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ΩbbbΩbbbΩbbb tribaryons
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We study the possible existence of bound states of threeΩbbb baryons. We consider onlyS wave interactions and we start from recent lattice
QCD results which give a strongly attractive potential between twoΩbbb baryons in the1S0 channel. We analyze different scenarios. At
baryonic level, theΩbbbΩbbb interaction could be understood to be basically spin-independent, so that the two contributing channels,1S0 and
5S2, would have a very similar interaction. This baryonic analysis leads to the existence of bound states in the three-body system. At the
quark level, repulsive effects would appear in the5S2 channel, making it more repulsive than the1S0 channel. We study the effect of such
repulsion.
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1. Introduction

Recently, there have been several interesting developements
on the possible existence of bound states of two and threeΩ
baryons. For example, Ref. [1], using a one-boson-exchange
(OBE) model found bound states of the systemsΩcccΩccc

andΩbbbΩbbb. Reference [2] derived aΩΩ interaction based
on lattice QCD. Similarly, Ref. [3], a lattice QCD calcu-
lation with nearly physical light-quark masses, derived the
ΩcccΩccc interaction in the1S0 channel. They obtain a
bound state with a binding energy of 5.68 MeV. More re-
cently, Ref. [4] performed a lattice QCD calculation of the
ΩbbbΩbbb system finding a very deep bound state in the1S0

channel, with a binding energy of 81 MeV. The energy of the
bound states of the two-body systems would be the thresh-
old of any possible three-body bound state. Finally, Ref. [5],
using the existing lattice QCD interactions for the differ-
ent ΩΩ systems, investigated the three-body systemsΩΩΩ,
ΩcccΩcccΩccc, andΩbbbΩbbbΩbbb. They found that none of
the three-body systems binds. However, making use of the
OBE interactions of Ref. [1] theΩΩΩ system develops a
bound state.

In this work, we investigate whether theΩbbbΩbbbΩbbb

system is bound. TheΩbbb baryon has spin3/2 and no
isospin, so that the two-body system can have total spin
Si = 0, 1, 2, and3. However, the statesSi = 1 andSi = 3
are not allowed inS-wave by the Pauli principle, so that one
is left with only the statesSi = 0 andSi = 2. In Ref. [4],
they obtained theΩbbbΩbbb interaction only for the channel
Si = 0, so that we will have to discuss the situation of the
channelSi = 2. We will use some hypotheses deduced either

at the baryon level or at the quark level about theΩbbbΩbbb
5S2 interaction.

We carry out our study within the formalism of the non-
relativistic Faddeev equations for three identical particles
considering onlyS waves. We start our discussion of the
three-body system considering only theSi = 0 two-body
channel and afterwards we analyze the effect of theSi = 2
two-body channel for the three-body bound state.

2. Single channel Faddeev problem

The Faddeev equations for three identical particles are

T = 2tiG0T , (1)

whereti is thet-matrix of the two-body system,

ti = V + V G0ti , (2)

whereV is the two-body interaction in the1S0 channel and
G0 is the propagator for three free particles.

We use the complete set of basis states|i〉,
|i〉 = |piqi((sj , sk)Si, si)J〉 , (3)

with pi andqi the standard Jacobi momenta,si, sj , andsk

the spins of the three particles,Si the total spin of the pair
jk, andJ the total spin of the three-body system. In this
basis the Faddeev equation (1) becomes,

〈i|T |φ0〉 = 2 〈i| ti |i′〉 〈i′| j〉G0 〈j|T |φ0〉 , (4)

where the explicit form of the integral equation in momentum
space is given in the Appendix.
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The recoupling coefficient,

〈i′| j〉 = 〈p′iq′i| pjqj〉
× 〈((sj , sk)Si, si)J | ((sk, si)Sj , sj)J〉 , (5)

is of great interest. The space part〈p′iq′i| pjqj〉 is positive
definite [6]; however, the spin part is

〈((sj , sk)Si, si)J | ((sk, si)Sj , sj)J〉 =

(−)Sj+sj−J
√

(2Si + 1)(2Sj + 1)

×W (sjskJsi; SiSj) . (6)

SinceSi = Sj = 0 andsi = sj = sk = J = 3/2 one gets,

〈((sj , sk)Si, si)J | ((sk, si)Sj , sj)J〉 =

(−)2sj
1

2sj + 1
= −1

4
, (7)

which is a negative number, so that it effectively changes the
nature of the two-body interaction from attractive to repulsive
such that no bound state can be obtained in a one-channel
calculationi.

