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Linear entropy in the atom-field interaction at finite temperature
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We study the atom-field interaction at finite temperature and in the dispersive regime. We show that the master equation for this system may
be solved with the use of superoperator techniques. We calculate the linear entropy in case the field is initially in a coherent state and the
atom in a superposition of its ground and excited states.
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1. Introduction

One of the mots important quantities to measure entangle-
ment between two subsystems [1,2] is the von Neumann en-
tropy [3]. It defines, among other things and very clearly,
when two subsystems are entangled. In order to calculate the
von Neumann entropy for one of the subsystems usually it is
used the Araki-Lieb inequality [4, 5], that allows, when ini-
tially the two sub-systems are found in pure states, to relate
the two sub-systems entropies after they interact. To achieve
this it is necessary to perform a partial trace on the system,
such that we remain with only one subsystem described by its
density matrix which is, in the most general case, a so-called
“statistical mixture” state. It is more difficult the calculation
of the entropy when one studies statistical mixtures [5,6] be-
cause it is a (logarithmic) function of the density matrix and
the calculation may become extremely complicated [7,8].

One of the interactions where entanglement is usually
studied is the resonant atom field interaction [9] where it is
well known that the atomic inversion shows collapses and re-
vivals of the Rabi oscillations [10–12]. Such revivals may
be considered as a first measurement of the field as it gives
light on the nature of the photon distribution of the cavity
field: For instance, in the case that an initial squeezed state
is considered, the atomic inversion shows so-called ringing
revivals [10,11]. Entropy, together with the atomic inversion,
may be used to obtain information about the non-classicality
of a given state [6]. For example, if at an specific time, the
atomic inversion is in the collapse region and the entropy of
a field initially prepared in an squeezed state is close to zero
it is well-known that a superposition of squeezed states may
be generated [11].

However, if a superposition of coherent states, the so-
called Schr̈odinger cat states, is considered as initial state,
the revival of oscillations occurs sooner [12] than that of a
single coherent state [13]. But, if a mixture of coherent states

is initially considered, the revival of Rabi oscillations appear
as in the case of a single coherent state. This indicates that
the atomic inversion, together with the degree of mixedness
of states may give information about the initial state used in
a given interaction [5, 14, 15]. Such mixedness may be mea-
sured via the von Neumann entropy.

The von Neumann entropy is given by the expression

S = −Tr{ρ ln ρ}, (1)

whereρ, that defines the state of the system, is the density
matrix andTr means the trace over the system’s degrees of
freedom. Calculation of this quantity, however, may become
a difficult task as mentioned before. A more convenient quan-
tity to calculate because of its simplicity that however may be
used as it gives information about the purity of any of the sus-
bsystems, atom and field, is the linear entropy [16], defined
as

SL = 1− Tr{ρ2}. (2)

The eigenbasis of the density matrix may be used to show
that

Tr{ρ2} =
∑

n

ρ2
n ≤

∑
n

ρn = 1, (3)

where the equality holds for pure states only. ThereforeSL

uniquely discriminates between pure and mixed states, just as
the von Neumann entropy does.

In the atom-field interaction there are effects such as de-
coherence that play a strong role in the purity of the states of
quantum systems [17]. Effects of environment strongly dam-
age entanglement and the nonclassicality of states of light
[18]. Entanglement may be even damaged by an environ-
ment where gravitational fluctuations are considered [19,20].
Moreover, studies to endure quantum coherence by using
photon indistinguishability in noisy quantum networks have
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been performed [21]. When an environment is taken into ac-
count, however, complete information about an initial quan-
tum state may be still recovered by using reconstruction tech-
niques [22]. The damage becomes worst in the case that the
environment is at finite temperature as the bath injects pho-
tons into the cavity destroying faster the possible coherences
of the quantized field.

In this contribution we study this case and show how to
calculate the linear entropy in the dispersive interaction be-
tween a two-level atom and a quantized field when we con-
sider losses at temperatureT > 0. In the next Section we
present the master equation that describes this system and
show how to solve it, then in Sec. 3 we calculate the field lin-
ear entropy and do some numerical analysis in Sec. 4. Sec-
tion 5 is left for conclusions.

