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The effect of a non-unitary transformation on an initial Hermitian operator is studied. The initial (Hermitian) optical system is a Glauber-Fock
optical lattice. The resulting non-Hermitian Hamiltonian models an anisotropic (Glauber-Fock) waveguide array of the Hatano-Nelson-type.
Several cases are analyzed and exact analytical solutions for both the Hermitian and non-Hermitian Schrödinger problems are given, as
they are simply connected. Indeed, such transformation can be regarded as a non-unitary Supersymmetric transformation and the resulting
non-Hermitian Hamiltonian can be considered as representing an open system that interchanges energy with the environment.
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1. Introduction

In the last decades, optical lattices (or waveguide arrays) have
got major attention for presenting new (discrete) diffraction
effects, in comparison with the corresponding (continuous)
diffraction that appears in the bulk. Such discrete diffrac-
tion can be tailored by properly adjusting the configuration
of the array [1–5]. Besides, optical lattices are suitable opti-
cal devices to both simulate and study a considerable number
of quantum and classical effects, for instance squeezed and
coherent states [7–11], Talbot effect [12, 13], classical and
quantum walks [6], to mention a few (see also [14–18]), in
relativistic and non-relativistic [19, 20] schemes. Examples
encompassing both linear and non-linear optical systems can
be easily encountered (see for instance Ref. [1]). Moreover,
optical lattices have straightforward use in the treatment of
optical information. For example, see the application of opti-
cal lattices as converters of modes developed in Ref. [21].

One well-studied lattice is the so-called “Glauber-Fock”
optical lattice, characterized by a non-uniform distance be-
tween each pair of adjacent waveguides [9, 10, 14, 15]. For
any array, the couplingg between adjacent waveguides de-
pends on the distanced between them, asg ∝ e−d ∈ R
Fig. 1a). Therefore, in the Glauber-Fock lattice Fig. 1b) and
c), where the waveguides get closer as the siten of the waveg-
uide increases, the coupling between then-th and the(n+1)-
th waveguide is proportional to

√
n + 1. Naturally, a physi-

cal (realizable) system contains a finite numberN of waveg-
uides, [see Fig. 1b)], however asN → ∞ the array may
be considered effectively as semi-infinite Fig. 1c)]. There
are other well-studied lattices, apart from Glauber-Fock, with
non-uniform spacing between subsequent waveguides (the
reader is referred to [22–24]), presenting intriguing transport
characteristics as well.

More recently, waveguide arrays have as well been con-
sidered in the non-Hermitian regime. PT-symmetry plays an
important role in this context [25–27], presenting a plethora
of new features, for instance invisibility [30, 31], phase tran-
sitions at exceptional points, power oscillations, double re-
fraction [28, 29], etc. In parallel, non-Hermitian arrays have
also been considered (in minor proportion) under the Hatano-
Nelson model [30, 32, 33] (see also [34–36]). This in turn is
just a (rather simple) non-unitary transformation of a conven-
tional Schr̈odinger equation

i
∂|Ψ(t)〉

∂t
=

[
p̂2

2m
+ V (x)

]
|Ψ(t)〉. (1)

For

|Ψ(t)〉 = eγx|Φ(t)〉, γ ∈ R, (2)

the non-Hermitian Schrödinger type equation [37]

i
∂|Φ(t)〉

∂t
=

[
(p̂ + iγ)2

2m
+ V (x)

]
|Φ(t)〉, (3)

is obtained. Indeed, non-unitary transformations produce
non-Hermitian dynamics naturally [38]. In the optical
context, a transformation of the type in (2) produces an
anisotropic (also called non-reciprocal) optical lattice; due to
the non-Hermiticity of the corresponding Hamiltonian, this
might also be interpreted as an open system of waveguides
(one interacting with the surroundings). It is worth to high-
light that (2) can be upturned, thus giving the solutions to the
non-Hermitian equation (3) from the solutions of the Hermi-
tian equation (1), by means of a straightforward transforma-
tion.

Therefore, the non-Hermitian propagation in a Glauber-
Fock optical lattice is studied in what follows, from the so-
lution of the corresponding Hermitian system. The resulting
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non-Hermitian optical lattice then represents an anisotropic
system of waveguides, for which exact solutions of the cor-
responding dynamical equations are easily obtained. At this
point is worth to remark that such non-reciprocal systems of
the Hatano-Nelson type can indeed be implemented in the
laboratory (see Ref. [35]).

The contents of the article are given in the following or-
der: in Sec. 2, the general frame regarding the Glauber-Fock
optical lattice is established. In the same section, the mecha-
nism for obtaining the non-Hermitian propagation departing
from the Hermitian system is given. In Secs. 3 and 4, respec-
tively, the semi-infinite and finite cases are discussed, from
the foundations developed in Sec. 2. In Sec. 5 and 6, a pair
of modifications of the Glauber-Fock lattice are addressed.
Finally, the conclusions are given in Sec. 7.