The result of Eq. (7) is a direct consequence of the Pauli
principle and it applies for all systems with three identical
fermions,i.e., particles with spin half-integer, like the case of
three neutrons where,

〈((sj , sk)Si, si)J | ((sk, si)Sj , sj)J〉 =

(−)2sj
1

2sj + 1
= −1

2
. (8)

It is worth noting that in the three-neutron case there is only
a two-body channel,Si = 0, if one includes onlyS waves,
so that there is no possibility for a three-neutron bound state
with any interaction. However, in the case of the three
omegas besides theSi = 0 channel one also has theSi = 2
two-body channel.

3. Baryonic level5S2 ΩΩ interaction

A two-body interaction acting inS-waves contains only cen-
tral and spin-spin terms, since terms like spin-orbit, tensor,
etc., act only for nonzero orbital angular momentum.

The phenomenological description of the spectra of
mesons and baryons in a nonrelativistic approach is based in
a two-body potential between quarks [8, 9]. In Ref. [8] such
potential was taken to be,

V (r) = −κ

r
+ λr − Λ +

κ

mimj

exp−r/r0

rr0
~σi · ~σj , (9)

and similarly in Ref. [9]. The four terms in the r.h.s. of Eq. (9)
are, respectively, the Coulomb term, the linear confinement
term, the constant term, and the spin-spin term. This inter-
action is able to reproduce reasonably well the masses and
other properties of all the existing mesons and baryons [9].

The Yukawa function in the spin-spin term is an ex-
tended delta function which becomes a delta function if
r0 → 0. This form of the spin-spin interaction is suggested
by the non-relativistic reduction of the one-gluon-exchange
diagram [10],

H =
2αs

3mimj

8π

3
δ3(~r)~Si · ~Sj , (10)

wheremi and ~Si are the mass and spin operator of particle
i. As one can see in Eqs. (9) and (10), the spin-spin term is
inversely proportional tomimj so that in the case of baryons
with identical quarks it goes as 1/m2

i . Thus, using the masses
for the light quarksn (≈ 0.3 GeV) and for the heavy quarkb
(≈ 5 GeV) from Refs. [8,9], one gets that the spin-spin term
in the case of thebb interaction is about 250 times smaller that
that of thenn interaction and therefore it is negligible. This
means that the interaction between twob quarks is basically
independent of the spin.

Let us now consider the spin-spin interaction in the
case of twoΩbbb baryons. In a quark model descrip-
tion, the baryon-baryon interaction can be deduced from
the quark-quark interaction following a well-known proce-
dure [11,12]. In the case where the interactions are restricted
to S waves, if the quark-quark interaction is almost indepen-
dent of the spin, the baryon-baryon interaction will also be
almost independent of the spin [12]. This would imply a
purely centralΩbbbΩbbb interaction, so thatVΩbbbΩbbb

(1S0) ∼
VΩbbbΩbbb

(5S2) and, thus, one can use theSi = 0 interaction
of Ref. [4] also forSi = 2.

4. Two-channel Faddeev problem

The explicit form of the Faddeev equations for the two-
channel problem in momentum space is also given in the Ap-
pendix. If one includes the two channelsSi = 0 andSi = 2,
the spin recoupling coefficients of Eq. (6) are,

〈0| 0〉 = −1
4

〈0| 2〉 = −
√

5
4

〈2| 0〉 = −
√

5
4

〈2| 2〉 = +
3
4

. (11)

The recoupling coefficient〈2| 2〉 is positive and much larger
than the coefficient〈0| 0〉, so that if the interaction in the
channelSi = 2 is equal to that of the channelSi = 0, one
would expect to get a bound state.

Following the conclusion of the previous section we start
by taking VΩbbbΩbbb

(5S2) = VΩbbbΩbbb
(1S0). We find in

this case that the ground state and one excited state of the
three-bodyΩbbbΩbbbΩbbb system, that lie at−393.8 MeV and
−94.9 MeV, respectively (−363.9 MeV and−81.0 MeV, re-
spectively, if one includes the Coulomb interaction).
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FIGURE 1. TheΩbbbΩbbb interactionV2 for A = 0, 1, and 2.

