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Monte Carlo simulations of simple Lennard Jones fluids confined in different geometries, sphere, cylinder and slit-like pores are conducted
to study the vapour-liquid transition. Phase diagrams, in the temperature-density (T -ρ) and pressure-temperature (P -T ) are obtained. For
each geometry the coexistence lines are plotted from the clapeyron equation of each systems and aP −T equation is proposed in terms of the
critical temperature which works for all the systems. Additionally, the transition latent heat is also evaluated, from the enthalpy calculation
obtained directly from the simulation data, and the fluid structure from density profiles.
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1. Introduction

Nowadays the study of confined fluids is extensive, people
have investigated them for several years using simple and
more real fluid. Several authors have studied confinement
in different geometries and research of phase transitions and
structure of those fluids are reported in a lot of works. In
fact, fluids can be confined in different natural or synthetic
geometries, slit-like pores are present in clays and carbons,
cylinder pores can be found in silica and carbon nano tubes
whereas sphere pores can be in silica also and metal-organic
framework (MOFs). In all these geometries a phenomenon
widely known in the literature is that confined fluids exhibit a
significantly distinct physical nature compared to bulk liquids
[1–7]. Various factors influence this behavior, porous geom-
etry, size and chemical nature of the pore, and the fluid-wall
interaction,i.e., the energy between particles of fluid with
particles of the solid [8,9]. This interaction can be effectively
described using several potentials such as the Steele potential,
employing variations like the 9-3, 10-4, or 10-4-3 [8–10]. In
several articles, it has been mentioned that the fluid-wall in-
teraction modifies the phase diagram, change the critical tem-
perature and capillary condensation occurs [2,11,12]. More-
over, confined fluids can induce alterations in phase compo-
sitions, interfacial tensions, fluid viscosities, and saturation
pressures [4–6]. These variations have been observed ex-
perimentally and verified through theories such as Non-local
density functional theory, NLDFT, or Monte Carlo simula-
tions [7, 13]. In terms of the geometry of the solid some au-
thors have found that capillary condensation of argon, occurs
at a lower pressure in spherical than in slit pores. These re-
sults are attributed to the curvature of the pore walls and the
fluid-wall interaction. In other hand, it also has been observed
that for macroscopic pore size, the behavior of the confined
fluids is very similar to the bulk fluids however, when the pore

size decreases to the meso or microscopic level, fluid-wall
interactions become quite dominant,i.e., the fluid properties
depend highly on pore size and shape [13,14].

The equivalent of the bulk liquid-vapor transition in the
confined state is known as capillary condensation. This phe-
nomenon constitutes the basis of one of the most fundamen-
tal techniques to characterize nanoporous media: the mea-
surements of sorption isotherms [15]. Currently, research has
been expanded to include more complex molecules, such as
alkanes and liquid crystals, in order to understand in greater
detail the phase transitions in these systems [6,16,17]. Phase
transitions can be determined by a discontinuous jump in the
order parameter. In bulk systems this jump can be observed
in the fluid density for a given pressure (the saturated va-
por pressure) at a constant temperature. The transition oc-
curs when the low density vapor-like phase abruptly changes
into a higher density condensed phase in the pore. However
this behavior might be different in confined fluid, for instance
the jump could be not perfectly vertical. In this sense, the
transition pressure where the phase transition occurs could
be complicate to locate and methods such as the graphical
method, slope method, or Clausius-Clapeyron method can be
used [18]. Additionally, this phase transition can only occur
at conditions below the pore critical point, which has been
validated to differ from the bulk critical point [19].

The Clapeyron approach has been long used for the en-
thalpy/heat of vaporization calculations in fluids in nanopores
[20–22]. It has been found the changes in the enthalpy de-
creases with the temperature, very similar to that of the bulk.
Also, the enthalpy has been studied in confined binary mix-
tures, which has been demonstrated that is larger than that
of the bulk mixtures [23]. Other works have found that the
heat of capillary condensation is higher as the pore size de-
creases [24].
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This study focused on constructing phase diagrams for
the nitrogen fluid,N2, in its bulk and confined state within
three types of confinement geometries, slit-like, cylindri-
cal, and spherical. Nitrogen was selected because it corre-
sponds to a standard fluid for the adsorption characterization
of porous solids. We located and analyzed the liquid-vapor
transitions in pores with the Clapeyron approach. We do
not intend to repeat what is have done and observed in other
works, here we want to explore how the coexistence lines can
be obtained from the well known clapeyron equation, and to
propose a functional form of those coexistence lines. Addi-
tionally we want to show how the latent heat associate with
the transitions can be obtained directly from simulation data
via the enthalpy.

