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We study the possible existence of bound states of iggebaryons. We consider only wave interactions and we start from recent lattice

QCD results which give a strongly attractive potential between®yg baryons in thé' So channel. We analyze different scenarios. At
baryonic level, th&,,, Qs interaction could be understood to be basically spin-independent, so that the two contributing ch&praels,

555, would have a very similar interaction. This baryonic analysis leads to the existence of bound states in the three-body system. At the
quark level, repulsive effects would appear in B2 channel, making it more repulsive than ths, channel. We study the effect of such
repulsion.
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1. Introduction at the baryon level or at the quark level about fhg, Q.
58, interaction.

Recently, there have been several interesting developements We carry out our study within the formalism of the non-
on the possible existence of bound states of two and free relativistic Faddeev equations for three identical particles
baryons. For example, Ref. [1], using a one-boson-exchangeonsidering onlyS waves. We start our discussion of the
(OBE) model found bound states of the systeihs Q... three-body system considering only the = 0 two-body
and Q4 Q05. Reference [2] derived 812 interaction based channel and afterwards we analyze the effect of$he= 2
on lattice QCD. Similarly, Ref. [3], a lattice QCD calcu- two-body channel for the three-body bound state.
lation with nearly physical light-quark masses, derived the
Qeeeflece interaction in thelS, channel. They obtain a ;
bound state with a binding energy of 5.68 MeV. More re—2' Single channel Faddeev problem
cently, Ref. [4] performed a lattice QCD calculation of the The Faddeev equations for three identical particles are
Quup e, System finding a very deep bound state in 1i5g
channel, with a binding energy of 81 MeV. The energy of the T =2t,GoT (1)
bound states of the two-body systems would be the thresh- r g ; )
old of any possible three-body bound state. Finally, Ref. [5]?Nheretz Is thet-matrix of the two-body system,
using the existing lattice QCD interactions for the differ- t, =V +VGot; , 2
ent ) systems, investigated the three-body syst&ms), . . o
QeeeeceQecer and Qs Quis. They found that none of whgreV is the two-body interaction in th&‘o channel and
the three-body systems binds. However, making use of th&0 IS the propagator for three free particles.
OBE interactions of Ref. [1] th€ system develops a We use the complete set of basis statgs
bound state. oy i) = Ipigi((s5, 51)Sis0) ) ©)

In this work, we investigate whether the,,, Q2062006 ) )
system is bound. Th&,,, baryon has spir8/2 and no with pi andg; the standard_ Jacobi momentg, s;, andsk_
isospin, so that the two-body system can have total spiﬁhe spins of the three particleS; the total spin of the pair
S; = 0,1,2, and3. However, the stateS; = 1 andS; = 3 jk, and J the total spin of the three-body system. In this
are not allowed inS-wave by the Pauli principle, so that one Pasis the Faddeev equatidt) becomes,
is left with only the states; = 0 and.S; = 2. In Ref. [4], . o il 1IN S s .
they obtained thé&,,, Q2 interaction only for the channel (T Ig0) =2 (il t: [ (7] 3) Go (G T |o) @
S; = 0, so that we will have to discuss the situation of thewhere the explicit form of the integral equation in momentum
channelS; = 2. We will use some hypotheses deduced eitherspace is given in the Appendix.
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The recoupling coefficient, The Yukawa function in the spin-spin term is an ex-
o . tended delta function which becomes a delta function if
(@' j) = Pigl pjas) ro — 0. This form of the spin-spin interaction is suggested