2. Glauber-Fock waveguide lattice

Quite generally, the amplitudecn(z), n ∈ A ⊆ Z, of
the electric field propagating in then-th waveguide of a
tight-binding waveguide array is coupled to the amplitudes
cn−1(z) andcn+1(z) propagating in the contiguous waveg-
uides [2] Fig. 1a). Particularly, for the Glauber-Fock lattice
Fig. 1b) and c) the propagation of the electric field amplitude
cn(z) is ruled by

iċn(z) + g[
√

ncn−1(z) +
√

n + 1cn+1(z)] = 0, (4)

where the dot stands for derivative with respect to the evolu-
tion parameterz, g = κe−d ∈ R is the coupling constant be-
tween the first two waveguides, withκ a given real constant,
andd the corresponding distance between the first two sites.
The equality (4) is related to a Schrödinger-type equation

i
∂|ψ(z)〉

∂z
= H|ψ(z)〉, (5)

with

H = −g(a† + a), (6)

the Hermitian Hamiltonian operator, namelyH = H†, and
wherea† anda are raising and lowering operators, respec-
tively [40]. In the semi-infinite casea† anda are simply the
creation and annihilation operators of the harmonic oscilla-
tor. It is assumed that eachcn(z) is associated to an abstract
vector|n〉 ∈ H, withH a Hilbert space. Thus, (4) and (5) are
related by

|ψ(z)〉 =
∑

n

cn(z)|n〉. (7)

Physically, the vector|ψ(z)〉 ∈ H contains the information
of the total electric field amplitude in the lattice for all the

FIGURE 1. a) Illustration of the coupling of modes between con-
tiguous waveguides by means of the evanescent fields. The Gaus-
sian distributions represent the modes of the electric field ampli-
tude in the transversal directionx and the coupling occurs where
the Gaussian functions overlap. The lower panel shows a Glauber-
Fock array: the waveguides get closer as the siten of the waveguide
increases, such that the coupling between then-th and the(n+1)-
th waveguide is proportional to

√
n + 1. In b) a finite array ofN

of waveguides is shown. In c) we consider thatN →∞, such that
there exists a single edge waveguide (in red), and the optical lattice
is regarded as semi-infinite.

values of the propagation distancez. Then,
∑

n |cn(z)|2 = 1
is a suitable choice for normalization.

The electric field amplitudes are given by

cj(z) = 〈j|ψ(z)〉, j ∈ A, (8)

where the setA is going to be defined according to the di-
mension of the corresponding Hilbert space. The same is true
for the ladder operatorsa† anda. In what follows, a Hilbert
spaceH of generic dimension is considered, in order to es-
tablish the methodology to generate the non-Hermitian trans-
port in the Glauber-Fock lattice. The precise dimensions of
the Hilbert space for each case (finite and semi-infinite) will
be specified in the corresponding sections.

2.1. Non-Hermitian Glauber-Fock lattice

The solution of Eq. (5) is proposed as

|ψ(z)〉 = e−γn̂|φ(z)〉, γ ∈ R, (9)

wheren̂|j〉 = j|j〉, j ∈ A. Then, the non-Hermitian (non-
conservative) problem

i
∂|φ(z)〉

∂z
= H̃|φ(z)〉, (10)
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is obtained, where

H̃ = eγn̂He−γn̂ = −(k1a
† + k2a), (11)

is clearly non-Hermitian, namelỹH† 6= H̃, with k1 = geγ

andk2 = ge−γ . The last equality in Eq. (11) comes from
the commutators[n̂, a] = −a and [n̂, a†] = a† . Our main
concern is then the non-Hermitian system (10)-(11).

In the specific case of the semi-infinite Glauber-Fock lat-
tice, the Hamiltonian (11) is of the type of that studied in
Ref. [32]. Therefore, the Hatano-Nelson problem (10)-(11)
is by itself pretty interesting. The reader interested in the im-
plementation, as well as the study, of systems of the type of
Hatano-Nelson in equally-spaced optical lattices is referred
to [30, 33–36]. Here we analyze (10)-(11) for several sys-
tems with open and closed boundary conditions, and give the
corresponding exact analytical solutions, not present in the
available literature.

Equation (10) is connected to the equation

iḋn(z) + k1

√
ndn−1(z) + k2

√
n + 1dn+1(z) = 0, (12)

via

|φ(z)〉 =
∑

n

dn(z)|n〉, (13)

with

dk(z) = 〈k|φ(z)〉 = eγkck(z), k ∈ A, (14)

standing for the electric field amplitude in thek-th waveguide
of the non-Hermitian (non-conservative) lattice.

