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The effect of a non-unitary transformation on an initial Hermitian operator is studied. The initial (Hermitian) optical system is a Glauber-Fock
optical lattice. The resulting non-Hermitian Hamiltonian models an anisotropic (Glauber-Fock) waveguide array of the Hatano-Nelson-type.
Several cases are analyzed and exact analytical solutions for both the Hermitian and non-Hermitidm&ahproblems are given, as

they are simply connected. Indeed, such transformation can be regarded as a non-unitary Supersymmetric transformation and the resultin
non-Hermitian Hamiltonian can be considered as representing an open system that interchanges energy with the environment.
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1. Introduction More recently, waveguide arrays have as well been con-
sidered in the non-Hermitian regime. PT-symmetry plays an

In the last decades, optical lattices (or waveguide arrays) havghportant role in this context [25-27], presenting a plethora
got major attention for presenting new (discrete) diffractionof new features, for instance invisibility [30, 31], phase tran-
effects, in comparison with the corresponding (continuouskitions at exceptional points, power oscillations, double re-
diffraction that appears in the bulk. Such discrete diffrac-fraction [28, 29], etc. In parallel, non-Hermitian arrays have
tion can be tailored by properly adjusting the configurationalso been considered (in minor proportion) under the Hatano-
of the array [1-5]. Besides, optical lattices are suitable optiNelson model [30, 32, 33] (see also [34-36]). This in turn is
cal devices to both simulate and study a considerable numbagist a (rather simple) non-unitary transformation of a conven-
of quantum and classical effects, for instance squeezed anbnal Schbdinger equation
coherent states [7-11], Talbot effect [12, 13], classical and o1w(1) o
guantum walks [6], to mention a few (see also [14-18]), in i = [p 4 V(x)] |U(t)). (1)
relativistic and non-relativistic [19, 20] schemes. Examples ot 2m
encompassing both linear and non-linear optical systems cafor
be easily encountered (see for instance Ref. [1]). Moreover, .
optical lattices have straightforward use in the treatment of [W(2)) = e™*|®(1), TER, @
optical information. For example, see the application of opti-the non-Hermitian Scldinger type equation [37]
cal lattices as converters of modes developed in Ref. [21]. N

One well-studied lattice is the so-called “Glauber-Fock” i8|@(t)> = {(p + 1) + V(;L-)} |B(t)), 3)
optical lattice, characterized by a non-uniform distance be- ot 2m
tween each pair of adjacent waveguides [9, 10, 14, 15]. Fois obtained. Indeed, non-unitary transformations produce
any array, the coupling between adjacent waveguides de- non-Hermitian dynamics naturally [38]. In the optical
pends on the distanaé between them, ag o« e=¢ € R context, a transformation of the type i2)(produces an
Fig. 1a). Therefore, in the Glauber-Fock lattice Fig. 1b) andanisotropic (also called non-reciprocal) optical lattice; due to
c), where the waveguides get closer as thersigéthe waveg-  the non-Hermiticity of the corresponding Hamiltonian, this
uide increases, the coupling betweenithih and thgn+1)- might also be interpreted as an open system of waveguides
th waveguide is proportional t¢/n + 1. Naturally, a physi- (one interacting with the surroundings). It is worth to high-
cal (realizable) system contains a finite numbeof waveg-  light that 2) can be upturned, thus giving the solutions to the
uides, [see Fig. 1b)], however & — oo the array may non-Hermitian equatior] from the solutions of the Hermi-
be considered effectively as semi-infinite Fig. 1c)]. Theretian equation/I), by means of a straightforward transforma-
are other well-studied lattices, apart from Glauber-Fock, withtion.
non-uniform spacing between subsequent waveguides (the Therefore, the non-Hermitian propagation in a Glauber-
reader is referred to [22—24]), presenting intriguing transporfock optical lattice is studied in what follows, from the so-
characteristics as well. lution of the corresponding Hermitian system. The resulting
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non-Hermitian optical lattice then represents an anisotropic d
system of waveguides, for which exact solutions of the cor-
responding dynamical equations are easily obtained. At this
point is worth to remark that such non-reciprocal systems of

the Hatano-Nelson type can indeed be implemented in the y
laboratory (see Ref. [35]). X I Z
The contents of the article are given in the following or-

der: in Sec. 2, the general frame regarding the Glauber-Fock a)
optical lattice is established. In the same section, the mecha-
nism for obtaining the non-Hermitian propagation departing