< (55, 5%)Si,8:)J| ((sk:5:)S;.8;)T) . (5) by the non-relativistic reduction of the one-gluon-exchange
diagram [10],
is of great interest. The space péptq.| p,;g;) is positive

definite [6]; however, the spin part is - 351047; %53(7)§¢ ‘ §j, (10)
(((s5,56) 85, 8i)J| ((sk,5:)55,55)T) = Y
(_)sj+er\/(25i +1)(2S; + 1) wherem, and S; are the mass and spin operator of particle

i. As one can see in Eq9)(and (L0), the spin-spin term is
X W(sjsiJsi;8:5;) . (6)  inversely proportional tan;m; so thatin the case of baryons
] with identical quarks it goes asrb?. Thus, using the masses
SinceS; = §; = 0ands; = s; = s, =J = 3/20negets,  for the light quarks: (=~ 0.3 GeV) and for the heavy quaik

_ o NG T (=~ 5 GeV) from Refs. [8, 9], one gets that the spin-spin term
(s 51)Si; 50)T] (s, 0)S;, 85)T) = in the case of théb interaction is about 250 times smaller that
()2 L1 7 that of thenn interaction and therefore it is negligible. This
2s; +1 4’ means that the interaction between tivquarks is basically

which is a negative number, so that it effectively changes théndependent of the spin.

nature of the two-body interaction from attractive to repulsive L&t US now consider the spin-spin interaction in the
such that no bound state can be obtained in a one-channgfS€ Of two{,, baryons. In a quark model descrip-
calculatior. tion, the baryon-baryon interaction can be deduced from

The result of Eq.7) is a direct consequence of the Pauli e quark-quark interaction following a well-known proce-
principle and it applies for all systems with three identicaldure [11,12]. In the case where the interactions are restricted

fermions,i.e., particles with spin half-integer, like the case of 105 waves, if the quark-quark interaction is almost indepen-

three neutrons where dent of the spin, the baryon-baryon interaction will also be
' almost independent of the spin [12]. This would imply a
(((s5,5%)S5,8:)J| ((5K,5:)Sj,85)]) = purely centralyy, Qs interaction, so that,,, o,,, (1:S0) ~
2 1 1 o V?Sb?bbz (55;2) a;ndé thus, one can use the = 0 interaction
=) — = —— of Ref. [4] also forS; = 2.
P ri=g ® [4]

It is worth noting that in the three-neutron case there is only
a two-body channel$; = 0, if one includes onlyS waves, 4
so that there is no possibility for a three-neutron bound state”

with any interaction. However, in the case of the three . .
omegas besides tHé — 0 channel one also has tise — 2 The explicit form of the Faddeev equations for the two-
two-body channel channel problem in momentum space is also given in the Ap-

pendix. If one includes the two channéls= 0 andS; = 2,
the spin recoupling coefficients of E@®)(are,

Two-channel Faddeev problem

3. Baryonic level®S; Q€ interaction

A two-body interaction acting it5-waves contains only cen- (0] 0) = 1 (0] 2) = _ﬁ
tral and spin-spin terms, since terms like spin-orbit, tensor, 4
etc., act only for nonzero orbital angular momentum.

The phenomenological description of the spectra of
mesons and baryons in a nonrelativistic approach is based in
a two-body potential between quarks [8, 9]. In Ref. [8] suchThe recoupling coefficien2| 2) is positive and much larger
potential was taken to be, than the coefficien{0| 0), so that if the interaction in the

channelS; = 2 is equal to that of the channél = 0, one
& -G;, (9) wouldexpectto geta bound state.

Following the conclusion of the previous section we start
and similarly in Ref. [9]. The four termsinther.h.s. of E®) ( by taking Va,,, 0., (°S2) = Vauau, (1S0). We find in

are, respectively, the Coulomb term, the linear confinementhis case that the ground state and one excited state of the
term, the constant term, and the spin-spin term. This interthree-body2,,, Q20,200 System, that lie at-393.8 MeV and
action is able to reproduce reasonably well the masses and94.9 MeV, respectively-{363.9 MeV and-81.0 MeV, re-
other properties of all the existing mesons and baryons [9]. spectively, if one includes the Coulomb interaction).