The solution|φ(z)〉 of (10) can be obtained from the so-
lution |ψ(z)〉 of the associated Hermitian problem (5), in the
case of generalk1 andk2 (cf. [32]), as

|φ(z)〉 =
(

k1

k2

) n̂

2 |ψ(z)〉. (15)

Then, for k1 and k2 given below (11), the non-Hermitian
propagation is straightforwardly obtained as

|φ(z)〉 = eγn̂|ψ(z)〉. (16)

In Fig. 2, the outcome of the non-unitary transformation (16)
on an initial state|ψ(0)〉 is illustratively shown. It produces
an amplification (γ > 0) or attenuation (γ < 0) of the dis-
tribution of the electric field. Both effects can be awarded
to an external process. In a), the red Gaussian distributions,
with heights given bycn(0) for all n, represent the modes in
each waveguide. The Poisson distribution envelope is repre-
sented in gray color. As before, the horizontal axis coincides
with the coordinatex of the frame of reference. In b), the
non-unitary transformation (16) is schematically pictured by
a blue decreasing exponential (γ < 0) operationeγn̂ on the
initial state|ψ(0)〉. The output state|φ(0)〉 = eγn̂|ψ(0)〉 is
shown in c). According to (14),

FIGURE 2. Illustrative action of the non-unitary transformation
(16) on a state|ψ(0)〉 with coefficientscn(0) initially distributed
according to a Poissonian function, for a Glauber-Fock optical lat-
tice in the semi-infinite regime.

the envelope of the corresponding output coefficients
dn(0) = eγncn(0) is given in green. Forγ > 0, the oper-
ationeγn̂ amplifies the state|ψ(0)〉 instead. The output state
|φ(0)〉 = eγn̂|ψ(0)〉, and in general|φ(z)〉, is not normalized
as the electric field in the array is either being someway ab-
sorbed or the array is being provided with energy from the
exterior, depending to the sign ofγ in (16). Indeed, such an
amplification or attenuation can be easily implemented in the
laboratory [39].

Besides, Fig. 3 sketches the way to implement the
transformation (16) in order to get the corresponding non-
Hermitian transport. In Fig. 3a) the transformation (16) is
applied on|ψ(z0)〉 at z = z0. Afterwards, the inverse trans-
formation (9) is performed, atz = zf , on |φ(zf )〉, this take
the state of the system back to|ψ(zf )〉. Certainly, the state
|φ(z)〉 represents the non-Hermitian propagation in the inter-
val z0 ≤ z < zf . In b), the transformation (16) is illustra-
tively performed atz1 > z0 and, once again, atzf the inverse
transformation (9) is performed. In the intervalz1 ≤ z < zf ,
the state|φ(z)〉 represents non-Hermitian transport, while for
z < z1 andz ≥ zf Hermitian transport is obtained. There-
fore, intervals of non-Hermitian and Hermitian propagation
can be alternated at will.

Non-unitary transformation as a Supersymmetric transfor-
mation

Indeed, the non-unitary transformation (16), can be regarded
as a Supersymmetric (SUSY) transformation [41–44](see
also [46] for the use of unitary transformations, that can also
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FIGURE 3. Effect of the transformation (16) in the transport
alongz.

be interpreted as SUSY transformations, in a different con-
text), as the HamiltoniansH and H̃ given in (6) and (11),
respectively, are connected by the operatorT = eγn̂, as

TH = H̃T. (17)

As we shall see in Sec. 4, in the stationary regime, the Hamil-
toniansH and H̃ are isospectral, as expected from rela-
tion (17).

3. Semi-infinite lattice

In the case of the semi-infinite optical lattice the annihilation
(creation)a (a†) operator, together with the number operator
n̂ can be cast in the form

a =
∞∑

k=0

√
k + 1|k〉〈k + 1|, (18)

a† =
∞∑

k=0

√
k + 1|k + 1〉〈k|, (19)

n̂ =
∞∑

k=0

k|k〉〈k|. (20)

As usual, the commutation relations

[a, a†] = I, (21)

[n̂, a] = −a, (22)

[n̂, a†] = a†, (23)

hold. In turn, (4) and (5) are connected by

|ψ(z)〉 =
∞∑

k=0

ck(z)|k〉, (24)

with {|k〉}k=0,1,... the Fock states.
From (5), we have

|ψ(z)〉 = eigz(a†+a)|ψ(0)〉, (25)

with |ψ(0)〉 an arbitrary initial condition. We can identify the
exponential operator in (25) asD(igz), where

D(ξ) = eξa†−ξ?a = e−
1
2 |ξ|2eξa†e−ξ?a, ξ ∈ C, (26)

is the Glauber displacement operator [40]. The∗ stands for
complex conjugation.

Response to the impulse

We can set the initial condition|ψ(0)〉 in (25) in such a way
that atz = 0 a single waveguide is excited, them-th waveg-
uide for example, this is|ψ(0)〉 = |m〉, m = 0, 1, . . . In
turn, the electric fieldcn(z) at then-th waveguide is given by
〈n|D(igz)|m〉. In general,

〈n|D(ξ)|m〉 = e−
1
2 |ξ|2ξn−m

√
m!
n!

Ln−m
m (|ξ|2), (27)

with L`
k the associated Laguerre polynomials of orderk.

Thus,

cn(z) = e−
1
2 g2z2

(igz)n−m

√
m!
n!

Ln−m
m (g2z2). (28)

Such that in the non-conservative lattice the amplitudes of the
electric field are directly

dn(z) = eγne−
1
2 g2z2

(igz)n−m

√
m!
n!

