obtained by fitting the mass experi-
mental data simultaneously. Using the quark massesmc =
1.459 GeV, mu,d = mq = 0.323 GeV, mb = 4.783 GeV
Ref. [40].

According to Eqs. (34) and (39), respectively, Fig. 1
presents the S-states mass spectra for charmonium and bot-
tomonium with the different fractional ordersα andβ. When
the fractional order decreases, the projected masses accord
well with the experimental results, compared to the classical
example atα = β = 1. It also implies that these factors are
crucial for producing accurate predictions of particle masses
from theoretical calculations. The tables below provide fur-
ther evidence of this theory, showing how varying values of
both parameters can lead to different results in terms of accu-
racy compared with experimentally measured values; as they
decrease so too does the discrepancy between prediction and
reality indicating that these fractional orders are indeed play-
ing an important part in our understanding here.

The diquark is a bound state of two quarks, and its size
is slightly larger than the total of its constituent quarks as
shown in Table I. To calculate the binding energy, we use
E = M −m1 −m2, whereM , m1 andm2 are respectively
the mass of diquark system, first quark, and second quark.
The predicted values for the diquark masses in our work are
compared with their experiment data and calculated the error
of them that consistently smaller by about1%.

In Table II, with fractional parametersα = 0.79 and
β = 0.65, we can calculate charmonium spectrum mass in
different states; these results are better than those reported
in recent Refs [39, 41, 42]. The calculated values for ground
states 1S and 1P were close to experimental data which indi-
cates that our calculation was accurate. In conclusion, it can
be said that by using fractional parameters such asα = 0.79,
and β = 0.65. We could accurately predict charmonium
spectrum masses from their corresponding binding energies.
This helps us understand how particles interact at subatomic
levels while also providing an insight into particle physics
research more generally. In order to give an acceptable level
of precision when compared to other studies, we additionally
determined the total error for all states as follows: total error
=

∑
states|(MOur−MExp)/nMExp|% whereMOur is the pre-

dicted mass andMExp is the experimental mass, andn is the
number of states. The overall error for the charmonium mass
of 1.95% obtained in the present study is shown in Table II,
and it is less than the total error reported in earlier studies.
The asymptotic iteration approach with Cornell potential is
used in Ref. [39] for solving the Schrödinger equation. The
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TABLE II. Mass spectra of charmomium atα = 0.79, β = 0.65, and comparison with other works (in GeV).

state Mour Ref. [39] Ref. [41] Ref. [42] Ref. [43] Ref. [44] Exp. Error of state

1S 3.094 3.096 3.096 3.239 3.096 3.096 3.0780 .064

1P 3.53 3.214 3.57 3.372 3.344 3.255 3.52 .28

2S 3.55 3.412 3.58 3.646 3.786 3.504 3.64 2.47

1D 4.01 3.686 4.05 3.604 3.769 3.686 3.76 6.75

2P 4.003 3.773 4.04 3.779 4.034 3.779 3.9 2.64

3S 4.004 4.275 4.04 4.052 4.27 4.04 4.04 0.89

4S 4.44 4.865 4.51 4.459 4.621 4.269 4.41 0.68

Total Error 1.95 5.19 2.38 2.52 3.3 2.87

TABLE III. Mass spectra of bottomonium atα = 0.8, β = 0.65, and comparison with other works (in GeV).

state Mour Ref. [39] Ref. [41] Ref. [42] Ref. [43] Ref. [44] Exp. Error of state

1S 9.46 9.460 9.46 9.495 9.444 9.51 9.46 0

1P 9.899 9.492 9.85 9.657 9.711 9.862 9.9 0.01

2S 9.896 10.023 9.84 10.023 9.946 10.627 10.023 1.26

1D 10.25 9.551 10.23 10.161 10.161 10.214 10.16 0.88

2P 10.335 10.038 10.22 10.26 10.213 10.944 10.266 0.67

3S 10.33 10.585 10.21 10.355 10447 11.726 10.355 0.24

4S 10.77 11.148 10.58 10.579 10.949 12.834 10.58 1.79

Total Error 0.65 2.86 0.69 1.37 1.07 6.98 -

Schr̈odinger equation with Cornell potential and harmonic
potential has been solved with the generalized fractional
derivative in Ref. [41]. In Ref. [44], an analytical exact it-
eration method is used to determine the radial Schrödinger
equation in fractional form (atα = 0.97).

In Table III, we achieve an acceptable result by utilizing
the fractional parametersα = 0.8 andβ = 0.65 to obtain the
mass spectra of bottomonium. We used Eq. (32) and the val-
ues of the experimental data for the ground states 1S and 1P
to determine the potential parameters. Utilizing these char-
acteristics, we predicted more states for bottomonium. Addi-
tionally, we point out that there is a good agreement between
our findings and those of the current Refs. [39, 41–44]. Ac-
cording to Table III, we found a total error for bottomonium
mass of 0.65% in our study, which is lower than the total error
found in those works.