5. Quark level 5S2 ΩΩ interaction

As it has been discussed in the literature [11, 14–16] there
appears quark Pauli blocking for particular channels of some
two-baryon systems. This has been discussed in detail, for
example, for theΣN system [16] or for the∆N and∆∆
systems [11, 14, 15]. Pauli blocking translates into repulsive
cores. See, for example, Fig. 3 of Ref. [15]. TheΩbbbΩbbb

two-baryon belongs to the same flavor multiplet as the∆∆
system and thus it also shows Pauli blocking for the5S2 chan-
nel, which means a repulsive core. In order to simulate these
effects we will take theSi = 2 interaction as,

V2(r) =





V0(r) r > r0,
V0(r) + A[V0(r)

−V0(r0)]
(
1− r

r0

)2

r ≤ r0

, (12)

whereA is a constant andr0 = 0.104 fm is the radius where
V0 is minimum (see Fig. 1). The form (12) guarantees that
V2(r) anddV2(r)/dr are continuous atr = r0. This trans-
formation has the effect of pushing upwards the short-range
part of the interaction, thereby reducing the attraction. We
show this behavior in Fig. 1 for the special casesA = 1
andA = 2 as compared with theA = 0 case, which corre-
sponds to the model of Ref. [4]. Thus, our final model of the
ΩbbbΩbbb interaction contained in Eq. (12) and Fig. 1, has the
5S2 interaction less attractive than the1S0 interaction which
is similar to what is obtained in the OBE model of Ref. [1].

We show in Fig. 2 the evolution of the binding energy
(with and without Coulomb) as a function of the parameter
A. As one can see, the binding energy changes very slowly.
We consider that values ofA larger than 20 are not realistic
so that we expect the binding energy to lie between 250 and
350 MeV.

FIGURE 2. TheΩbbbΩbbbΩbbb binding energy as a function of the
parameterA.

Appendix A.

In order to solve the single channel three-body problem we
use the method of Ref. [13], where the two-body amplitudes
are expanded in terms of Legendre polynomials. Thus, the
Faddeev equations for the bound state problem take the sim-
ple form,

Tn(qi) =
∑

n

∫ ∞

0

dqjK
nm(qi, qj ; E)Tm(qj) , (A.1)

where

Knm(qi, qj ; E) = 2 〈0| 0〉
∑

r

τnr
i (E − q2

i /2νi)
q2
i

2

×
∫ 1

−1

d cos θ
Pr(x′i)Pm(xj)

E − p2
j/2ηj − q2

j /2νj
, (A.2)

with 〈0| 0〉 the spin recoupling coefficient (11),

τnr
i (e) =

2n + 1
2

2r + 1
2

∫ 1

−1

dxi

×
∫ 1

−1

dx′iPn(xi)ti(xi, x
′
i; e)Pr(x′i) , (A.3)

and

xi =
pi − b

pi + b
. (A.4)

pj andqj are the magnitudes of the Jacobi relative momenta
while ηj andνj are the corresponding reduced masses.
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Finally, ti(xi, x
′
i; e) corresponds to the off-shell two-

body t-matrixti(pi, p
′
i; e) through the transformation (A.4),

with b a scale parameter on which the solution does not de-
pend. The off-shell two-bodyt-matrices are obtained by
solving the Lippmann-Schwinger equation,

ti(pi, p
′
i; e) = Vi(pi, p

′
i) +

∫ ∞

0

p′′i 2dp′′i Vi(pi, p
′′
i )

× 1
e− p′′i

2/2ηj + iε
ti(p′′i , p′i; e) , (A.5)

with e = E − q2
i /2νi. In order to solve the two-channel

three-body problem, Eq. (A.1) becomes,

Tn
α (qi) =

∑

mβ

∫ ∞

0

dqjK
nm
αβ (qi, qj ; E)Tm

β (qj) , (A.6)

with

Knm
αβ (qi, qj ;E) = 2 〈α| β〉

∑
r

τnr
α (E − q2

i /2νi)
q2
i

2

×
∫ 1

−1

d cos θ
Pr(x′i)Pm(xj)

E − p2
j/2ηj − q2

j /2νj
. (A.7)
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i. On the opposite side, a repulsive potential together with a neg-
ative spin recoupling coefficient does not change the nature of
the interaction so as to lead to a three-body bound state, as dis-
cussed in Ref. [7] for the case of theJ = 3/2 Σ−nn system.
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