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The latent heat of confined fluids calculated
from the Clausius-Clapeyron equation
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Monte Carlo simulations of simple Lennard Jones fluids confined in different geometries, sphere, cylinder and slit-like pores are conducted
to study the vapour-liquid transition. Phase diagrams, in the temperature-déngijyafd pressure-temperaturB-(") are obtained. For

each geometry the coexistence lines are plotted from the clapeyron equation of each systefs-dndguation is proposed in terms of the

critical temperature which works for all the systems. Additionally, the transition latent heat is also evaluated, from the enthalpy calculation
obtained directly from the simulation data, and the fluid structure from density profiles.
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1. Introduction size decreases to the meso or microscopic level, fluid-wall
interactions become quite dominang,, the fluid properties

highl [ h 13,14].
Nowadays the study of confined fluids is extensive, people‘:jepend ighly on pore size and shape [13,14]

have investigated them for several years using simple and The equivalent of the bulk liquid-vapor transition in the
more real fluid. Several authors have studied Conﬁnemerﬁonfined state iS known as Capi"ary Condensation_ Th|s phe_
in different geometries and research of phase transitions argbmenon constitutes the basis of one of the most fundamen-
structure of those fluids are reported in a lot of works. Intg| techniques to characterize nanoporous media: the mea-
fact, fluids can be confined in different natural or syntheticsyrements of sorption isotherms [15]. Currently, research has
geometries, slit-like pores are present in clays and carbongeen expanded to include more complex molecules, such as
cylinder pores can be found in silica and carbon nano tubegjkanes and liquid crystals, in order to understand in greater
whereas sphere pores can be in silica also and metal-organigtail the phase transitions in these systems [6, 16, 17]. Phase
framework (MOFs). In all these geometries a phenomenofansitions can be determined by a discontinuous jump in the
Wldely known in the literature is that confined fluids exhibit a order parameter_ In bulk Systems this Jump can be observed
Significantly distinct phySical nature Compared to bUlkI|qU|dS|n the fluid density for a given pressure (the saturated va-
[1-7]. Various factors influence this behavior, porous geompor pressure) at a constant temperature. The transition oc-
etry, size and chemical nature of the pore, and the fluid-walkrs when the low density vapor-like phase abruptly changes
interaction,i.e., the energy between particles of fluid with into a higher density condensed phase in the pore. However
particles of the solid [8,9]. This interaction can be effectively this hehavior might be different in confined fluid, for instance
described using several potentials such as the Steele potentig|e jump could be not perfectly vertical. In this sense, the
employing variations like the 9-3, 10-4, or 10-4-3 [8-10]. In transition pressure where the phase transition occurs could
several articles, it has been mentioned that the fluid-wall inpe complicate to locate and methods such as the graphical
teraction modifies the phase diagram, change the critical temnethod, slope method, or Clausius-Clapeyron method can be
perature and capillary condensation occurs [2,11,12]. Moregsed [18]. Additionally, this phase transition can only occur

over, confined fluids can induce alterations in phase compogt conditions below the pore critical point, which has been
sitions, interfacial tensions, fluid viscosities, and saturationgjidated to differ from the bulk critical point [19].

pressures [4-6]. These variations have been observed ex-

perimentally and verified through theories such as Non-local The Clapeyron approach has been long used for the en-
density functional theory, NLDFT, or Monte Carlo simula- thalpy/heat of vaporization calculations in fluids in nanopores
tions [7,13]. In terms of the geometry of the solid some au{20-22]. It has been found the changes in the enthalpy de-
thors have found that capillary condensation of argon, occursreases with the temperature, very similar to that of the bulk.
at a lower pressure in spherical than in slit pores. These reAlso, the enthalpy has been studied in confined binary mix-
sults are attributed to the curvature of the pore walls and theures, which has been demonstrated that is larger than that
fluid-wall interaction. In other hand, it also has been observeaf the bulk mixtures [23]. Other works have found that the
that for macroscopic pore size, the behavior of the confinetheat of capillary condensation is higher as the pore size de-
fluids is very similar to the bulk fluids however, when the porecreases [24].
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This study focused on constructing phase diagrams forwheree;; ando s are the LJ parameter of the fluid and
the nitrogen fluid,lV,, in its bulk and confined state within is the cutoff radius. Thé&,, energy has different expressions
three types of confinement geometries, slit-like, cylindri-and it depends on the geometry variables of the walls. For
cal, and spherical. Nitrogen was selected because it corrghe slit-like pore simulations were carried out in ayIP en-
sponds to a standard fluid for the adsorption characterizatiogemble with particles confined between two walls separated a
of porous solids. We located and analyzed the liquid-vapodistanceH in the z-direction, then the external pressure was
transitions in pores with the Clapeyron approach. We damposed in theX — Y direction, parallel to the plates, and
not intend to repeat what is have done and observed in othgreriodic boundary conditions were used in those directions.
works, here we want to explore how the coexistence lines caifihe fluid-wall interaction was a 10-4-3 steele potential [8, 9].
be obtained from the well known clapeyron equation, and to
propose a functional form of those coexistence lines. Addi- 5 10
tionally we want to show how the latent heat associate with Ugs(z) = Qﬂegspso-zsA : (azs)
UgS 4 0—35
( z ) 3A(aA + 2)3