2. Master equation for a real cavity

The master equation for a two- level atom interacting with a
quantized electromagnetic field in the dispersive regime,i.e.,
when the atom and the field stop exchhanging energy because
they are sufficiently detuned, at finite temperature is given by
[23–25] (we set~ = 1)

dρ̂

dt
= −i

[
Ĥeff , ρ̂

]
+ k1

(
2â†ρ̂â− ââ†ρ̂− ρ̂ââ†

)

+ k2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (4)

whereĤeff = χn̂σ̂z [23, 24] is the so-called dispersive
Hamiltonian, andk1 = (C/2)n̄, k2 = (C/2) (n̄ + 1) and

n̄ = 1/e

(
vk

kβT

)
− 1.

HereC is the decay constant and̄n is the average number
of thermal photons. Also, the operatorsâ andâ† are the an-
nihilation and creation operators, respectively. By defining
k12 = k1 + k2, the above master Eq. (4) may be rewritten as

dρ̂

dt
= iχρ̂n̂σ̂z − iχn̂σ̂z ρ̂ + 2k1â

†ρ̂â

+ 2k2âρ̂â† − k12ρ̂n̂− k12n̂ρ̂− 2k1ρ̂. (5)

We may define the superoperators (see for instance [26])

Ĵ1ρ̂ = 2k1â
†ρ̂â,

Ĵ2ρ̂ = 2k2âρ̂â†,

R̂ρ̂ = iχρ̂n̂σ̂z − iχσ̂zn̂ρ̂,

Ŝρ̂ = −k12ρ̂n̂− k12n̂ρ̂, (6)

to rewrite the master equation in a more compact form,
namely

dρ̂

dt
= −2k1ρ̂ + Ĵ1ρ̂ + Ĵ2ρ̂ + R̂ρ̂ + Ŝρ̂. (7)

This allows us to write a formal solution

ρ̂ (t) = e−2k1te(Ĵ1+Ĵ2+R̂+Ŝ)tρ̂ (0) , (8)

that may be factorized in the form

ρ̂ (t) = ef0(t)ef1(t)Ĵ1ef2(t)R̂ef3(t)Ŝef4(t)Ĵ2 ρ̂ (0) . (9)

We may show that indeed (9) is a solution by derivinĝρ(t) with respect to time to obtain

dρ̂

dt
=

[
df0 (t)

dt
+

df1 (t)
dt

Ĵ1

]
ρ̂ (t) +

df2 (t)
dt

ef1(t)Ĵ1R̂e−f1(t)Ĵ1 ρ̂ (t) +
df3 (t)

dt
ef1(t)Ĵ1ef2(t)R̂Ŝe−f2(t)R̂e−f1(t)Ĵ1 ρ̂ (t)

+
df4 (t)

dt
ef1(t)Ĵ1ef2(t)R̂ef3(t)Ŝ Ĵ2e

−f3(t)Ŝe−f2(t)R̂e−f1(t)Ĵ1 ρ̂ (t) . (10)

We define the atomic superoperatorL̂ρ̂ = iχσ̂z ρ̂ − iχρ̂σ̂z and, by using the relevant commutators given in Appendix A,
and using that

ewÂB̂e−wÂ = B̂ + w
[
Â, B̂

]
+

w2

2!

[
Â,

[
Â, B̂

]]
+ ...

we obtain the terms present in Eq. (10) i.e.,

ef1(t)Ĵ1R̂e−f1(t)Ĵ1 ρ̂ (t) =
[
R̂ + f1 (t) L̂Ĵ1

]
ρ̂ (t) , (11)

ef1(t)Ĵ1ef2(t)R̂Ŝe−f2(t)R̂e−f1(t)Ĵ1 = Ŝρ̂ (t) + 2k12f1 (t) Ĵ1ρ̂ (t) , (12)

and

ef1Ĵ1ef2R̂ef3Ŝ Ĵ2e
−f3Ŝe−f2R̂e−f1Ĵ1 = [e2k12f3+f2L̂Ĵ2 +

4k1k2

k12
f1e

2k12f3+f2L̂Ŝ

− 4k1k2f1e
2k12f3+f2L̂ + 4k1k2f

2
1 e2k12f3+f2L̂Ĵ1]ρ̂ (t) . (13)
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By substituting these expressions in Eq. (10) and compare it with Eq. (7) we obtain the set of first order differential equations

df0

dt
− 4k1k2f1e

2k12f3+f2L̂ df4

dt
= −2k1,

df1

dt
+

df2

dt
f1L̂ + 2k12

df3

dt
f1 + 4k1k2f

2
1 e2k12f3+f2L̂ df4

dt
= 1,

df2

dt
= 1,

df3

dt
+

4k1k2

k12
f1e

2k12f3+f2L̂ df4

dt
= 1,

e2k12f3+f2L̂ df4

dt
= 1. (14)