Ln−m
m (g2z2). (29)

For specific values of the involved parameters, the intensities
|dn(z)|2 are shown in Fig. 4. The non-Hermitian transport
given by (29) can be compared with the corresponding Her-
mitian scenarioγ = 0. The upper row shows the response
of the system when the edge waveguidem = 0 is excited at
z = 0. In the Hermitian caseγ = 0 (upper left) no attenua-
tion or amplification occurs. In turn, the field attenuates while
propagating whenγ = −0.05 (upper middle). Actually, as
in any physical propagation phenomena there always exists
loss because of the environment’s interaction, theγ < 0 case
serves to model real transport phenomena. On the contrary,
amplification is shown whenγ = 0.05 (upper right). Then,
the caseγ > 0 serves to model external providing of elec-
tromagnetic field, for example, when losses are to be reduced
through external feeding of electromagnetic power. In ad-
dition, the lower row shows the propagation obtained when
the initially excited waveguide is in the bulk, for example at
m = 5. In such a case, reflection at the boundarym = 0 is
seen to occur: this can be clearly observed in the Hermitian
regime (lower left). In the casesγ = −0.05 (lower middle)
andγ = 0.05 (lower right) it can be appreciated, respectively,
attenuation and amplification asn → ∞. It is worth to re-
mark that the number of maxima of the electromagnetic field
increases withm, due to the reflection at the boundary, and is
equal tom + 1. In the lower row (m = 5) of Fig. 4 we have
6 maxima.
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FIGURE 4. Non-Hermitian propagation of the intensity|dn(z)|2 in the semi-infinite Glauber-Fock optical lattice, as given by (29), in the case
of a single waveguide (situated at a givenm) excited atz = 0, and its comparison with the Hermitian case. In all the figures the propagation
distancez is measured in units ofg.

Coherent states as initial condition

The initial condition |ψ(0)〉 in Eq. (25) is now chosen as
|ψ(0)〉 = |m, χ〉, where|m,χ〉 := D(χ)|m〉 is a general-
ized coherent state (displaced number state), with|m〉 a Fock
state andD(χ), χ ∈ C, given by (26). For m = 0, the
generalized coherent state|m,χ〉 reduces to the conventional
coherent state|0, χ〉 ≡ |χ〉. Then,cn(z) = 〈n|D(igz)|m,χ〉
is found to be

cn(z) = eigzχRe−
1
2 |Ω|2Ωn−m

√
m!
n!

Ln−m
m (|Ω|2), (30)

with Ω = Ω(g, χ, z) := χ+ igz, χR denoting the real part of
χ, and where (27) has been used, together with the property

D(g)D(β) = D(g + β)eiIm(gβ∗). (31)

The fields in the non-conservative system are just

dn(z) = eγneigzχRe−
1
2 |Ω|2Ωn−m

√
m!
n!

Ln−m
m (|Ω|2). (32)

Figure 5 shows the transport alongz of the electromagnetic
field in the non-conservative system of waveguides and its
comparison with the Hermitian case (γ = 0), according to
(32), for specific values of the parameters. Form = 0 (upper
row), the distribution injected atz = 0 is Poissonian with
mean equal to16. As in the case of the impulse (Fig. 4),
the distribution follows a curved trajectory towardsn → ∞,
what can be particularly appreciated in the Hermitian case
γ = 0 in the upper left panel (that in turn closely resem-
bles the corresponding panel in Fig. 4). The non-Hermitian

casesγ 6= 0 (upper middle and upper right) resemble pretty
much the corresponding images in Fig. 4 as well. This is, the
transformation (16) attenuates or amplifies the electromag-
netic field asn → ∞, without affecting the trajectory. Such
attenuation or amplification can be easily adjusted with the
parameterγ. For m = 1 (lower row) we have two lobes or
maxima in the initial distribution atz = 0, see for instance
the Hermitian caseγ = 0 in the lower left panel. Again, this
resembles the case of the impulse (lower row in Fig. 4), as
the number of maxima increases withm. The lobes follow a
curved trajectory towardsn →∞, as in the casem = 0 (up-
per row). In turn, in the non-Hermitian casesγ 6= 0 (lower
middle and lower right) the relative heights of such lobes can
be tailored by adjusting the non-Hermitian parameterγ, with-
out affecting its curved path. Once more this resembles the
response to the impulse, as the effect of transformation (16)
in the lower middle and lower right panels is quite similar to
the one observed in the corresponding panels of Fig. 4.