the transitions can be obtained directly from simulation data
via the enthalpy.

: ®)

2. Computational model

Simulations were conducted for Lennard-Jones (LJ) particleghere: is the distance of the wall to one particle in the fluid.
in bulk and confined systems. In all cases 1000 particles wergne wall parameters were chosen to simulate,didd con-
initially placed randomly in a simulation box and they were fined in silica plates¢,, ando,, are 1.5595 and 0.8867, re-

simulated in a Monte Carlo (MC) isothermal-isobaric ensem-pectively and the wall density, is 0.9954,A = 0.61/v2
ble (NPT) using reduced LJ units. [I25]_

Three confined geometries were used, slit-like, spherical

and cylindrical pores. In all case the energy of the systems . For the cylinder, the c_onfinement was alo.ng Its radial axis
is the contribution of the fluid-fluidl{; ;, potential between using a NBT .ensemt.)IeJ.e.,_ pressure was f|xed. glong the
particles of the fluid) and the fluid-walll,,, potential be- axis of the cylinder, with periodic boundary conditions in the
tween the wall and particles of the fluid) * same direction only. The fluid-wall interaction was the same
' 10-4-3 steele potential form but using the appropriate radial

U=Uss+Uygs, (1) cylindrical coordinatesl/,s = U,s(r) with r = /22 + 42,
wherel; is given by the shifted and cutoff Lennard-Jones@nd wall density, = 1.9954 in this case.
(LJ) potential, For the spherical geometry, the NPT ensemble with an in-
e [(ﬂ)m _ (gff)e} <y put pressure in all direction was used, with the restriction that
Uss = { I\ r °, (2) particles moved inside the sphere of fix radius. In this case
0 r>Te the particle-wall interaction is given by the following equa-
|  tion [10],
Ugs(r) 2 i Uﬁllg + U;S _ Ogs Ogs ’
2megspsog A b | R(R—1)1070  R{(R A7)0 3A [\R+aA—r
3 3
— Z 0-35 + 0-;]15 _ Ogs Ogs (4)
— |R(R—r)"""  R{(R+r)*" 3A [\R+alA+r
_ Ogs - g n Tos
20 = [ (R+ aA) (R+aA —r)*~"  (R+ald) (R+ oA +7)> ’

where ¢,, and o4, are 1.5595 and 0.8867, respectively,

the wall density, p, is 0.9954, A = 0.61/v2, r = 'the wall density is», = 1.9954. In this case, the results are

Va? +y? + 22. The results calculated with this potential presented as sphere-2.
are reported in the paper as sphere-1.

In all cases the Monte Carlo moves were following the
Another spherical potential was simulated by incorporat-standard Metropolis method. Simulations were conducted
ing the 10-4-3 Steele potential, described by Eq. (3), with thdor different reduced temperatures and pressure was chang-
corresponding radial spherical coordinates. The potential igng until the vapour-liquid transition was observed by a dis-
expressed aE,; = Ugys(r), wherer = /22 +y? + 22,and  continuous jump in the fluid density. All simulation were run
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with a cut-off ofr. = 4.0 o4 up to 250000 MC steps after of confined fluids [26,27]. From Egs. (8) and (10) is possible
equilibration of 100000. Equilibration was considered afterto write a Gibbs-Duhem equation for this system,

the configurational energy and the structural properties did
not change significantly. SdT — AHdPyy + 2Ady + Ndp = 0. (14)

On the other hand, using Eq. (8) in Eq. (9),
3. Results
dG = —SdT + 2vdA + HAdP,,, (15)
3.1. Phase transitions
where we have considered that and N are fixed in the