(2] 0) =

|
B
=&

<m2y=+%. (11)

Kk exp /T

Vi) =-S4+x—A+
T mimj TTo
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FIGURE 1. The Quu Qs interactionVs for A = 0,1, and 2. )
FIGURE 2. The Q266 2666 binding energy as a function of the

parameterA.

5. Quark level®S, Q€ interaction

As it has been discussed in the literature [11, 14-16] there\ppendix A.

appears quark Pauli blocking for particular channels of some

two-baryon systems. This has been discussed in detail, fdn order to solve the single channel three-body problem we

example, for thex N system [16] or for theAN and AA  use the method of Ref. [13], where the two-body amplitudes

systems [11, 14, 15]. Pauli blocking translates into repulsiveare expanded in terms of Legendre polynomials. Thus, the
cores. See, for example, Fig. 3 of Ref. [15]. TRg, Qi Faddeev equations for the bound state problem take the sim-
two-baryon belongs to the same flavor multiplet as th& ple form,

system and thus it also shows Pauli blocking fortsg chan- -

nel, which means a repulsive core. In order to simulate these 7n(,.y — / K (g, g5 " (qi) )

effects we will take the5; = 2 interaction as, @) ; 0 da; K (@i, 455 BT () (A

Vo(r) r > o, where
Va(r) = Vo(r) + A[Vo(r) ) , (12) 9 q?
Vo) (1= ) r<n K" (gi, 053 E) = 201 0) Y71 (B — 7 /2)
whereA is a constant angly = 0.104 fm is the radius where 1 () P ()
is mini Fig. 1). The forni tees that ></dcos9 o ; A2
Vo is minimum (see Fig. 1) e fornlP) guarantees tha . B p?/277j — q]z/2l/j (A2)

Va(r) anddVa(r)/dr are continuous at = ry. This trans-
formation has the effect of pushing upwards the short-ranggith (| 0) the spin recoupling coefficieriL1),
part of the interaction, thereby reducing the attraction. We )
show this behavior in Fig. 1 for the special casks= 1 m+12r+1 1
andA = 2 as compared with the = 0 case, which corre- m(e) = 2 2 / i
sponds to the model of Ref. [4]. Thus, our final model of the '
Quep ey iNteraction contained in EG1P) and Fig. 1, has the
58, interaction less attractive than thg, interaction which
is similar to what is obtained in the OBE model of Ref. [1].

We show in Fig. 2 the evolution of the binding energy and
(with and without Coulomb) as a function of the parameter
A. As one can see, the binding energy changes very slowly. i
We consider that values of larger than 20 are not realistic
so that we expect the binding energy to lie between 250 ang; andg; are the magnitudes of the Jacobi relative momenta
350 MeV. while n; andv; are the corresponding reduced masses.

1
x/ Az P, (z;)ti(zs, x}; ) P (2)) | (A.3)
-1

_pi_b
T opitb

(A.4)
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Finally, t;(x;,2};e) corresponds to the off-shell two- with
body t-matrixt;(p;, p}; e) through the transformatioA(4),
with b a scale parameter on which the solution does not de-
pend. The off-shell two-body-matrices are obtained by
solving the Lippmann-Schwinger equation,

oo
Vi(pi, ) + / i 2dp; Vi(ps, i)
0
1
x 12 .
e—p!°/2n; +ie

with e = E — ¢2/2v;. In order to solve the two-channel This work has been partially funded by COFAA-IPN
three-body problem, EGA(1) becomes, (México) and by the Spanish Ministerio de Ciencia e In-

2
nm nr 4q;
Kaﬁ (in(Ij;E) =2(a| B) E To (B — 93/2%‘)5

! P.(z/)P,,(z;
x/ dcosf TQ(IZ) m(xé) )
1 E_pj/an_qj/ZVj

(A7)
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;. On the opposite side, a repulsive potential together with a neg- 8.

ative spin recoupling coefficient does not change the nature of
the interaction so as to lead to a three-body bound state, as disy
cussed in Ref. [7] for the case of the= 3/2 ¥~ nn system.
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