1 2 3
from the Hermitian system is given. In Secs. 3 and 4, respec- \/_ \/_ \/_
tively, the semi-infinite and finite cases are discussed, from / //—’///
the foundations developed in Sec. 2. In Sec. 5 and 6, a pair
N-1

of modifications of the Glauber-Fock lattice are addressed. b) n=20 n=1 n=2 -
Finally, the conclusions are given in Sec. 7.
VI 42
—>
2 .

n-—1 n n+1

1 V3
2. Glauber-Fock waveguide lattice / /////

C — — —
Quite generally, the amplitude,(z), n € A C Z, of )n=0 n=1 n=

the electric field propagating in the-th waveguide of a FiGuURE 1. a) lllustration of the coupling of modes between con-
tight-binding waveguide array is coupled to the amplitudestiguous waveguides by means of the evanescent fields. The Gaus-
cn—1(2) andc, . 1(2) propagating in the contiguous waveg- sian distributions represent the modes of the electric field ampli-
uides [2] Fig. 1a). Particularly, for the Glauber-Fock lattice tude in the transversal directianand the coupling occurs where

Fig. 1b) and c) the propagation of the electric field amplitudethe Gaussian functions overlap. The lower panel shows a Glauber-
cn(2) is ruled by Fock array: the waveguides get closer as thersiéthe waveguide
n

increases, such that the coupling betweenttle and the(n + 1)-

th waveguide is proportional t¢'n + 1. In b) a finite array ofV
ien(2) + glVnen—1(2) + Vn + len1(2)] =0, (4)  of Waveguides ispshgwn. In c) we consider)that—> 0, suc):/h that

there exists a single edge waveguide (in red), and the optical lattice

where the dot stands for derivative with respect to the evoluis regarded as semi-infinite.

tion parametet, g = ke~? € R is the coupling constant be- . . )

tween the first two waveguides, witha given real constant, values of the propagation distaneeThen,>_,, [c,.(2)|° = 1

andd the corresponding distance between the first two sitedS & Suitable choice for normalization.

The equalityd) is related to a Schdinger-type equation The electric field amplitudes are given by

cj(2) = (jlv(z)), €A (8)
OWED _ b1y 2y, )

0z where the setd is going to be defined according to the di-
mension of the corresponding Hilbert space. The same is true
for the ladder operators’ anda. In what follows, a Hilbert
spaceH of generic dimension is considered, in order to es-

H = —g(a" +a), (6)  tablish the methodology to generate the non-Hermitian trans-
port in the Glauber-Fock lattice. The precise dimensions of

the Hermitian Hamiltonian operator, namely = Hf, and  the Hilbert space for each case (finite and semi-infinite) will

wherea! anda are raising and lowering operators, respec-be specified in the corresponding sections.

tively [40]. In the semi-infinite case’ anda are simply the

creation and annihilation operators of the harmonic oscilla2.1. Non-Hermitian Glauber-Fock lattice

tor. It is assumed that eaeh(z) is associated to an abstract ) )

vector|n) € M, with H a Hilbert space. Thusd{and ) are  The solution of Eq.3) is proposed as

related by

7

with

[¥(2)) = e (2)),  vER, )
lv(2)) = ch(2)|n>~ (7)  wheren|j) = j|j), j € A. Then, the non-Hermitian (non-
n conservative) problem
Physically, the vectoft(z)) € H contains the information J016(2) _ l6(2)) (10)
of the total electric field amplitude in the lattice for all the 0z ’
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is obtained, where

H=¢"He 7" = —(klaT + ka), (11)

is clearly non-Hermitian, namelfft # H, with k; = ge” n=
andky, = ge~ 7. The last equality in Eql1(l) comes from

the commutator$i, a] = —a and[n, a’] = af . Our main
concern is then the non-Hermitian systetG)¢(11).