For bulk systems the internal energy is: present simulations. The phase equilibria of the confined
dU = TdS — PdV + pdN. ) ggd Bedtgeeir;two phases, vapor and liquid, occurs when
v T 1y .Gy

For fluids with constant number of particles (constant mass)
where the pressure and the temperature are the main ther- — (80 = S)dT + 2(Ys0 — Ya1)dA
modynamic variables the thermodynamic potential which de- + H(A, — A)dP,, =0, (16)
scribes the system is the Gibbs free energy

resulting in the following Clapeyron equations,

dG = —SdT + VdP. (6)
dPy,  AS,  ASy 17
Then, the phase equilibria between two bulk phaseg, dT ~ HAA, AV’ (17)
vapour and liquid, occurs whed7,, = dG; and the phase
transition is characterize by the Clapeyron equation APy __ Byu A (18)
y peyron eq ! dA ~ HAA, AV’
aP _ Sv=5i _ ASu (7) and
ar V,-V, AV,
o ) . , dA  ASy

For the slit-like pore the internal energy in the appropriate ar Aot (19)

thermodynamic variables is:
For the cylinder the total internal energy is,
dU =TdS — PyyHdA + 2vdA + pdN, (8)

) . o dU = TdS — P.rr?dL + vdA + pdN, (20)
where P, is the pressure in the X-Y directio{ the walls
separation with areal and+~ the fluid-wall interfacial ten- hereP, is the pressure along the radial axis of the cylinder,
sion, the factor of 2 is because the two walls. The Gibbs/ = 7r2L, whereL and A are the volume, the length and
thermodynamic potential is, the area of the cylinder in contact with the fluid apdhe
fluid-wall interfacial tension. The Gibbs free energy is,
G=U-TS+P,HA.
o . G=U-TS+ P.mr’L. (21)
If Eq. (8) is integrated for constafit, P,,, andyu we obtain
If Eq. (20) is integrated for constaffit, P, andy we obtain
U=TS — PyyHA +27yA + uN. (10) a (20) is integ . o
_ o 2
Then using Eq. (9) with Eq. (10), U=T5= Bl yd+ pdh. (22)
G = 29A + uN. (11) Then using Egs. (21) and (22),

The difference between vapour and liquid phasgs, G, G =7A+puN. (23)

with IV constant Evaluating the free energy in the vapour and in the liquid

Gy — Gi = 2(ys0Av — va1A) + (1o — )N, (12) considering that in the equilibriu@, = G,

wherey,; andn,, are the interfacial tension of the wall-liquid JT—T— 2 (W - 7‘”’) , (24)
and wall-vapour, respectively. if we consider that both phases AN Po
are in equilibrium(, = Gy, then condensation occurs when ith ~,; and-~,, are the interfacial tension of the wall-liquid
2 v e and wall-vapour ang; andp, the densities in the liquid and
o = =g ( — ) , (13)  inthe vapour, respectively. From Egs. (20) and (22) is possi-
pL Pv ble to write a Gibbs-Duhem equation for this system,
with p; andp, the densities in the liquid and in the vapour,
respectively. Similar relation is obtained in previous works

SdT — 7r*LdP, + Ady + Ndu = 0. (25)
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On the other hand, using Eq. (20) in Eq. (21), If Eg. (30) is integrated for constaft, P, and. we ob-
i
dG = —SdT + ydA + 72 LdP,, 26) "
where we have considered that the number of partidigs, U=TS—-PV +~vA+ pdN. (32)

and the radius of the cylinder, are fixed. The phase equi-
libria between the two phases, vapor and liquid, occurs whefrhen using Egs. (31) and (32),
dG, = dGy, and the corresponding Clapeyron equations are,

dpP,  AS,  ASy 27) G =~A+ uN, (33)
dT 7T7‘2ALvl AVvl ’
dP, Ay Ay with a similar analysis for the other geometries, evaluating
A T r2AL, = N (28)  the free energy in the vapour and in the liquid and consider-
and ing that in the equilibriunGz,, = G; we obtain,
dA  ASy
— = : 29 gy = st s
dT Ay 29) o= =3 (Tlpl Tvp'u) ’ (34)

whereV is the volume of the cylinder.