4. Finite array

When the array is finite, the operatorsa, a† in (6), andn̂, are
given as

aN =
N−1∑

k=0

√
k + 1|k〉〈k + 1|, (33)

a†N =
N−1∑

k=0

√
k + 1|k + 1〉〈k|, (34)

Rev. Mex. Fis.70041303
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FIGURE 5. Non-Hermitian propagation of the intensity|dn(z)|2 in the semi-infinite Glauber-Fock optical lattice, as given by (32), in a
semi-infinite Glauber-Fock waveguide array when it is excited atz = 0 with a distribution (ageneralized coherent state). The parameters
are those of Fig. 4 andχ = 4.

n̂N =
N−1∑

k=0

k|k〉〈k|. (35)

The corresponding commutators are

[aN , a†N ] = IN −N |N〉〈N |, (36)

[n̂N , aN ] = −aN , (37)

[n̂N , a†N ] = a†N , (38)

with IN the identity in theN -dimensional space. Due to the
commutation relation (36), it is not possible to express the
evolution operator in the form (26), as in the semi-infinite
case. So in this section we follow a different procedure.
Nonetheless, as the relations (37) and (38) have exactly the
same form of relations (22) and (23), respectively, we still can
construct the solution corresponding to the non-Hermitian
system in terms of the solution of the Hermitian one. Thus,
along this section we only calla, a† andn̂, respectively, the
operators defined in (33)-(35).

The Eqs. (4) and (5) are related through

|ψ(z)〉 =
N−1∑

k=0

ck(z)|k〉, (39)

where|k〉 ∈ H, k = 0, 1, . . . , N − 1. As there exist two edge
(or ending) waveguides, the conditionc` = 0, ` ≥ N , must
be added. Then, along with (4) we have

iċN−1(z) + g
√

N − 1cN−2(z) = 0, (40)

and

iḋN−1(z) + k1

√
N − 1dN−2(z) = 0, (41)

along with (12).
The operator Hamiltonian in (6), for a anda† in (33) and

(34), then acquires the form of a tri-diagonal square matrix
of dimensionN (see [18] and references therein)

H=− g




0
√

1 0 · · · 0√
1 0

√
2 · · · 0

0
√

2 0 · · · 0
...

...
...

.. .
...

0 0 · · · 0
√

N − 1
0 0 · · · √

N − 1 0




. (42)

Now, a (similarity) transformation is performed onH as

Λ = S−1MS, M ≡ −H, (43)

whereS is an orthonormal matrix such that its columns are
the (normalized) eigenvectors|ψj〉 of M , i.e.

M |ψj〉 = λj |ψj〉, j = 0, 1, . . . , N − 1. (44)

The set of eigenvalues{λj} is obtained from the usual
conditionDN = 0, whereDN ≡ det(M −λIN ). Besides, as
H is tri-diagonal,DN is given by the recurrence relation

D0 = 1, (45)

D1 = λ, (46)

Ds = λDs−1 −Ds−2, s = 2, 3, . . . , N. (47)
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In turn, the normalized eigenvectors ofH are

|ψj〉 =

(
N−1∑

k=0

[Dk(λj)]
2

)−1/2




D0(λj)
D1(λj)

...
DN−1(λj)


 . (48)

The relations (45)-(47) turn out to be those of the Hermite
polynomials [45]. Therefore, the condition giving the set of
eigenvalues{λj} of M is

DN (λ) = HN

(
λ√
2

)
= 0, (49)

with Hk(x) the Hermite polynomial of orderk. The normal-
ized eigenvectors are then

|ψj〉 =

(
N−1∑

k=0

V 2
j,k

)−1/2




Vj,0

Vj,1

...
Vj,N−1


 , (50)

Vj,k =
1√
2kk!

Hk

(
λj√

2

)
. (51)

At this point it is worth to mention thatH andM share
common eigenvalues and its eigenvectors coincide up to a
constant phase factor. Through reverting (43) and replacing
into |ψ(z)〉 = e−iHz|ψ(0)〉, it is obtained

|ψ(z)〉 = SeigΛzS−1|ψ(0)〉 ≡ R|ψ(0)〉, (52)

with R a (square) matrix of dimensionN , whose elements
are given by

Rp,q(z) =
1√

2p+q(p− 1)!(q − 1)!

×
N−1∑

j=0

Hp−1

(
λj√

2

)
Hq−1

(
λj√

2

)
exp(igλjz)

N−1∑

k=0

1
2kk!

H2
k

(
λj√

2

) , (53)

while Λ is diagonal, its elements are{λj}. By means of (52)
and (53) we get

cn(z) =
N−1∑

`=0

Rn+1,`+1(z)c`(0), (54)

or equivalently

cn(z) =
1√
2nn!

N−1∑

`=0

N−1∑

j=0

1√
2``!

×
Hn

(
λj√

2

)
H`

(
λj√

2

)
exp(igλjz)

N−1∑

k=0

1
2kk!

H2
k

(
λj√

2

) c`(0). (55)

Response to the impulse

Again, when the initial condition|ψ(0)〉 is set as exciting just
one waveguide, for example that at them-th site, then

FIGURE 6. Non-Hermitian propagation of the intensity|dn(z)|2 as given by (57), in a finite Glauber-Fock optical lattices formed ofN = 25
waveguides for initial exciting of one single waveguide at the sitem. In all the figures the longitudinal distancez is measured in units of the
coupling constantg, while the parameterg = 1 was set.
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FIGURE 7. Stationary propagation of the supermodes|ψj〉 and|φj〉, corresponding to an Hermitian and non-Hermtitian system of waveguides
of the Glauber-Fock type. The array is formed ofN = 25 waveguides and the parameters coincide with those in Fig. 6.

c`(0) = δ`m, whereδij stands for the the Kronecker delta
symbol, then

cn(z) =
1√

2n+mn!m!