In the specific case of the semi-infinite Glauber-Fock lat-
tice, the HamiltonianX1) is of the type of that studied in
Ref. [32]. Therefore, the Hatano-Nelson problebd)((11)
is by itself pretty interesting. The reader interested in the im-
plementation, as well as the study, of systems of the type of
Hatano-Nelson in equally-spaced optical lattices is referred
to [30, 33-36]. Here we analyz4()-(11) for several sys-
tems with open and closed boundary conditions, and give the
corresponding exact analytical solutions, not present in the P
available literature. 9 =0

Equation|L0) is connected to the equation

b) S
0

n=

. FIGURE 2. lllustrative action of the non-unitary transformation
idn(2) + k1v/ndn—1(2) + kavn + ldns1(2) =0, (12) (1) on a state(0)) with coefficientsc, (0) initially distributed
. according to a Poissonian function, for a Glauber-Fock optical lat-
via tice in the semi-infinite regime.
[9(2)) zn:d"(z)w’ (13) the envelope of the corresponding output coefficients
_ d,(0) = e"¢,(0) is given in green. Foty > 0, the oper-
with atione™™ amplifies the stat@)(0)) instead. The output state
_ _ Ak ¢(0)) = e?™[1)(0)), and in generakp(z)), is not normalized
di(2) = (kl@(2)) = €Ter (), ked (14 las(tr)z; electr|ic (fi(gl>d in the array i e(itr)1>er being someway ab-
standing for the electric field amplitude in theh waveguide ~ sorbed or the array is being provided with energy from the
of the non-Hermitian (non-conservative) lattice. exterior, depending to the sign ofin (16). Indeed, such an
The solution|¢(z)) of (10) can be obtained from the so- amplification or attenuation can be easily implemented in the
lution |¢/(z)) of the associated Hermitian problef),(in the  laboratory [39].
case of general; andk; (cf. [32]), as Besides, Fig. 3 sketches the way to implement the
transformation|16) in order to get the corresponding non-
ky\ 2 Hermitian transport. In Fig. 3a) the transformatid®)(is
lp(2)) = <k> [h(2)). (15)  applied onjy(29)) atz = zo. Afterwards, the inverse trans-
2 formation Q) is performed, at = z¢, on|$(zy)), this take
Then, fork, and k, given below 1), the non-Hermitian the state of the system back [t(z)). Certainly, the state

| 3

propagation is straightforwardly obtained as |¢(z)) represents the non-Hermitian propagation in the inter-
N val zp < z < zy. In b), the transformationl@) is illustra-
[9(2)) = " [(2)). (16) tively performed at, > z, and, once again, ai the inverse

transformation9) is performed. In the interval, < z < zy,
the statd¢(z)) represents non-Hermitian transport, while for

e : : ndz > z; Hermitian transport i tained. There-
an amplification ¢ > 0) or attenuation{ < 0) of the dis- Z<ma dz > z He an transport 1S o_b_a ed ere
o o fore, intervals of non-Hermitian and Hermitian propagation
tribution of the electric field. Both effects can be awarded .
can be alternated at will.

to an external process. In a), the red Gaussian distributions,

with heights given by, (0) for all n, represent the modes in

each waveguide. The Poisson distribution envelope is repre-

sented in gray color. As before, the horizontal axis coincided\on-unitary transformation as a Supersymmetric transfor-
with the coordinater of the frame of reference. In b), the mation

non-unitary transformatiorilg) is schematically pictured by

a blue decreasing exponentigl & 0) operatione”™ on the  Indeed, the non-unitary transformatidtgy, can be regarded
initial state|(0)). The output statgp(0)) = e [»(0)) is  as a Supersymmetric (SUSY) transformation [41-44](see
shown in c). According told), also [46] for the use of unitary transformations, that can also

In Fig. 2, the outcome of the non-unitary transformat/é) (
on an initial statd:(0)) is illustratively shown. It produces
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FIGURE 3. Effect of the transformationl6) in the transport

alongz.

s

with |¢(0)) an arbitrary initial condition. We can identify the
exponential operator it2E) as D(igz), where

D) = &% o = 3l etal o= o (26)
is the Glauber displacement operator [40]. Fhstands for
complex conjugation.

