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Linear entropy in the atom-field interaction at finite temperature
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We study the atom-field interaction at finite temperature and in the dispersive regime. We show that the master equation for this system may
be solved with the use of superoperator techniques. We calculate the linear entropy in case the field is initially in a coherent state and the
atom in a superposition of its ground and excited states.
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1. Introduction is initially considered, the revival of Rabi oscillations appear
as in the case of a single coherent state. This indicates that

One of the mots important quantities to measure entanglehe atomic inversion, together with the degree of mixedness

ment between two subsystems [1, 2] is the von Neumann erof states may give information about the initial state used in

tropy [3]. It defines, among other things and very clearly,a given interaction [5, 14, 15]. Such mixedness may be mea-

when two subsystems are entangled. In order to calculate thgured via the von Neumann entropy.

von Neumann entropy for one of the subsystems usually itis The von Neumann entropy is given by the expression

used the Araki-Lieb inequality [4, 5], that allows, when ini-

tially the two sub-systems are found in pure states, to relate S =-Tr{plnp}, (1)

the two sub-systems entropies after they interact. To achieve ' : .
this it is necessary to perform a partial trace on the systemV,Vher_ep » that defines the state of the system, ',S the density
atrix andTr means the trace over the system’s degrees of

such that we remain with only one subsystem described by it . . .
eedom. Calculation of this quantity, however, may become

density matrix which is, in the most general case, a so-called =" ) )
a difficult task as mentioned before. A more convenient quan-

“statistical mixture” state. It is more difficult the calculation fity t lculate b tits simplicity that however mav b
of the entropy when one studies statistical mixtures [5, 6] be- yto calcuiate because ofits simplicity that however may be

cause it is a (logarithmic) function of the density matrix and used as it gives lnform_atlon_about Fhe purity of any of the Sus-
the calculation may become extremely complicated [7, 8. bsystems, atom and field, is the linear entropy [16], defined

One of the interactions where entanglement is usually
studied is the resonant atom field interaction [9] where it is Sy =1-Tr{p*}. (2)
well known that the atomic inversion shows collapses and re-
vivals of the Rabi oscillations [10-12]. Such revivals may The eigenbasis of the density matrix may be used to show
be considered as a first measurement of the field as it givabat
light on the nature of the photon distribution of the cavity
field: For instance, in the case that an initial squeezed state TT{Pz} = ZP% < an =1, (3)
is considered, the atomic inversion shows so-called ringing " "
revivals [10,11]. Entropy, together with the atomic inversion,where the equality holds for pure states only. Therefyre
may be used to obtain information about the non-classicalityiniquely discriminates between pure and mixed states, just as
of a given state [6]. For example, if at an specific time, thethe von Neumann entropy does.
atomic inversion is in the collapse region and the entropy of  |n the atom-field interaction there are effects such as de-
a field initially prepared in an squeezed state is close to zergoherence that play a strong role in the purity of the states of
it is well-known that a superposition of squeezed states maguantum systems [17]. Effects of environment strongly dam-
be generated [11]. age entanglement and the nonclassicality of states of light
However, if a superposition of coherent states, the sofl8]. Entanglement may be even damaged by an environ-
called Schodinger cat states, is considered as initial statement where gravitational fluctuations are considered [19, 20].
the revival of oscillations occurs sooner [12] than that of aMoreover, studies to endure gquantum coherence by using
single coherent state [13]. But, if a mixture of coherent statephoton indistinguishability in noisy quantum networks have
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been performed [21]. When an environment is taken into ac-Here C is the decay constant andis the average number
count, however, complete information about an initial quan-of thermal photons. Also, the operatd@randa’ are the an-
tum state may be still recovered by using reconstruction technihilation and creation operators, respectively. By defining
nigues [22]. The damage becomes worst in the case that thig, = k; + ko, the above master Ead)(may be rewritten as
environment is at finite temperature as the bath injects pho-