2. Computational model

Simulations were conducted for Lennard-Jones (LJ) particles
in bulk and confined systems. In all cases 1000 particles were
initially placed randomly in a simulation box and they were
simulated in a Monte Carlo (MC) isothermal-isobaric ensem-
ble (NPT) using reduced LJ units.

Three confined geometries were used, slit-like, spherical
and cylindrical pores. In all case the energy of the systems
is the contribution of the fluid-fluid (Uff , potential between
particles of the fluid) and the fluid-wall (Ugs, potential be-
tween the wall and particles of the fluid).

U = Uff + Ugs, (1)

whereUff is given by the shifted and cutoff Lennard-Jones
(LJ) potential,

Uff =

{
4εff

[(σff

r

)12 − (σff

r

)6
]

r < rc

0 r > rc

, (2)

whereεff andσff are the LJ parameter of the fluid andrc

is the cutoff radius. TheUgs energy has different expressions
and it depends on the geometry variables of the walls. For
the slit-like pore simulations were carried out in a NPxyT en-
semble with particles confined between two walls separated a
distanceH in thez-direction, then the external pressure was
imposed in theX − Y direction, parallel to the plates, and
periodic boundary conditions were used in those directions.
The fluid-wall interaction was a 10-4-3 steele potential [8,9].

Ugs(z) = 2πεgsρsσ
2
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[
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gs

3∆(α∆ + z)3

]
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wherez is the distance of the wall to one particle in the fluid.
The wall parameters were chosen to simulate a N2 fluid con-
fined in silica plates,εgs andσgs are 1.5595 and 0.8867, re-
spectively and the wall density,ρs is 0.9954,∆ = 0.61/

√
2

[25].

For the cylinder, the confinement was along its radial axis
using a NPzT ensemble,i.e., pressure was fixed along the
axis of the cylinder, with periodic boundary conditions in the
same direction only. The fluid-wall interaction was the same
10-4-3 steele potential form but using the appropriate radial
cylindrical coordinates,Ugs = Ugs(r) with r =

√
x2 + y2,

and wall densityρs = 1.9954 in this case.

For the spherical geometry, the NPT ensemble with an in-
put pressure in all direction was used, with the restriction that
particles moved inside the sphere of fix radius. In this case
the particle-wall interaction is given by the following equa-
tion [10],
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(4)

where εgs and σgs are 1.5595 and 0.8867, respectively,
the wall density, ρs is 0.9954, ∆ = 0.61/

√
2, r =√

x2 + y2 + z2. The results calculated with this potential
are reported in the paper as sphere-1.

Another spherical potential was simulated by incorporat-
ing the 10-4-3 Steele potential, described by Eq. (3), with the
corresponding radial spherical coordinates. The potential is
expressed asUgs = Ugs(r), wherer =

√
x2 + y2 + z2, and

the wall density isρs = 1.9954. In this case, the results are
presented as sphere-2.

In all cases the Monte Carlo moves were following the
standard Metropolis method. Simulations were conducted
for different reduced temperatures and pressure was chang-
ing until the vapour-liquid transition was observed by a dis-
continuous jump in the fluid density. All simulation were run
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with a cut-off ofrc = 4.0 σff up to 250000 MC steps after
equilibration of 100000. Equilibration was considered after
the configurational energy and the structural properties did
not change significantly.

3. Results

3.1. Phase transitions

For bulk systems the internal energy is:

dU = TdS − PdV + µdN. (5)

For fluids with constant number of particles (constant mass)
where the pressure and the temperature are the main ther-
modynamic variables the thermodynamic potential which de-
scribes the system is the Gibbs free energy

dG = −SdT + V dP. (6)

Then, the phase equilibria between two bulk phases,e.g.,
vapour and liquid, occurs whendGv = dGl and the phase
transition is characterize by the Clapeyron equation,

dP

dT
=

Sv − Sl

Vv − Vl
=

∆Svl

∆Vvl
. (7)