The above system of differential equations depends on the superoperatorL̂, but, because there are no other superoperators
in it, a simple solution may be found for the different functions

f0

(
t, L̂

)
=




(
L̂ + 2k12

)
− 4k1

2


 t + ln


 cos

(
θ(L̂)

)

cos
(

β(L̂)
2 t + θ(L̂)

)

 ,

f1

(
t, L̂

)
=

β(L̂)
8k1k2

tan

(
β(L̂)

2
t + θ(L̂)

)
+

(
L̂ + 2k12

)

8k1k2
,

f2 (t) = t,

f3

(
t, L̂

)
=
−L̂

2k12
t +

1
k12

ln


cos

(
β(L̂)

2 t + θ(L̂)
)

cos
(
θ(L̂)

)



f4

(
t, L̂

)
=

2 cos2
(
θ(L̂)

)

β(L̂)
tan

(
β(L̂)

2
t + θ(L̂)

)
+

2
(
L̂ + 2k12

)
cos2

(
θ(L̂)

)

(
β(L̂)

)2 , (15)

with

β(L̂) =

√
16k1k2 −

(
L̂ + 2k12

)2

,

and

θ(L̂) = arctan


−

(
L̂ + 2k12

)
√

16k1k2 −
(
L̂ + 2k12

)2


 .

3. Linear entropy for the quantized field

Once we have calculated the total density matrix we may calculate the reduced field operator.

ρ̂f (t) = TrA{ρ̂ (t)}, (16)

whereρ̂ (0) = ρ̂f (0) ρ̂A (0) is the initial density matrix for the total, atom-field, system. We consider an arbitrary initial field
and the atom in a superposition of its excited and ground state,ρ̂A (0) = |ψA (0)〉 〈ψA (0)|, with |ψA (0)〉 = (1/

√
2) (|e〉+ |g〉)

thereforeρ̂A (0) = (1/2)
(
Î + |e〉 〈g|+ |g〉 〈e|

)
.

After some algebra we obtain

ρ̂f (t) =
∞∑

r=0

∞∑

k=0

d1 (t, r, k) â†ke−k12f3(t,0)n̂[eiχn̂t
(
ârρ̂f (0) â†r

)
e−iχn̂t

+ e−iχn̂t
(
ârρ̂f (0) â†r

)
eiχn̂t]e−k12f3(t,0)n̂âk, (17)
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with

d1 (t, r, k) = ef0(t,0)
(2k2f4 (t, 0))r

2r!
(2k1f1 (t, 0))k

k!
. (18)

If we consider that̂ρf (0) = |α〉 〈α|, with the coherent state given by [13]|α〉 = e−(|α|2/2)
∑∞

n=0
αn√

n!
|n〉, we obtain

ρ̂f (t) =
∞∑

r=0

∞∑

k=0

∞∑
n=0

∞∑
m=0

2d1 (t, r, k)
|α|2r

αnαm

√
n!
√

m!
e−|α|

2−k12f3(t,0)(n+m)â†k |n〉 〈m| âk cos (χ (n−m) t) , (19)

we need to calculatêa†k |n〉 which is easy to see that is given by

â†k |n〉 =

√
(n + k)!

n!
|n + k〉 ,

and substitituingd1 (t, r, k) , us to write

ρ̂f (t) =
∞∑

k=0

∞∑
n=0

∞∑
m=0

e−k12f3(t,0)(n+m) (2k1f1 (t, 0))k

√
(n + k)!(m + k)! cos (χ (n−m) t)

k!n!m!

× αn+mef0(t,0)+(2k2f4(t,0)−1)|α|2 |n + k〉 〈m + k| , (20)

settingj = n + k y l = m + k we find the reduced field operator

ρ̂f (t) = ef0(t,0)+(2k2f4(t,0)−1)|α|2
∞∑

r=0

∞∑
g=r

∞∑

h=r

√
g!h!