tons into the cavity destroying faster the possible coherences dp
of the quantized field. 7 = IXPAO: — iXNG2p + 2krat pa
In this contribution we study this case and show how to NP R . .
calculate the linear entropy in ¥he dispersive interaction be- T 2ka0pa! = kiaph = kiofip = 2k1p. ®)
tween a two-level atom and a quantized field when we con- ] .
sider losses at temperatufe > 0. In the next Section we We may define the superoperators (see for instance [26])
present the master equation that describes this system and .
show how to solve it, then in Sec. 3 we calculate the field lin- Jip = 2kiatpa,

ear entropy and do some numerical analysis in Sec. 4. Sec-
tion 5 is left for conclusions.

Rp = ixphé. — ixs.np,
2. Master equation for a real cavit " .. ..
a y Sp = —ki2ph — ki2np, (6)
The master equation for a two- level atom interacting with a
guantized electromagnetic field in the dispersive regireg, o rewrite the master equation in a more compact form,
when the atom and the field stop exchhanging energy becausamely
they are sufficiently detuned, at finite temperature is given by

_ — dp e a e A
[23 2d5} (we seh = 1) ?f = —2k1p+ J1p+ Jop+ Rp+ Sp. @)

L= =i [Hegg,p| + b (2a"pa — aa'p — paa)
This allows us to write a formal solution

+ ko (2apa’ —a'ap — pa'a), 4

whereﬂeff = xnd, [283,24] is the so-called dispersive
Hamiltonian, ands; = (C/2)n, ke = (C/2) (7 + 1) and

plt) = e utel it RS ), (®)

that may be factorized in the form

Ve

n= 1/6( ’“f’T) -1

| p(t) = efﬂ(t)efl(t)jlefQ(t)RefB(t)S‘ef4(t)'j2p" 0). (9)

We may show that indee®)is a solution by deriving(¢) with respect to time to obtain

@7 M‘ijl A(t)+df2() f1 t)hR fl()jlla(t) df3() (t)J1 fz(tF"Se fa(t R —f1(t)J1 5 p ()

dt | dt dt dt
N dfzclit(t) N1 DT 2R F5S o= I3(D8 o= S2(ORe=F (D (1 (10)

We define the atomic superoperafqﬁ = ix6.p — ixpé, and, by using the relevant commutators given in Appendix A,

and using that
2

edAfeed = Brw [A,B] + 57 [A.[A,B]] +
we obtain the terms present in E@(j i.e.,
F1 O fe=h 754y = [R @) ﬁjl} (1), (11)
N1 ORGe=T2(Re=F1 ()T - Sp (t) + 2k f1 (8) J1p (1), (12)
and

efljlefzéefsgjze*fsgeffzéefﬁjl — [62k12f3+f2ij2 4]Izlk2f 2k12f3+f2LS
12

_ 4k‘1k‘2f162k12f3+f2L + 4k1k‘2f1282k12f3+f2Lj1]/3 (t) ) (13)
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By substituting these expressions in E))(and compare it with Eq./j we obtain the set of first order differential equations

dfO 2k f4
— 4k ko 12f34f2L — 9%k
I 1ka fre dt 15

d d, d
i ﬁflL + 2]<712 dfs f1 + dky ko fe 2z fotf2l 0{; =1,

%:
dt

df3 4k1k2f 2k12f3+f2Ldf4 =1
dt ki dt ’

1

)

2k12f¢}'§‘f2LCZZ:1 — 1. (14)

The above system of differential equations depends on the superopkratdr because there are no other superoperators
in it, a simple solution may be found for the different functions

o (L) = [(ﬁ 2ha) - 4’“1} e ( cos (6(2) ) |

2 (@t + 9(i;)>

)><ﬂ+%w>

8kiky

[y
~~
=~
~

N—
Il
=
—+
Q
=]
VS
=
S)
~
+
=
~

. _j cos (B84 4 0(L)
S =
(L + 2k’12) cos (H(ﬁ))