For the slit-like pore the internal energy in the appropriate
thermodynamic variables is:

dU = TdS − PxyHdA + 2γdA + µdN, (8)

wherePxy is the pressure in the X-Y direction,H the walls
separation with areaA andγ the fluid-wall interfacial ten-
sion, the factor of 2 is because the two walls. The Gibbs
thermodynamic potential is,

G = U − TS + PxyHA. (9)

If Eq. (8) is integrated for constantT , Pxy andµ we obtain

U = TS − PxyHA + 2γA + µN. (10)

Then using Eq. (9) with Eq. (10),

G = 2γA + µN. (11)

The difference between vapour and liquid phases,Gv, Gl,
with N constant

Gv −Gl = 2(γsvAv − γslAl) + (µv − µl)N, (12)

whereγsl andγsv are the interfacial tension of the wall-liquid
and wall-vapour, respectively. if we consider that both phases
are in equilibrium,Gv = Gl, then condensation occurs when

µv − µl =
2
H

(
γsl

ρl
− γsv

ρv

)
, (13)

with ρl andρv the densities in the liquid and in the vapour,
respectively. Similar relation is obtained in previous works

of confined fluids [26,27]. From Eqs. (8) and (10) is possible
to write a Gibbs-Duhem equation for this system,

SdT −AHdPxy + 2Adγ + Ndµ = 0. (14)

On the other hand, using Eq. (8) in Eq. (9),

dG = −SdT + 2γdA + HAdPxy, (15)

where we have considered thatH and N are fixed in the
present simulations. The phase equilibria of the confined
fluid between two phases, vapor and liquid, occurs when
dGv = dGl, i.e.,

−(Sv − Sl)dT + 2(γsv − γsl)dA

+ H(Av −Al)dPxy = 0, (16)

resulting in the following Clapeyron equations,

dPxy

dT
=

∆Svl

H∆Avl
=

∆Svl

∆Vvl
, (17)

dPxy

dA
= − ∆γvl

H∆Avl
= −∆γvl

∆Vvl
, (18)

and

dA

dT
=

∆Svl

∆γvl
. (19)

For the cylinder the total internal energy is,

dU = TdS − Prπr2dL + γdA + µdN, (20)

herePr is the pressure along the radial axis of the cylinder,
V = πr2L, whereL andA are the volume, the length and
the area of the cylinder in contact with the fluid andγ the
fluid-wall interfacial tension. The Gibbs free energy is,

G = U − TS + Prπr2L. (21)

If Eq. (20) is integrated for constantT , Pr andµ we obtain

U = TS − Prπr2L + γA + µdN. (22)

Then using Eqs. (21) and (22),

G = γA + µN. (23)

Evaluating the free energy in the vapour and in the liquid
considering that in the equilibriumGv = Gl,

µv − µl =
2
r

(
γsl

ρl
− γsv

ρv

)
, (24)

with γsl andγsv are the interfacial tension of the wall-liquid
and wall-vapour andρl andρv the densities in the liquid and
in the vapour, respectively. From Eqs. (20) and (22) is possi-
ble to write a Gibbs-Duhem equation for this system,

SdT − πr2LdPr + Adγ + Ndµ = 0. (25)
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On the other hand, using Eq. (20) in Eq. (21),

dG = −SdT + γdA + πr2LdPr, (26)

where we have considered that the number of particles,N ,
and the radius of the cylinder,r, are fixed. The phase equi-
libria between the two phases, vapor and liquid, occurs when
dGv = dGl, and the corresponding Clapeyron equations are,

dPr

dT
=

∆Svl

πr2∆Lvl
=

∆Svl

∆Vvl
, (27)

dPr

dA
= − ∆γvl

πr2∆Lvl
= −∆γvl

∆Vvl
, (28)

and

dA

dT
=

∆Svl

∆γvl
, (29)

whereV is the volume of the cylinder.
For the case of the sphere, the total internal energy is,

dU = TdS − PrdV + γdA + µdN, (30)

hereV andA are the volume and area of the sphere andPr is
the pressure along the radial axis andγ the fluid-wall interfa-
cial tension. The Gibbs free energy is,

G = U − TS + PrV. (31)

If Eq. (30) is integrated for constantT , Pr andµ we ob-
tain

U = TS − PrV + γA + µdN. (32)