×
N−1∑

j=0

Hn

(
λj√

2

)
Hm

(
λj√

2

)
exp(igλjz)

N−1∑

k=0

1
2kk!

H2
k

(
λj√

2

) . (56)

In turn, the corresponding solution in the non-Hermitian ar-
ray is just

dn(z) =
eγn

√
2n+mn!m!

×
N−1∑

j=0

Hn

(
λj√

2

)
Hm

(
λj√

2

)
exp(igλjz)

N−1∑

k=0

1
2kk!

H2
k

(
λj√

2

) . (57)

In Fig. 6 the intensities|dn(z)|2 are shown, as ruled by (57),
for some specific values of the parameters. In the upper row
the first waveguidem = 0 is excited atz = 0. Pretty
close to the corresponding row of Fig. 6, in the Hermitian
regimeγ = 0 (upper left panel) there is no attenuation or
amplification of the field. In turn, in the non-Hermitian case
γ = −0.05 (γ = 0.05) in the upper middle (upper right)
panel, an attenuated (amplified) propagation can be appre-
ciated. Such attenuation (amplification) is maximal at the
opposite edge waveguide (n = 24) and can be tailored by
manipulating the parameterγ. In the lower row the waveg-
uide situated atm = 5 is excited atz = 0. In this case there

exist reflections at both end waveguides of the optical lattice
(compare with the corresponding row in Fig. 6).

Supermodes of the finite array

If |ψ(0)〉 is now chosen as|ψ(0)〉 = |ψj〉, where|ψj〉 satis-
fies (44), stationary evolution is obtained:

|ψ(z)〉 = exp (igλjz) |ψj〉. (58)

These are known as the supermodes of the optical lattice [2].
In addition, the choice|φ(0)〉 = eγn̂|ψj〉 gives the cor-

responding (not normalized) stationary evolution in the non-
Hermitian system:

|φ(z)〉 = exp (igλjz) eγn̂|ψj〉. (59)

By replacing (59) into (10), we obtain the eigenvalue problem
for M̃

M̃ |φj〉 = λj |φj〉, M̃ = −H̃, (60)

where |φj〉 = eγn̂|ψj〉. In Fig. 7 the supermodes of the
Hermitian (left column) and non-Hermitian (middle and right
columns) systems,|ψj〉 and|φj〉, respectively, are presented
for comparison. They were obtained numerically. In the up-
per row the supermodej = 0 is shown. The field is prin-
cipally concentrated at the right of the array, atn ∼ 23, in
the Hermitian (γ = 0) and non-Hermitian (γ 6= 0) regimes,
for the indicated values ofγ. In the lower row the super-
modej = 4 is shown. Once more, the Hermitian case in
the lower left panel preserves the non-symmetric distribution
of the field (with respect to the central waveguides). For the
non-Hermitian systemγ = −0.05 (γ = 0.05) in the lower
middle (lower right) panel, it can be appreciated a redistribu-
tion of field caused by theγ 6= 0.

Rev. Mex. Fis.70041303



NON-HERMITIAN TRANSPORT IN GLAUBER-FOCK OPTICAL LATTICES 9

5. SU(1,1) waveguide array

In this section we consider a variation of the Glauber-Fock
lattice considered in the previous sections [22]. We consider
a semi-infinite array in which the electromagnetic fieldcn(z)
in then-th waveguide satisfies

iċn(z) + g[f(n)cn−1(z) + f(n + 1)cn+1(z)] = 0, (61)

wheref(n) =

√
n + ξn2

ξ
, ξ ∈ R. Equation (61) has a part-

ner Eq. (5), with H given by

H = −g(A + A†), (62)

A = a

√
1 + ξn̂

ξ
, (63)

A† =

√
1 + ξn̂

ξ
a†, (64)

with a anda† the annihilation and creation operators defined
in Sec. 3. Also as in Sec. 3, (61) and (5) connect by means of
(24). The corresponding commutation relations are

[A,A†] = 2n̂ +
1
ξ

+ 1, (65)

[n̂, A] = −A, (66)

[n̂, A†] = A†. (67)

The solution of (5), for H as given in Eq. (62) is then

|ψ(z)〉 = eigz(A+A†)|ψ(0)〉. (68)

The commutator (65) once more forbids to express the evo-
lution operatorexp[igz(A + A†)] in Eq. (68) in the factor-
ized form (26). Nevertheless, by introducing the operator
A0 = n̂ + (1/2ξ) + (1/2), it is straightforward to get the
commutation relations of theSU(1, 1) operator algebra for
the operators

{
A0, A,A†

}
. These are,

[A,A†] = 2A0, [A0, A] = −A, [A0, A
†] = A†. (69)

By proposing

|ψ(z)〉 = eiu(z)A†ev(z)A0eiw(z)A|ψ(0)〉, (70)

subject to the initial conditionsu(0) = v(0) = w(0) = 0,
it is straightforward to obtainu(z) = w(z) = tanh gz, and
v(z) = ln(1/cosh2 gz).