5 (15)
(8(0)

b

fa (t,ﬁ) - 2ﬁ>tan (ﬁ(QL)t + 9@))

with

N N 2
B(L) = 1/ 16k1ks — (L n leg) ,
and

(ﬁ + 2k12)

) \/16k1/<;2 _ (L n 2k12)2

(L) = arctan

3. Linear entropy for the quantized field

Once we have calculated the total density matrix we may calculate the reduced field operator.

pr(t) =Tra{p(t)}, (16)
wherep (0) = p7 (0) p4 (0) is the initial density matrix for the total, atom-field, system. We consider an arbitrary initial field
and the atom in a superposition of its excited and ground gtatd)) = |04 (0)) (14 (0)], with |14 (0)) = (1/3/2) (le) + |g))
thereforep.s (0) = (1/2) (1 +[e) (g] + 19) {el)-

After some algebra we obtain

— Z Z dl t,r, k klgfg(t,O)n[ezxnt (&Tﬁf (0) dTr) e—lxnt
r=0 k=0
+ e—zxnt ( Tpf r) ei)(ﬁt]e—k'mf;g(t,O)ﬁ&k7 (17)
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with
T k
_ fo(t,0) (22 f4 (£,0))" (2k1 1 (¢,0))
di (t,r k) =e 5 o : (18)
If we consider thap; (0) = |«) (a|, with the coherent state given by [18]) = e~ (loI*/2) 2> "« f |n), we obtain
ZZ Z Z 2d1 t T, k |O[‘ 7|a|27k512f3(t,0)(n+m)d1'k |TL> <m| &k} Cos (X (TL o m) t) , (19)

=0 k=0 n=0 m=0 \va'

we need to calculaté’* |n) which is easy to see that is given by

ot ) = (n+k)!

n! n+ k),

and substitituingl; (¢, r, k) , us to write

- o oo oo v a(t0) () e V(4 k)l(m + k)l cos (x (n — m) t)
H=> 2 2 " (k1 f1 (2,0)) Finlm!
k=0n=0m=0

atmefo(t0)+ (2R fa(1.0)=Dlal® |y 4 kY (4 k| (20)

settingj = n + k 'yl = m + k we find the reduced field operator

o 0o 00 —k1af3(t, o))(9+h*27“)
( ) _efO(t 0) (2k2f4(t 0) 1)‘Oé| ZZZ )'(h_/r)' (Zklfl (t,O))TCOS(X(g—h) t) |g> <h| (21)
r=0 g=r h=r ’

Once we have calculated the reduced field operator we may calculate the field é‘ytropy

Sp(t)=1-Tr{p3 ()} (22)
Substitituing the found solution for the reduced field operé2dy in the above equation, after some algebra we obtain the field
entropy

oo 0 0 X0

i (1) = ( Fo(t,0)+(2k2 4 (t,0) 1)|a\2> YYETES ng_Zrlﬁf; _tf))');:

n=0 k=0 r=0 j=0

B y 2(j+n—k—r ;
 (aemha o020 02 (3 (= )1 (23)
G — R (n— k) '

4. Numerical results

We plot initially the linear entropy fofl" = 0 in Fig. 1. It .
may be seen that for different initial field intensities the field p(t)
linear entropy periodically goes to zero. This result that may

- . : . “where
be surprising (as there is a decay process taking place) is due
to the robustness of coherent states to such processes. It is 5. Boa s (25)
well known that coherent states keep being coherent states
when subject to dissipation (see for instance [5]) and this;,q
fact reflects in the field becoming pure eagh= 2mx with
m = 1,2,.... In order to be clarify this point we follow the o 1—e Skt
calculations in Ref. [27] to show below the expression for the V(t)p= T”’
field density matrix at zero temperature. r

IntheT = 0 case we have to solve a simpler equation agVith

the parametek; = 0 in Eq. (4). Then the solution for this bt A o
case is Srp=Tp+pl'", Lp=1aks+ix 6. (27)

_ e(j2+Rf)tﬁ(0) — eéftef/(t)j’zﬁ(o), (24)

(26)
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FIGURE 2. Plot of the linear entropy§¢(t), as a function of time.
We set the parametexs= 1, k1 = 0.01, k2 = 0.05,and a)o = 1,
b) a = 3 and c)a = 5.