Then using Eqs. (31) and (32),

G = γA + µN, (33)

with a similar analysis for the other geometries, evaluating
the free energy in the vapour and in the liquid and consider-
ing that in the equilibriumGv = Gl we obtain,

µv − µl = 3
(

γsl

rlρl
− γsv

rvρv

)
, (34)

with γsl andγsv are the interfacial tension of the wall-liquid
and wall-vapour andρl andρv the densities in the liquid and
in the vapour, respectively.rv and rl are the radius of the
sphere in the vapour and the liquid, respectively. Moreover,
from Eqs. (30) and (32) is possible to write a Gibbs-Duhem
equation for this system,

SdT − V dPr + Adγ + Ndµ = 0, (35)

FIGURE 1. Isotherms, for theρ-P plots for all the confined geometries. a) spherical pore using Eq. (4) for the fluid-wall interaction, b)
spherical pore using Eq. (3) for the fluid-wall interaction with the variabler =

√
x2 + y2 + z2, c) cylindrical pore using Eq. (3) for the

fluid-wall interaction with the variabler =
√

x2 + y2 and d) slit-like pore using Eq. (3) with the variable z for the fluid-wall interaction.
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with V the volume of the sphere. On the other hand, using
Eqs. (30) and (31),

dG = −SdT + γdA + V dPr, (36)

using thatN is fixed in the simulations. The correspond-
ing Clapeyron relations for the equilibrium between the two
phases are

dPr

dT
=

∆Svl

∆Vvl
, (37)

dPr

dA
= −∆γvl

∆Vvl
, (38)

and
dA

dT
=

∆Svl

∆γvl
. (39)

For all systems the variation of the pressure with the temper-
aturedP/dT can be used to determine the phase transition,
which is characterized by a discontinuous jump in the order
parameter, the volume or the density.

3.2. Isotherms

As it was mentioned above all simulations were conducted in
reduced units of the fluid then, from now on all quantities are
given in reduced units.

Simulations were conducted for several temperatures and
the vapour-liquid transition was characterized by a jump in
the fluid density for a given transition pressure. Since the
number of particles is fixed the numerical density was de-
fined as the number of particles divided by the volume of the
pore, slit-like, cylinder or spherical. In Fig. 1, the isotherms
are shown for the different pore geometries. The isotherms
for the sphere geometry with the fluid-wall interaction given
by Eq. (4) [Fig. 1a)] do not show any discontinuity in the
density, all the plots look continuous, most probably the cho-
sen temperatures are above the critical and there is not phase
transition. We change the fluid-wall interaction potential to
the same form as the slit-like and cylinder pores,i.e., 10-4-3
potential, with radial coordinates to see if any change is ob-
served. In Fig. 1b), the isotherms for this new sphere was
plotted and it is possible to observe now discontinuous jumps
in the density indicating that the systems suffer a first order
phase transition. As the temperature increases this disconti-
nuity becomes smaller. In the case of the cylinder [Fig. 1c)]
and the slit-like [Fig. 1d)] pores once again it is observed how
the fluid density increases as the pressure increases until an
evident jump occurs indicating that the systems go to a phase
transition, from vapour to liquid. It is also noted that the in-
terval of the transition pressure among temperatures is higher
for the cylinder and the sphere pores whereas for the slit-like
pore the transition pressure occurs in a narrower interval.

3.3. Phase diagrams

In Fig. 2 the, T-ρ, phase diagrams are shown for all the con-
fined geometries and bulk systems. Bulk data are in good

agreement with those reported in previous works [28]. The
confinement makes a significant change in fluid phase dia-
grams respect to the bulk, reducing not only the critical tem-
perature, similar to what was observed in previous works
[28], but also changing the shape of the vapour-liquid equi-
librium (VLE) curves, they are shifted to the right and they
become narrower. Since the sphere is a completely closed
geometry with the smaller size parameter, it could be the rea-
son that the VLE curve is the narrowest of all the pores. It is
observed that the gas phase extends more respect to the bulk
in all the geometries, whereas the liquid is reduced for the
sphere and the cylinder pores. However, for the cylinder the
gas branch is longer than for the slit-like pore while the op-
posite occurs for the liquid branch, it extends further for the
slit-like pore than for the cylinder. Interesting is that in all the
geometries the reduction of the critical temperature is nearly
the same, however, it occurs at different densities.