Response to the impulse

For |ψ(0)〉 = |m〉,

|ψ(z)〉 = (cosh gz)−
1+(2m+1)ξ

ξ [f(m)]!

×
m,∞∑

j,k=0

cosh2j gz(iu)j+k[f(m− j + k)]!
j!k!([f(m− j)]!)2

× |m− j + k〉, (71)

FIGURE 8. Non-Hermitian propagation of the intensity|dn(z)|2 in the semi-infinite Glauber-Fock optical lattice, as given by (73), in a
semi-infiniteSU(1, 1) waveguide array when one single waveguide situated atm is atz = 0. In all the figures the longitudinal distancez is
measured in units of the coupling constantg, while the parameterg = 1 was set.
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where [f(`)]! = f(`)f(` − 1) . . . f(1), with [f(0)]! = 1.
Therefore the electric field in then-th waveguide is given by

cn(z) = (cosh gz)−
1+(2m+1)ξ

ξ (i tanh gz)−m+n

× [f(m)]![f(n)]!
m∑

j=0

(−1)j sinh2j gz

j!(n + j −m)!([f(m− j)]!)2
, (72)

and the fields in the non-conservative system are simply

dn(z) = eγn(cosh gz)−
1+(2m+1)ξ

ξ (i tanh gz)−m+n

× [f(m)]![f(n)]!
m∑

j=0

(−1)j sinh2j gz

j!(n + j −m)!([f(m− j)]!)2
. (73)

Figure 8 shows a comparison between the non-Hermitian
transport, given by (73) and the Hermitian one (γ = 0), for
specific values of the parameters. Quite generally, a behav-
ior very close to the one observed in Fig. 4 can be appreci-
ated. For the chosen value ofξ, smaller distancez is reached,
in comparison to the Glauber-Fock lattice in Fig. 4. Upper
row: the edge waveguidem = 0 is initially excited. Simi-
lar to the upper row in Fig. 4, the Hermitianγ = 0 (upper
left) and non-Hermitian casesγ = −0.05 (upper middle) and
γ = 0.05 (upper right) are characterized, respectively, by no
attenuated/amplified, attenuated and amplified transport (see
the vertical scales) corresponding to closed (upper left) and
open systems (upper middle and upper right). Lower row: the
sitem = 5 is initially excited. For the Hermitian caseγ = 0
(lower left) there is no attenuation or amplification. In turn,
for the non-Hermitian casesγ = −0.05 (lower middle) and
γ = 0.05 (lower right), the effect of the transformation (16)

can be clearly appreciated,i.e. an attenuation and amplifica-
tion towardsn →∞, respectively.

6. Driven Glauber-Fock lattice

A different modification of the Glauber-Fock lattice reviewed
in Sec. 3 is examined here. The following Hamiltonian is
considered (see [44] and references therein)

H = −ωn̂− g(a† + a), ω, g,∈ R, (74)

with a, a† and n̂ as given in Sec. 3. Equation (5), for the
Hamiltonian (74), is related to the equation

iċn + ωncn + g(
√

ncn−1 +
√

n + 1cn+1) = 0. (75)

In turn we have Eq. (10), with H̃ given by

H̃ = −ωn̂− (k1a
† + k2a), (76)

connected to

iḋn + ωndn + k1

√
ndn−1 + k2

√
n + 1dn+1 = 0. (77)

By doing |ψ(z)〉 = D†(g/ω)|w(z)〉 in Eq. (5), we arrive at
the following equation for|w(z)〉

i
∂|w(z)〉

∂z
= H̄|w(z)〉, H̄ := −ωn̂ +

g2

ω
. (78)

Therefore,

|ψ(z)〉 = D†
( g

ω

)
eiz(ωn̂− g2

ω )D
( g

ω

)
|ψ(0)〉. (79)

FIGURE 9. Non-Hermitian propagation of the intensity|dn(z)|2 in the semi-infinite Glauber-Fock optical lattice, as given by (82), for a
semi-infinitedrivenGlauber-Fock waveguide array when one single waveguidem is excited atz = 0. For all the figuresz is measured in
units ofg, and the parametersω = 1, g = 2 units have been chosen.
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FIGURE 10. Non-Hermitian propagation of the intensity|dn(z)|2 in the semi-infinite Glauber-Fock optical lattice, as given by (84), for
a semi-infinitedriven Glauber-Fock waveguide array when it is excited atz = 0 with a distribution (ageneralized coherent state). The
parameters are the same of Fig. 9 andχ is chosen equal4.

Response to the impulse

If at z = 0 only them-th waveguide is excited, then|ψ(0)〉 =
|m〉 in (79). By using

eizωn̂D(ξ) = D(ξeizω)eizωn̂, ξ ∈ C, (80)

and by definingΓ = Γ(g, ω, z) := (g/ω)(eizω − 1), after
some algebra we obtain

cn(z) = eiθe−
1
2 |Γ|2Γn−m

√
m!
n!