For the case of the sphere, the total internal energy is, With v, and~,, are the interfacial tension of the wall-liquid
and wall-vapour ang; andp, the densities in the liquid and

dU =TdS — PrdV +~ydA + pdN, (30) in the vapour, respectivelyr, andr, are the radius of the
sphere in the vapour and the liquid, respectively. Moreover,
from Egs. (30) and (32) is possible to write a Gibbs-Duhem
equation for this system,

hereV and A are the volume and area of the sphere Bnib
the pressure along the radial axis anthe fluid-wall interfa-
cial tension. The Gibbs free energy is,

G=U-TS+PV (31) SdT — VdP, + Ady + Ndu = 0, (35)
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FIGURE 1. Isotherms, for the-P plots for all the confined geometries. a) spherical pore using Eq. (4) for the fluid-wall interaction, b)
spherical pore using Eg. (3) for the fluid-wall interaction with the variable /22 + y2 + 22, c) cylindrical pore using Eq. (3) for the
fluid-wall interaction with the variable = /xz2 + 4?2 and d) slit-like pore using Eqg. (3) with the variable z for the fluid-wall interaction.
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with V' the volume of the sphere. On the other hand, usingagreement with those reported in previous works [28]. The
Egs. (30) and (31), confinement makes a significant change in fluid phase dia-
grams respect to the bulk, reducing not only the critical tem-

dG = —5dT +ydA + VP, (36) perature, similar to what was observed in previous works

using thatN is fixed in the simulations. The correspond- [28], but also changing the shape of the vapour-liquid equi-

ing Clapeyron relations for the equilibrium between the twolibrium (VLE) curves, they are shifted to the right and they
phases are become narrower. Since the sphere is a completely closed
geometry with the smaller size parameter, it could be the rea-

il = AS”l7 (37)  son that the VLE curve is the narrowest of all the pores. Itis
dI'  AVy observed that the gas phase extends more respect to the bulk
ar, Aryyy (38) in all the geometries, whereas the liquid is reduced for the
dA AV’ sphere and the cylinder pores. However, for the cylinder the

and gas branch is longer than for the slit-like pore while the op-
dA  AS, posite occurs for the liquid branch, it extends further for the
— = -, (39) slit-like pore than for the cylinder. Interesting is that in all the
dI' Ay geometries the reduction of the critical temperature is nearly

For all systems the variation of the pressure with the tempefthe same, however, it occurs at different densities.

aturedP/dT" can be used to determine the phase transition, Another way to see phase transitions is in e di-

which is characterized by a discontinuous jump in the ordeggram. In Fig. 3 the coexistence lines for all the confined

parameter, the volume or the density. geometries simulated are shown. The lines were fitted with

equation,

3.2. Isotherms

As it was mentioned above all simulations were conducted in P=AiIn(Te = T) + AT + As, (40)

reduced units of the fluid then, from now on all quantities are .
given in reduced units. where A’s are constants to fit. In Eq. (40) the value of the

Simulations were conducted for several temperatures angfitical temperature is needed and it is estimated with equa-

the vapour-liquid transition was characterized by a jump intlon
the fluid density for a given transition pressure. Since the
number of particles is fixed the numerical density was de- pr = po o< (T, = T)". (41)
fined as the number of particles divided by the volume of the

pore, slit-like, cylinder or spherical. In Fig. 1, the isothermsSince the pores are not too smalg., it is possible to ob-
are shown for the different pore geometries_ The isotherm8€rve a bulk fluid in the mlddle, we can consider that they are
for the sphere geometry with the fluid-wall interaction given not strictly a two (or one) dimensional systems, therefore we
by Eg. (4) [Fig. 1a)] do not show any discontinuity in the

density, all the plots look continuous, most probably the cho- |,; —Sohe2
sen temperatures are above the critical and there is not phas 1. B ook
transition. We change the fluid-wall interaction potential to +~ 1] ¢

the same form as the slit-like and cylinder pories, 10-4-3 o ¢ 3

potential, with radial coordinates to see if any change is ob- . . < =

served. In Fig. 1b), the isotherms for this new sphere was @ '
plotted and it is possible to observe now discontinuous jumps ]
in the density indicating that the systems suffer a first order 2]
phase transition. As the temperature increases this disconti- "7
nuity becomes smaller. In the case of the cylinder [Fig. 1c)] "
and the slit-like [Fig. 1d)] pores once again it is observed how - - " - - 4
the fluid density increases as the pressure increases until a b) o
evident jump occurs indicating that the systems go to a phase ,,]
transition, from vapour to liquid. It is also noted that the in-  12]
terval of the transition pressure among temperatures is highe- '
for the cylinder and the sphere pores whereas for the slit-like **1
pore the transition pressure occurs in a narrower interval.