Another way to see phase transitions is in theP -T di-
agram. In Fig. 3 the coexistence lines for all the confined
geometries simulated are shown. The lines were fitted with
equation,

P = A1 ln(Tc − T ) + A2T + A3, (40)

whereA′s are constants to fit. In Eq. (40) the value of the
critical temperature is needed and it is estimated with equa-
tion

ρl − ρv ∝ (Tc − T )β . (41)

Since the pores are not too small,i.e., it is possible to ob-
serve a bulk fluid in the middle, we can consider that they are
not strictly a two (or one) dimensional systems, therefore we

FIGURE 2. T -ρ phase diagrams for all confined fluids and bulk
systems. Symbols are indicated in the figures. Bulk data are our
results and Bulk∗ data were taken from reference [28].
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FIGURE 3. Coexistence lines in theP -T diagram for all the con-
fined fluids and bulk. Bulk∗ are from reference [28].

TABLE I. Critical temperatures and fitted coefficients of Eq. (40).

system Tc A1 A2 A3

bulk 1.2400 -0.0099 0.1583 -0.1256

slit 1.1009 -0.0131 0.0468 0.1967

sphere 1 1.1005 0.1270 1.5670 0.3060

sphere 2 1.1004 0.0040 0.3086 -0.0059

cylinder 1.1002 0.0174 2.0770 -0.9387

usedβ = 0.32 [29] as an approximation, close to the critical
temperature, where it is valid Eq. (41). The critical tempera-
tures and coefficients in Eq. (40) are given in Table I.

From previous section the Clapeyron equation of each
geometry are written in terms of differences in the entropy
and volume. However, it is also possible to write the equa-
tion in terms of the specific latent heat, Ł, usingT∆S = Ł,
which is related with the enthalpy for a constant pressure.
In Table II the enthalpy difference (latent heat) is calculated,
Ł = ∆hvl = hv − hl, whereh = U + PV . Recall thatU , P
andV are in reduce units, therefore, h is also given in reduce
units (h = h/ε).

dP

dT
=

∆Svl

∆Vvl
=

∆hvl

T∆Vvl
(42)

In Fig. 4, the latent heat divided byPv∆V is plotted with
the temperature parameterT/Tc, Pv is the pressure in the
gas and∆V is the difference in between the gas and liq-
uid volumes. This figure can be compared with previous
works where they study thermodynamic properties of a van
der Waals fluid [30] where we can see a similar behaviour. As
we expected the latent heat becomes smaller as the temper-
ature increases,i.e., it approaches to the critical value, since
there is no phase transition at high temperatures. From the
Fig. 4, we observe that the fluid in the sphere presents lower
latent heats compared with the other geometries. The slit and

FIGURE 4. Latent heat (Ł) data for all the temperatures and pore
geometries.

TABLE II. Latent heat (Ł) for the different temperatures and pore
geometries.

T bulk slit sphere 2 cylinder

0.5 598

0.7 475 631 1745

0.8 365

0.9 1232 314 279 1660

1.0 585 287 99 848

1.1 423 132 173

1.2 293

the cylinder have similar values of the latent heat at low tem-
peratures until their temperatures approach the critical values,
then the latent heat drops more rapidly for the cylinder than
for the slit-like pore. In fact the slit-like pore does not change
significantly the latent heat for the simulated temperatures.

3.4. Fluid structure

It is also possible analyzed the vapour-liquid transition by
looking at the fluid structure given in the density profiles
(Figs. 5-7). The density profiles for the different geometries
have the following expressions, for the slit-like pore,

ρ(Z) =
dN

AdZ
, (43)

wheredN is the number of particles in a bin of thicknessdZ
andA(= XY ) is the area of the plates.

For the cylinder,

ρ(r) =
dN

2πrLdr
, (44)

wherer is the radius andL is the length of the cylinder, re-
spectively.dN is the number of particles in a cylinder shell
of thicknessdr.
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FIGURE 5. Density profiles for the slit-like pore, before (black circles) and after (red lines) the vapour-liquid transition. Plots are given for
different temperatures as indicated in each panel.

FIGURE 6. Density profiles for the cylinder pore, before (black circles) and after (red lines) the vapour-liquid transition. Plots are given for
different temperatures indicated in each panel.
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FIGURE 7. Density profiles for the sphere pore, before (black circles) and after (red lines) the vapour-liquid transition. Plots are given for
different temperatures indicated in each panel.