Response to the impulse

We can set the initial conditiop(0)) in (25) in such a way
that atz = 0 a single waveguide is excited, the-th waveg-
uide for example, this i$(0)) = |m), m = 0,1,... In
turn, the electric field,, (z) at then-th waveguide is given by

be interpreted as SUSY transformations, in a different con{n|D(igz)|m). In general,
text), as the Hamiltonian& and H given in ) and (1),
respectively, are connected by the operétor ", as

TH = HT.

As we shall see in Sec. 4, in the stationary regime, the Hami
tonians H and H are isospectral, as expected from rela-

tion (17).

3. Semi-infinite lattice

In the case of the semi-infinite optical lattice the annihilation

(17)

(n| D(&)|m) = e%'f'zﬁ"’”\/f%mﬂf?), (27)

with L% the associated Laguerre polynomials of order

|]'hus,

-1 222 - n—m m! n—m
enl2) = 4 igay oy IR L (222). (28

Such that in the non-conservative lattice the amplitudes of the
electric field are directly

I
(creation)a (') operator, together with the number operator  d,,(z) = e~ 292" (igz)" =™ | %L%*m(g%?), (29)

n can be cast in the form

a=> VE+1lk)k+1],
k=0
a' = VE+1|k+ 1)k,
k=0
n=Y klk)(k
k=0

As usual, the commutation relations

[av aT] =1
[ﬁv a] = —a,
[, a] = af

hold. In turn, @) and 6) are connected by
[0(2)) =Y ex(2)[k),
k=0

with {|k)},_, ,  the Fock states.
From (), we have

[(2)) = 9@+ |y (0)),

(18)

(19)

(20)

(21)
(22)
(23)

(24)

(25)

For specific values of the involved parameters, the intensities
|d,.(2)|? are shown in Fig. 4. The non-Hermitian transport
given by R9) can be compared with the corresponding Her-
mitian scenarioy = 0. The upper row shows the response
of the system when the edge waveguide= 0 is excited at

z = 0. In the Hermitian case = 0 (upper left) no attenua-
tion or amplification occurs. In turn, the field attenuates while
propagating wheny = —0.05 (upper middle). Actually, as

in any physical propagation phenomena there always exists
loss because of the environment's interactionthe 0 case
serves to model real transport phenomena. On the contrary,
amplification is shown whery = 0.05 (upper right). Then,

the casey > 0 serves to model external providing of elec-
tromagnetic field, for example, when losses are to be reduced
through external feeding of electromagnetic power. In ad-
dition, the lower row shows the propagation obtained when
the initially excited waveguide is in the bulk, for example at
m = 5. In such a case, reflection at the boundary= 0 is
seen to occur: this can be clearly observed in the Hermitian
regime (lower left). In the cases = —0.05 (lower middle)
andy = 0.05 (lower right) it can be appreciated, respectively,
attenuation and amplification as — oco. It is worth to re-
mark that the number of maxima of the electromagnetic field
increases withn, due to the reflection at the boundary, and is
equal tom + 1. In the lower row {n = 5) of Fig. 4 we have

6 maxima.

Rev. Mex. Fis70041303
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FIGURE 4. Non-Hermitian propagation of the intensjt, (2)|? i

in the semi-infinite Glauber-Fock optical lattice, as given28)(in the case

of a single waveguide (situated at a given excited atz: = 0, and its comparison with the Hermitian case. In all the figures the propagation

distancez is measured in units af.

Coherent states as initial condition

The initial condition|(0)) in Eq. {25) is now chosen as
[£(0)) = |m,x), where|m,x) := D(x)|m) is a general-
ized coherent state (displaced number state), witha Fock
state andD(x), x € C, given by @6). Form = 0, the
generalized coherent stdte, x) reduces to the conventional
coherent staté), x) = |x). Then,c,(z) = (n|D(igz)|m, x)

is found to be

. 1 2 !
en(z) = e 310 grom [T pnom012) - (30)
n.