Ln−m
m (|Γ|2), (81)

whereθ = θ(g, ω, z) = (g2/ω2) sin(ωz)− z(g2/ω) + zωm.
Therefore the electric field in the non-conservative system is
simply

dn(z) = eγneiθe−
1
2 |Γ|2Γn−m

√
m!
n!

Ln−m
m (|Γ|2). (82)

Figure 9 shows the transport of the electromagnetic field as
ruled by (82), for specific values of the parameters, as well
as the comparison with the Hermitian case (γ = 0). In the
upper row, form = 0 a single maximum of the electromag-
netic field can be seen, following a periodic trajectory along
z. This is so due to the first term in both (74) and (76), and
can be particularly appreciated in the Hermitian caseγ = 0
(upper left). For the non-Hermitian cases (upper middle and
upper right)γ = −0.05 and γ = 0.05 a subtle attenua-
tion and amplification in the waveguides at the right of the
array (atn → ∞) can be noticed, according to (16). For
m = 5 (lower row) six maxima can be distinguished, follow-
ing again a periodic propagation alongz (see for instance the
Hermitian caseγ = 0 in the lower left panel). As before,

the transformation (16) produces attenuation and amplifica-
tion asn → ∞ in the non-Hermitian casesγ = −0.05 and
γ = 0.05 shown in the lower middle and lower right panels,
respectively. Such modulation can be of course be tailored
by adjusting the non-Hermitian parameterγ. Then, the−ωn̂
term in both (74) and (76) produces periodic propagation, un-
like the one observed, for instance, in Fig. 4. Naturally, we re-
cover the typical Glauber-Fock response in the limitω → 0.

Coherent states as initial condition

Now we chose|ψ(0)〉 in (79) as |ψ(0)〉 = |m,χ〉, as in
Sec. 3. After some calculations, and by defining∆ =
∆(g, ω, χ, z) := ([g/ω] + χ)eizω − (g/ω), we obtain

cn(z) = eiΘe−
1
2 |∆|2∆n−m

√
m!
n!

Ln−m
m (|∆|2), (83)

with Θ = Θ(g, ω, χ, z) := (g/ω)([g/ω] + χR) sin(ωz) −
z(g2/ω)+ zωm− (g/ω)χI(1− cos(ωz)), and whereχI de-
notes the imaginary part ofχ. Therefore, the electromagnetic
field in the non-conservative system is given by

dn(z) = eγneiΘe−
1
2 |∆|2∆n−m

√
m!
n!

Ln−m
m (|∆|2). (84)

Figure 10 shows the propagation of the electromagnetic field
for some values of the parameters, according to (84). For
m = 0 (upper row) the distribution (Poissonian atz = 0)
has one maximum that propagates periodically inz, in a
way somehowclose to the one shown in the upper row of
Fig. 9. This can be particularly appreciated in the Hermi-
tian caseγ = 0 (upper left panel). In the non-Hermitian
casesγ = −0.05 andγ = 0.05, a slight attenuation and am-
plification towardsn → ∞ can be observed (upper middle
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and right), once more similarly to the corresponding plots in
Fig. 9. Form = 1 (lower row), again a distribution is in-
jected to the array atz = 0. This time two lobes or maxima
can be observed (see for instance the Hermitian caseγ = 0
in the lower left panel), following a periodic transport along
z as well. This, in turn, resembles the number of maxima in
the lower row of Fig. 9 asm increases. On the other hand,
in the non-Hermitian casesγ 6= 0 (lower middle and right)
the relative heights of such lobes can be adjusted at will by
changing the non-Hermitian parameterγ and without affect-
ing the periodic propagation. Naturally, this coherent states
become the ones in Fig. 5 in the limitω → 0.

7. Conclusions

We have analyzed several systems associated with the con-
ventional Glauber-Fock waveguide array in both the semi-
infinite and infinite regimes. The propagation in the non-
conservative (non-Hermitian) systems is simply related to the
corresponding in the conservative (Hermitian) one through
the transformation (16). Closed analytical solutions for dif-
ferent initial conditions have been given.

Quite generally, the transformation (16) produces an at-
tenuation or amplification towardsn → ∞ without chang-
ing the trajectory of the maxima of the electromagnetic field.
Such can be tailored by manipulating the non-Hermitian pa-
rameterγ. In turn, this have a wide variety of applications.

For instance, it can be used to analyze the response of non-
conservative (non-Hermitian) systems by means of conser-
vative (Hermitian) ones. Also, the model can be used to
simulate imperfections in the couplings between waveguides,
which are always assumed to be reciprocal (isotropic). The
transformation can be used also as a protocol of communica-
tion and/or in order to encrypt optical information.

Besides, the current manuscript is intended to give a
deeper insight into the understanding of non-Hermitian ef-
fects and the behavior of non-Hermitian systems. In particu-
lar in systems of the Glauber-Fock type. As mentioned, the
transformation (16) can be regarded as a (non-unitary) super-
symmetric (SUSY) transformation connecting the Hamilto-
niansH andH̃.
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