For the sphere,

ρ(r) =
dN

4πr2dr
, (45)

wherer is the radius of the sphere anddN is the number of
particles in a spherical shell of thicknessdr.

For the slit-like pore, as expected and also shown by sev-
eral authors, symmetrical layers are developed close to the
walls (Fig. 5). Before the transition we observe gas density
in the middle of the pore and after the transition pressure the
density in the middle looks nearly homogeneous with liquid
values for the reduced temperaturesT = 0.9 and 1.0. For
the low temperatures,T = 0.7 and T = 0.8, the overall
densities increase, the first peaks are higher and the liquid
becomes more structured indicated by the oscillations in the
density profiles, see Fig. 5a). Similar profiles are obtained for
the other geometries, sphere and cylinder, however, in these
cases the profiles are not symmetric, since they are measure
from the cylinder axis (Fig. 6) or center of the sphere (Fig. 7).

In the case of the cylinder is possible to see a liquid region
close the axis of the cylinder (i.e., in the center of the pore)
after the vapor-liquid transition (red lines in Fig. 6) for the
reduced temperaturesT = 0.9, 1.0 and 1.1. It is also noted
that the first peak, close to the wall, becomes higher as the
temperature decrease. For the lowest temperature,T = 0.7,
the fluid shows the formation of more peaks (three well struc-
tured) indicating that the fluid presents a layer structure as the

vapour-liquid transition is reached. Interesting in this case, is
also the presence of a gas region in the middle of the pore
suggested by the fluid density profile.

For the sphere pore we can also see two well structured
layers close to the wall before and after the vapour-liquid
transition indicated by the density profiles (Fig. 7). Before
the transition a gas region is observed in the middle of the
sphere (black circles) and after (red lines) there is an homo-
geneous liquid in the centre of the sphere for the reduced
temperatures,T = 0.9 and 1.0. However, for the intermedi-
ate temperature the fluid becomes more structured,T = 0.7
[Fig. 7b)], and for the lowest temperature,T = 0.5, there is a
structured liquid in all the pore due to the fluid-wall interac-
tion. Since in this case the radius of the sphere shrinks, to ad-
just the input pressure, the confinement of this fluid is greater
compared with the cylinder and the slit-like pores,i.e., more
structured layers are formed.

Typical structures of the fluids in the pores before and
after the vapour-liquid transitions are shown in Fig. 8 at tem-
peratureT = 1.0 for all the geometries. In the slit-like pore
is observed a gas region in the middle of the pore before the
transition and how the pore is filled once the transition oc-
curs. More over, in both cases is possible to depict well ad-
sorbed layers close to the walls. For the cylinder pore, the
images are shown along the projection in the cross section of
the area, the fluid particles are mainly attached to the cylinder
surface until the transition pressure is reached and condensa-
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FIGURE 8. Snapshots of final configurations before and after the
vapour-liquid transition for a temperature ofT = 1.0, for all the
pore geometries as indicated in the figure.

tion occurs, the fluid fills the pore space with two well struc-
tured layers next to the wall in agreement with the density
profiles. In the case of the sphere, the picture is taken from a
cross section in the region0 < z < 1. it is noted the presence
of particles close to the wall with a well defined structure be-
fore and after the phase transition however, before the transi-
tion there is a gas in the middle of the pore and liquid after,
as clearly shown in the pictures.

4. Conclusions

In the present work we studied the behaviour of a confined
fluid, using a simple Lennard Jones model, inside different

geometries, spherical, cylindrical and slit-like pores. Several
isotherms were simulated and the vapor-liquid transition was
estimated by a discontinuous jump in the fluid density where
the fluid structures changed as the density profiles shown.
The phase diagram of all the systems were calculated and
we observed that the VLE become narrow for all geometries,
the critical temperature is reduced, and in general the vapour-
liquid transition occurs at lower temperatures than that in the
bulk. From theρ-P isotherms it was constructed theT -ρ and
the P − T phase diagrams and for the last one it was also
possible to obtain the vapour-liquid coexistence lines from
the critical temperatures of each system,i.e., an equation of
the pressure as a function of the temperature was constructed
which works for all the confined and bulk fluids. Finally, it
was also possible to calculate the enthalpy for the vapour-
liquid transitions which is related with the latent heat. This
latent heat depends on the geometry and fluid-wall interac-
tion.
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