(
αe−k12f3(t,0)

)(g+h−2r)

r! (g − r)! (h− r)!
(2k1f1 (t, 0))r cos (χ (g − h) t) |g〉 〈h| . (21)

Once we have calculated the reduced field operator we may calculate the field entropyŜf

Ŝf (t) = 1− Tr
{
ρ̂2

f (t)
}

(22)

Substitituing the found solution for the reduced field operator (21) in the above equation, after some algebra we obtain the field
entropy

Ŝf (t) = 1−
(
ef0(t,0)+(2k2f4(t,0)−1)|α|2

)2 ∞∑
n=0

∞∑

k=0

∞∑
r=0

∞∑

j=0

n!j! (2k1f1 (t, 0))k+r

(n− r)! (j − r)!k!r!

×
(
αe−k12f3(t,0)

)2(j+n−k−r)
cos2 (χ (j − n) t)

(j − k)! (n− k)!
. (23)

4. Numerical results

We plot initially the linear entropy forT = 0 in Fig. 1. It
may be seen that for different initial field intensities the field
linear entropy periodically goes to zero. This result that may
be surprising (as there is a decay process taking place) is due
to the robustness of coherent states to such processes. It is
well known that coherent states keep being coherent states
when subject to dissipation (see for instance [5]) and this
fact reflects in the field becoming pure eachχt = 2mπ with
m = 1, 2, . . . . In order to be clarify this point we follow the
calculations in Ref. [27] to show below the expression for the
field density matrix at zero temperature.

In theT = 0 case we have to solve a simpler equation as
the parameterk1 = 0 in Eq. (4). Then the solution for this
case is

ρ̂(t) = e(Ĵ2+R̂Γ̂)tρ̂(0) = eR̂Γ̂teV̂ (t)Ĵ2 ρ̂(0), (24)

where

R̂Γ̂ρ̂ = −Γ̂n̂ρ̂− ρ̂Γ̂†n̂, (25)

and

V̂ (t)ρ̂ =
1− e−ŜΓ̂t

ŜΓ̂

ρ̂, (26)

with

ŜΓρ̂ = Γ̂ρ̂ + ρ̂Γ̂†, Γρ̂ = 1̂Ak2 + iχ σ̂z. (27)
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FIGURE 1. Plot of the linear entropy,Sf (t), as a function of time.
We set the parametersχ = 1, k1 = 0.0, k2 = 0.05, and a)α = 1,
b) α = 3 and c)α = 5.

Applying the first exponential to the initial condition given
after Eq. (16) we obtain

eV̂ (t)Ĵ2 ρ̂(0) =
1̂A

2
|α〉〈α|e|α|2(1−e−2k2t)

+ (Ĝ|e〉〈g|+ H.c.), (28)

where we have not explicitly written the term̂G because
when the atomic trace is taken it disappears. Applying the

FIGURE 2. Plot of the linear entropy,Sf (t), as a function of time.
We set the parametersχ = 1, k1 = 0.01, k2 = 0.05, and a)α = 1,
b) α = 3 and c)α = 5.

superoperatoreR̂Γ̂t and performing the atomic trace we arrive
at the simple result

ρ̂(t) =
1
2

(
|αe−(iχ+k2)t〉〈αe−(iχ+k2)t|

+ |αe(iχ−k2)t〉〈αe(iχ−k2)t|
)

. (29)

The above equation shows that wheneverχt = 2mπ with
m = 1, 2, . . . the field returns to a pure coherent state which
may be seen in Fig. 1.

Rev. Mex. Fis.70031302



6 R. JUÁREZ-AMARO AND H. M. MOYA-CESSA

FIGURE 3. Plot of the linear entropy,Sf (t), as a function of time.
We set the parametersχ = 1, k1 = 0.005, k2 = 0.01, and a)
α = 1, b) α = 3 and c)α = 5.

For T > 0 we plot the linear field entropy (23) with the
help of numerical analysis. In the Figs. 2 we set the parame-
terk1 = 0.01 andk2 = 0.05 that correspond to a decay con-
stantC = 0.08 and an average number of photonsn̄ = 0.25.
The linear entropy suffers oscillations that stabilize around a
value ofSf ≈ 0.33. It may be seen that for smaller values of
the coherent intensity, namely,α = 1 in Fig. 2a) such stabi-
lization is faster. This is because of the fact that there are not
many coherent photons, initially, inside the cavity and they
are being replaced by the thermal field as the cavity is at a
finite temperature. Eventually, the cavity is filled with the

thermal field

ρTh =
∞∑

n=0

n̄n

(n̄ + 1)n+1
|n〉〈n|, (30)

that has a linear entropy of [see Eq. (3)]

STh = 1−
∞∑

n=0

(
n̄n

(n̄ + 1)n+1

)2

, (31)

that, for the parameters chosen in Figs. 2 produces a linear
entropy of aboutSTh ≈ 0.33.