4.2. Pentaquark

Only heavy states containing at least one heavy particle, such
as a charm or bottom quark, allow for the extension of the
one-gluon-exchange approximation and the application of
an immediate potential. We determine the masses of pen-
taquarks that include at least one heavy quark as a result. Ad-
ditionally, we only take into account states where each state’s
orbital angular momentum isl = 0. This method allows us

to explore how diquarks form bound states and obtain more
concise information for mass expressions.

In order to accurately calculate the masses of these pen-
taquarks using this model, it is necessary to take into account
various factors such as spin configurations, flavor and color
combinations between them that is another type of charge or
attraction could affect their binding energy levels, and quark
flavor describes a certain type of positive or negative partial
charge. The union of any two quarks to form a colored quasi-
bound state is the physical theory behind the diquark’s expla-
nation, so we assume the pentaquark to be the bound state of
two heavy diquarks and antiquarks. To do so requires careful
consideration when creating wave functions for each possible
combination including all possible permutations before ap-
plying methods such as the variational principle or Rayleigh-
Ritz technique in order to determine their energies accurately.
Additionally, since there are multiple possibilities due to dif-
ferent types of particles involved (i.e., light/heavy quark), it is
important that any calculations are done also include contri-
butions from other interactions like gluon exchange between
them too; otherwise, results may not be accurate enough for
practical applications like predicting properties related to par-
ticle production rates, etc... We obtain the numerical results
for ground state masses for the pentaquarks model stated in
Fig. 2 and with spin(1/2)−, (3/2)− and(5/2)−.

Rev. Mex. Fis.70030801



THE SPECTRA MASSES FOR HEAVY PENTAQUARK USING GENERALIZED FRACTIONAL OF THE EXTENDED. . . 7

TABLE IV. The masses of pentaquark atJp = ( 3
2
)− in GeV.

Pentaqurk M (our) M (other)

4.64 [24]

[cu]s=0[cu]s=1ū 5.36 4.33 [25]

4.21 [40]

3.873 [45]

[cu]s=1[cu]s=0ū 5.55 4.57 [24]

3.882 [45]

5.75 [25]

[cu]s=1[cu]s=0c̄ 6.29 7.17 [40]

6.047 [48]

[cu]s=0[cu]s=1c̄ 6.42 -

[cc]s=1[cc]s=0ū 7.505 6.867 [46]

[cc]s=0[cc]s=1ū 7.57 -

[cc]s=1[cc]s=0c̄ 8.42 8.42 [47]

[cc]s=0[cc]s=1c̄ 8.43 -

11.19 [24]

[bu]s=1[bu]s=0ū 11.899 11.17 [25]

11.12 [40]

[bu]s=0[bu]s=1ū 11.203 11.16 [24]

15.95 [25]

[bu]s=1[bu]s=0b̄ 16.03 16.86 [40]

15.97 [48]

[bu]s=0[bu]s=1b̄ 16.045 -

[bb]s=1[bb]s=0ū 21.22 19.68 [46]

[bb]s=0[bb]s=1ū 21.43 -

[bb]s=1[bb]s=0b̄ 24.73 25.179 [47]

[bb]s=0[bb]s=1b̄ 24.78 -

As illustrated in Fig. 2, the mass of pentaquarks with two
heavy diquarks is calculated, with each diquark containing
at least one heavy quark. The mass of heavy pentaquarks at
[(1/2)−, (3/2)−, and (5/2)−] spin getting from the four-
quark state to one antiquark interaction is measured using
Eq. (39) for a diquark-diquark system with the considered
potential. where M is the pentaquark mass andm1 andm2

are the masses of two diquarks and an antiquark, respectively.
The masses of pentaquarks are shown in Tables IV, V, and VI,
with l = 0 set in all cases, the states having negative parity,
and our results compared to Refs. [24,25,40,45–48].

Table IV display the pentaquark masses based on the spin
(1/2)− and negative parity, based on the results of Table I.
Table V reports the identical findings but for pentaquarks
based on the spin(3/2)−. The spin(5/2)− pentaquark re-
sults are also included in Table VI. Pentaquarks with spin
(1/2)− range in mass from5.36 to 24.78 GeV, whereas those
with spin(3/2)− and (5/2)− range in mass from5.32 to

FIGURE 2. The form of pentaquark QqQq̄q.

TABLE V. The masses of pentaquark atJp = (3/2)− in GeV.