FIGURE 1. Plot of the linear entropy5(t), as a function of time.
We set the parametexs= 1, k1 = 0.0, k2 = 0.05, and a)a = 1,
b) @ = 3 and c)a = 5.

superoperatar’t and performing the atomic trace we arrive

Applying the first exponential to the initial condition given &t the simple result
after Eq. (16) we obtain

1 ) )
, (1) = 5 (Jae™ (k1) (e (rka)y
V()2 500) — —A la|?(1—e™2k2")
e p(0) = a)(ale , .
( ) 9 ‘ > | + |ae(1x—k2)t><ae(zx—k2)t|) ) (29)
+ (Gle){g| + H.c.), (28)

R The above equation shows that wheneyer= 2mm with
where we have not explicitly written the terd because m =1,2,... the field returns to a pure coherent state which
when the atomic trace is taken it disappears. Applying themay be seen in Fig. 1.
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10 thermal field
08 > n"
PTh = Z WWW’ (30)
s °° ",‘xH’"‘\“!‘i“'\(‘Iw"\:“‘\:“‘j‘\\‘\fflh\‘wllnn e
0 “""‘ MWWHW that has a linear entropy of [see E@)](

0.4 ”"

| S —1-3 (") (31)
0.2 Th = = (n+ 1)ntt ’
0.0 . : . : that, for the parameters chosen in Figs. 2 produces a linear

0 100 200 300 400 500

entropy of aboubtt;, ~ 0.33.

The same occurs with the linear entropies plotted in
Figs. 3a)-c). In these figures, we set = 0.005 and
ko = 0.01 which deliver a decay consta@t= 0.01, smaller
than the previous examples, which means that the emptying
of the coherent filed and the filling of the thermal field are
slower. On the other hand, the average number of photons
for this choice of parameters is abaout= 1 that produces
a linear entropy for the thermal field of abasi;, =~ 0.66,
precisely the stabilization line shown in Figs. 3.

a) t

00 5. Conclusions

T T T T
0 100 200 300 400 500

We have studied the atom-field interaction in the strong cou-
pling regime [28] at finite temperature when the field is ini-
tially in a coherent state and in the dispersive regime. By
using superoperator techniques, we manage to solve the mas-
ter equation for this system and have calculated the linear
entropy. We have shown that the linear entropy for the dis-
persive interaction subject to decaylat- 0 approaches the
limit given by the thermal distribution of the bath.

0.8

f (U

0.2

Appendix A

0.0

T T T T
0 100 200 300 400

c) t

500 Here we list the commutators between the different superop-

erators needed to solve E@)

FIGURE 3. Plot of the linear entropy5(¢), as a function of time.
We set the parametess = 1, k1 = 0.005, k2 = 0.01, and a)
a=1,b)a=3andc)a = 5.

help of numerical analysis. In the Figs. 2 we set the parame-
terk, = 0.01 andky, = 0.05 that correspond to a decay con-
stantC = 0.08 and an average number of photans- 0.25.

The linear entropy suffers oscillations that stabilize around a
value ofS; ~ 0.33. It may be seen that for smaller values of J

the coherent intensity, namely,= 1 in Fig. 2a) such stabi-

lization is faster. This is because of the fact that there are not [ 2Ll p=0

ForT" > 0 we plot the linear field entropy2B) with the [

4k1ko -
= = 5p — dkikap,

many coherent photons, initially, inside the cavity and they
are being replaced by the thermal field as the cavity is at a
finite temperature. Eventually, the cavity is filled with the

Rev. Mex. Fis70031302
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It is worth to mention that the superoperators involved in the

[SL} p=0,
{jl,ﬁ} 5=0,
{J},ﬁ} p=0.

master equation, namely;, J> and.S commute in such a
way that only give the same superoperators, allowing an al-
gebraic solution.
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