The same occurs with the linear entropies plotted in
Figs. 3a)-c). In these figures, we setk1 = 0.005 and
k2 = 0.01 which deliver a decay constantC = 0.01, smaller
than the previous examples, which means that the emptying
of the coherent filed and the filling of the thermal field are
slower. On the other hand, the average number of photons
for this choice of parameters is aboutn̄ = 1 that produces
a linear entropy for the thermal field of aboutSTh ≈ 0.66,
precisely the stabilization line shown in Figs. 3.

5. Conclusions

We have studied the atom-field interaction in the strong cou-
pling regime [28] at finite temperature when the field is ini-
tially in a coherent state and in the dispersive regime. By
using superoperator techniques, we manage to solve the mas-
ter equation for this system and have calculated the linear
entropy. We have shown that the linear entropy for the dis-
persive interaction subject to decay atT > 0 approaches the
limit given by the thermal distribution of the bath.

Appendix A

Here we list the commutators between the different superop-
erators needed to solve Eq. (7),

[
Ŝ, Ĵ1

]
ρ̂ = −2k12Ĵ1ρ̂,

[
R̂, Ĵ2

]
ρ̂ = L̂Ĵ2ρ̂,

[
R̂, Ĵ1

]
ρ̂ = −L̂Ĵ1ρ̂,

[
Ŝ, Ĵ2

]
ρ̂ = 2k12Ĵ2ρ̂,

[
Ĵ1, Ĵ2

]
ρ̂ =

4k1k2

k12
Ŝρ̂− 4k1k2ρ̂,

[
R̂, L̂

]
ρ̂ = 0,

[
R̂, Ŝ

]
ρ̂ = 0,

Rev. Mex. Fis.70031302



LINEAR ENTROPY IN THE ATOM-FIELD INTERACTION AT FINITE TEMPERATURE 7

[
Ŝ, L̂

]
ρ̂ = 0,

[
Ĵ1, L̂

]
ρ̂ = 0,

[
Ĵ2, L̂

]
ρ̂ = 0.

It is worth to mention that the superoperators involved in the
master equation, namely,̂J1, Ĵ2 and Ŝ commute in such a
way that only give the same superoperators, allowing an al-
gebraic solution.
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cuántica,Rev. Mex. F́ıs.E 51 (2005) 87.

8. A. Motazedifard, S. A. Madani, and N. S. Vayaghan,
Measurement of entropy and quantum coherence proper-
ties of two type-I entangled photonic qubits,Opt. Quant.
Electr. 53 (2021) 378, https://doi.org/10.1007/
s11082-021-03384-y .

9. E. T. Jaynes and F. W. Cummings, Comparison of Quantum and
Semiclassical Radiation Theories with Application to the Beam
Maser,Proc. IEEE.51 (1963) 89,https://doi.org/10.
1109/PROC.1963.1664 .

10. M. Satyanarayana, et al., Ringing revivals in the interaction of a
two-level atom with squeezed light,J. Opt. Soc. Am. B6 (1989)
228,https://doi.org/10.1364/JOSAB.6.000228 .

11. H. Moya-Cessa and A. Vidiella-Barranco, Interaction of
squeezed states of light with two-level atoms,J. of Mod.
Optics 39 (1992) 2481, https://doi.org/10.1080/
09500349214552511 .

12. A. Vidiella-Barranco, H. Moya-Cessa, and V. Buzek, Interac-
tion of superpositions of coherent states of light with two-level
atoms,J. of Mod. Optics39 (1992) 1441,https://doi.
org/10.1080/09500349214551481 .

13. R. J. Glauber, Coherent and Incoherent States of the Radiation
Field,Phys. Rev.131(1963) 2766,https://doi.org/10.
1103/PhysRev.131.2766 .

14. S. M. Barnett, et al., Journeys from quantum optics
to quantum technology,Progress in Quantum Electron-
ics 54 (2017) 19, https://doi.org/10.1016/j.
pquantelec.2017.07.002 .

15. J. Gea-Banacloche, Atom- and field-state evolution in the
Jaynes-Cummings model for large initial fields,Phys. Rev. A44
(1991) 5913,https://doi.org/10.1103/PhysRevA.
44.5913 .
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