Pentaquark M (our) M (others)

4.62 [24]

[cu]s=1[cu]s=1ū 5.32 4.76 [25]

5.35 [40]

3.835 [45]

4.72 [24]

[cu]s=1[cu]s=0ū 5.607 4.87 [25]

5.58 [40]

3.855 [45]

6.15 [25]

[cu]s=1[cu]s=0c̄ 6.42 7.12 [40]

5.922 [48]

[cu]s=1[cu]s=1c̄ 6.34 6.75 [25]

7.27 [40]

[cc]s=1[cc]s=0ū 7.373 6.76 [46]

[cc]s=1[cc]s=1ū 8.41 -

[cc]s=1[cc]s=0c̄ 8.366 8.426 [47]

[cc]s=1[cc]s=1c̄ 9.32 -

11.18 [24]

[bu]s=1[bu]s=0ū 11.739 11.47 [25]

11.24 [40]

11.18 [24]

[bu]s=1[bu]s=1ū 12.02 11.47 [25]

11.24 [40]

[bu]s=1[bu]s=0b̄ 16.03 16.01 [40]

15.88 [48]

[bu]s=1[bu]s=1b̄ 16.44 16.02 [40]

[bb]s=1[bb]s=0ū 20.89 19.68 [46]

[bb]s=1[bb]s=1ū 20.204 -

[bb]s=1[bb]s=0b̄ 24.76 25.178 [47]

[bb]s=1[bb]s=1b̄ 23.28 -

24.76 and6.04 to 23.22 GeV, respectively. The predicted val-
ues for the pentaquark masses in this work are consistently
larger by about120 MeV compared to the values in Refs.
[24, 25, 40]. The complete classification of ground state hid-
den charmm compact pentaquarks have been provided [45]
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TABLE VI. The masses of pentaquark atJp = (52)− in GeV.

Pentaquark M (our) M (other)

4.75 [24]

[cu]s=1[cu]s=1ū 6.04 4.87 [25]

4.85 [40]

[cu]s=1[cu]s=1c̄ 6.585 7.09 [25]

7.51 [40]

[cc]s=1[cc]s=1ū 9.056 -

[cc]s=1[cc]s=1c̄ 9.14 8.429 [47]

11.22 [24]

[bu]s=1[bu]s=1ū 12.62 11.69 [25]

11.18 [40]

[bu]s=1[bu]s=1b̄ 16.47 16.17 [25]

17.17 [40]

[bb]s=1[bb]s=1ū 18.813 -

[bb]s=1[bb]s=1b̄ 23.22 25.17 [47]

and their mass spectrum are studied, and their masses are
smaller by150 MeV compared to our result. The author
of Ref. [46] studies the pentaquarks with four heavy quarks
that have the normalQQQQq̄ structure, inside the model of
chromomagnetic interaction. The predicted values for our
pentaquark masses are consistently larger by about150 MeV
compared to the values in Ref. [46]. In Ref. [47], the chiral
quark model and quark delocalization color screening model
are used to systematically examine fully heavy pentaquarks.
The predicted values for the heavy pentaquark masses in theis
reference are consistently larger by about90 MeV compared
to our values. The author examined the mass splittings for
pentaquark states with the structureQQQqq̄ in a chromo-
magnetic model in Ref. [48], and their masses are smaller by
20 MeV compared to our result.

5. Conclusion

An effective method for resolving the Schrödinger equation
with the harmonic potential, the spin-spin interaction, and
the Cornell potential is the generalized fractional Nikiforov-
Uvarov extended method. The associated energy eigenvalues
and wave functions, which are dependent on the fractional
parametersα, β, are obtained. Graphical illustrations have
been used to show how the fractional parameter affects the
charmomium and bottomonium masses. We observed that
decreasing the fractional parametersα, β greatly improves
the agreement between the predicted mass values and the ex-
perimental results. As a result, we obtain the conclusion that
the diquark masses are better constrained at lower fractional
parameter values than they would be in the classical case at
α, β.

We also noticed that the addition of the spin-spin inter-
action and the harmonic force to the potential found in re-
search [41] led to improvement in the result and a reduction
in the total error rate from2.38% to 1.95% in charmomium
masses, and bottomonium mass from0.69% to 0.65%. Both
pentaquark and heavy diquark systems were used to assess
the method. To know that the pentaquark has not previously
been investigated under the fractional and this potential, and
we proved in our research the closeness of our findings with
previous studies and their improvement. Our results indi-
cated an acceptable level of agreement when compared to
other commonly utilized models. The pentaquark and heavy
meson masses are well described by the examination of the
analytical solution of the fractional radial Schrödinger equa-
tion with the current potential. We hope to extend this model
under extreme conditions similar to those described in Refs.
[49-52].
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