Cylinder
Bulk
Bulk*

064

Slit-like
= Bulk
= Bulk*

0.0 02 04 06 08 10
c)

3.3. Phase diagrams

FIGURE 2. T-p phase diagrams for all confined fluids and bulk
In Fig. 2 the, Tp, phase diagrams are shown for all the con-systems. Symbols are indicated in the figures. Bulk data are our
fined geometries and bulk systems. Bulk data are in goodesults and Bulk data were taken from reference [28].
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FIGURE 3. Coexistence lines in th@-T" diagram for all the con-
fined fluids and bulk. Bulk are from reference [28].

FIGURE 4. Latent heat (L) data for all the temperatures and pore
geometries.

TABLE |. Critical temperatures and fitted coefficients of Eq. (40).

TABLE Il. Latent heat (L) for the different temperatures and pore

geometries.
system T Ay Az As - -
T bulk slit sphere 2 cylinder
bulk 1.2400 -0.0099 0.1583 -0.1256 05 v
slit 1.1009 -0.0131 0.0468 0.1967 0'7 475 631 1745
sphere 1 1.1005 0.1270 1.5670 0.3060 0.8 365
sphere 2 1.1004 0.0040 0.3086 -0.0059 0'9 1230 314 979 1660
cylinder 1.1002 0.0174 2.0770 -0.9387 '
1.0 585 287 99 848
useds = 0.32 [29] as an approximation, close to the critical 1.1 423 132 173
temperature, where it is valid Eq. (41). The critical tempera- 1.2 293

tures and coefficients in Eq. (40) are given in Table I.

From previous section the Clapeyron equation of eachhe cylinder have similar values of the latent heat at low tem-
geometry are written in terms of differences in the entropyperatures until their temperatures approach the critical values,
and volume. However, it is also possible to write the equathen the latent heat drops more rapidly for the cylinder than
tion in terms of the specific latent heat, t, usthghS =,  for the slit-like pore. In fact the slit-like pore does not change
which is related with the enthalpy for a constant pressuresignificantly the latent heat for the simulated temperatures.
In Table Il the enthalpy difference (latent heat) is calculated,

t = Ahy; = h, — hy, whereh = U + PV. Recall that/, P 3.4. Fluid structure

andV are in reduce units, therefore, h is also given in reduce . o -

units (2 = h/e). It is also possible analyzed the vapour-liquid transition by
looking at the fluid structure given in the density profiles
(Figs. 5-7). The density profiles for the different geometries

dP _AS, _ Ah,

dT ~ AV, TAV, (42) have the following expressions, for the slit-like pore,
In Fig. 4, the latent heat divided by, AV is plotted with (7) = dN 43)
the temperature paramet&yT., P, is the pressure in the P AdZ’

gas andAV is the difference in between the gas and lig-whered N is the number of particles in a bin of thickne#s
uid volumes. This figure can be compared with previousandA(= XY) is the area of the plates.

works where they study thermodynamic properties of a van  For the cylinder,
der Waals fluid [30] where we can see a similar behaviour. As AN
plr) = 27r Ldr’

we expected the latent heat becomes smaller as the temper-

ature increases.e., it approaches to the critical value, since

there is no phase transition at high temperatures. From theherer is the radius and. is the length of the cylinder, re-
Fig. 4, we observe that the fluid in the sphere presents lowespectively.dN is the number of particles in a cylinder shell
latent heats compared with the other geometries. The slit anaf thicknessir.

(44)
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FIGURE 5. Density profiles for the slit-like pore, before (black circles) and after (red lines) the vapour-liquid transition. Plots are given for
different temperatures as indicated in each panel.

10 10
T=0.7 T=0.9

84

p(r)

T=1.0 T=1.1

c)

FIGURE 6. Density profiles for the cylinder pore, before (black circles) and after (red lines) the vapour-liquid transition. Plots are given for
different temperatures indicated in each panel.
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FIGURE 7. Density profiles for the sphere pore, before (black circles) and after (red lines) the vapour-liquid transition. Plots are given for
different temperatures indicated in each panel.

For the sphere, vapour-liquid transition is reached. Interesting in this case, is
also the presence of a gas region in the middle of the pore
dN ; ; -
p(r) = —, (45) suggested by the fluid density profile.
dmr2dr For the sphere pore we can also see two well structured
wherer is the radius of the sphere add is the number of layers close to the wall before and after the vapour-liquid
particles in a spherical shell of thicknags transition indicated by the density profiles (Fig. 7). Before
For the slit-like pore, as expected and also shown by sevthe transition a gas region is observed in the middle of the
eral authors, symmetrical layers are developed close to thgphere (black circles) and after (red lines) there is an homo-
walls (Fig. 5). Before the transition we observe gas densitgeneous liquid in the centre of the sphere for the reduced
in the middle of the pore and after the transition pressure théemperatures]’ = 0.9 and 1.0. However, for the intermedi-
density in the middle looks nearly homogeneous with liquidate temperature the fluid becomes more structuree, 0.7
values for the reduced temperatutes= 0.9 and 1.0. For [Fig. 7b)], and for the lowest temperatuf = 0.5, there is a
the low temperatures]’ = 0.7 and7 = 0.8, the overall  structured liquid in all the pore due to the fluid-wall interac-
densities increase, the first peaks are higher and the liquidon. Since in this case the radius of the sphere shrinks, to ad-
becomes more structured indicated by the oscillations in th@ist the input pressure, the confinement of this fluid is greater
density profiles, see Fig. 5a). Similar profiles are obtained foeompared with the cylinder and the slit-like pores, more
the other geometries, sphere and cylinder, however, in thes#ructured layers are formed.
cases the profiles are not symmetric, since they are measure Typical structures of the fluids in the pores before and
from the cylinder axis (Fig. 6) or center of the sphere (Fig. 7).after the vapour-liquid transitions are shown in Fig. 8 at tem-
In the case of the cylinder is possible to see a liquid regiorperaturel’ = 1.0 for all the geometries. In the slit-like pore
close the axis of the cylinder.€., in the center of the pore) is observed a gas region in the middle of the pore before the
after the vapor-liquid transition (red lines in Fig. 6) for the transition and how the pore is filled once the transition oc-
reduced temperaturds = 0.9, 1.0 and 1.1. It is also noted curs. More over, in both cases is possible to depict well ad-
that the first peak, close to the wall, becomes higher as thsorbed layers close to the walls. For the cylinder pore, the
temperature decrease. For the lowest temperalure,0.7, images are shown along the projection in the cross section of
the fluid shows the formation of more peaks (three well structhe area, the fluid particles are mainly attached to the cylinder
tured) indicating that the fluid presents a layer structure as theurface until the transition pressure is reached and condensa-

Rev. Mex. Fis70031701
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T=1.0 SLIT-LIKE CYLINDER

SPHERE geometries, spherical, cylindrical and slit-like pores. Several

isotherms were simulated and the vapor-liquid transition was
estimated by a discontinuous jump in the fluid density where
the fluid structures changed as the density profiles shown.
The phase diagram of all the systems were calculated and
we observed that the VLE become narrow for all geometries,
the critical temperature is reduced, and in general the vapour-
liquid transition occurs at lower temperatures than that in the
bulk. From thep- P isotherms it was constructed tiiep and

the P — T phase diagrams and for the last one it was also
possible to obtain the vapour-liquid coexistence lines from
the critical temperatures of each systéra, an equation of

the pressure as a function of the temperature was constructed
which works for all the confined and bulk fluids. Finally, it
was also possible to calculate the enthalpy for the vapour-
tion occurs, the fluid fills the pore space with two well struc- liquid transitions which is related with the latent heat. This
tured layers next to the wall in agreement with the densitylatent heat depends on the geometry and fluid-wall interac-
profiles. In the case of the sphere, the picture is taken from tion.

cross section in the regidh< z < 1. itis noted the presence

of particles close to the wall with a well defined structure be- A
fore and after the phase transition however, before the transi-

tion there is a gas in the middle of the pore and liquid afteryye acknowledge support by grant Conahcyt-Mexico A1-S-
as clearly shown in the pictures. 29587 and DGTIC-UNAM LANCAD-UNAM-DGTIC-238

for supercomputer facilities. E.A-H. acknowledges schol-
arship from grant A1-S-29587, Conahcyt. AB.S-A. ac-
knowledges scholarship from Conahcyt-Mexico. We also
In the present work we studied the behaviour of a confinegcknowledge Alejandro-Pompa, and Cain Gonzalez-Sanchez
fluid, using a simple Lennard Jones model, inside differenfor technical support in the computer calculations.
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BEFORE

AFTER

FIGURE 8. Snapshots of final configurations before and after the
vapour-liquid transition for a temperature 6f = 1.0, for all the
pore geometries as indicated in the figure.
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