with Q@ = Q(g, x, 2) := x +igz, xr denoting the real part of

casesy # 0 (upper middle and upper right) resemble pretty
much the corresponding images in Fig. 4 as well. This is, the
transformation16) attenuates or amplifies the electromag-
netic field as» — oo, without affecting the trajectory. Such
attenuation or amplification can be easily adjusted with the
parametery. Form = 1 (lower row) we have two lobes or
maxima in the initial distribution at = 0, see for instance
the Hermitian case = 0 in the lower left panel. Again, this
resembles the case of the impulse (lower row in Fig. 4), as
the number of maxima increases with The lobes follow a
curved trajectory towards — oo, as in the caser = 0 (up-

per row). In turn, in the non-Hermitian cases# 0 (lower
middle and lower right) the relative heights of such lobes can

x, and whereZ7) has been used, together with the property e gajlored by adjusting the non-Hermitian parametaith-

D(9)D(8) = D(g + p)e' ™97,

The fields in the non-conservative system are just

(1)

. |
dn(z) = e”"e’ngRe’%IQ‘QQ”’m\/%L"m’mﬂm?). (32)

Figure 5 shows the transport alongf the electromagnetic

field in the non-conservative system of waveguides and it

comparison with the Hermitian case & 0), according to
(32), for specific values of the parameters. kor= 0 (upper
row), the distribution injected at = 0 is Poissonian with

mean equal ta6. As in the case of the impulse (Fig. 4),

the distribution follows a curved trajectory towards— oo,

what can be particularly appreciated in the Hermitian case
~v = 0 in the upper left panel (that in turn closely resem-
bles the corresponding panel in Fig. 4). The non-Hermitian

out affecting its curved path. Once more this resembles the
response to the impulse, as the effect of transformatiéh (

in the lower middle and lower right panels is quite similar to
the one observed in the corresponding panels of Fig. 4.

4. Finite array

?/\/hen the array is finite, the operatarsa® in (6), andn, are

given as

(33)

k)(k + 1,

TTMZ WMZ

\/7
\/7

1|k + 1) (K, (34)

2—0—
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| dn(2) |2

10,

=0 y =—0.05 y = 0.05

FIGURE 5. Non-Hermitian propagation of the intensity,, ()| in the semi-infinite Glauber-Fock optical lattice, as given Bg)(in a
semi-infinite Glauber-Fock waveguide array when it is excited at 0 with a distribution (ageneralized coherent stgteThe parameters
are those of Fig. 4 angd = 4.

and

N-1 L3
dn_ kivN — 1ldn_ = 41
i = Z k|k) (K. (35) idy—1(2) + k1 N—2(z) =0, (41)
k=0 along with (L2).
The operator Hamiltonian it6f, for  anda in (33) and

The corresponding commutators are : hd )
(34), then acquires the form of a tri-diagonal square matrix

[an, af\,] =1y — N|N)(N|, (36)  of dimensionN (see [18] and references therein)
[N, an] = —an, (37) 0 V1 0 0

. \/I 0 \@ .. 0

[N, a;r\/] = a}-\f’ (38) 0 \/5 0 ..

: o . . H=—-g| . . . (42)
with Iy the identity in theN-dimensional space. Due to the : : : . :
commutation relation36), it is not possible to express the o 0 .- 0 N -1
evolution operator in the formi2€), as in the semi-infinite 0 o --- N -1 0

case. So in this section we follow a different procedure.
Nonetheless, as the relatioi&7) and B8) have exactly the Now, a (similarity) transformation is performed éhas
same form of relation®2@) and 23), respectively, we still can
construct the solution corresponding to the non-Hermitian
system in terms of the solution of the Hermitian one. Thus
along this section we only call, o' and#, respectively, the
operators defined irBG)-(35).

The Eqgs.4) and 55) are related through Mp;) = Ajlby),  7=0,1,...,N -1 (44)

A=S"1MS, =—H, (43)

whereS is an orthonormal matrix such that its columns are
the (normalized) eigenvectoys;) of M, i.e.

B = The set of eigenvalueg);} is obtained from the usual

[¥(2)) = Z ek (2)[k), (39) conditionDy = 0, whereDy = det M — \ly). Besides, as
k=0 H is tri-diagonal,Dy is given by the recurrence relation
wherelk) € H,k =0,1,..., N — 1. As there exist two edge

(or ending) waveguides, the condition= 0,¢ > N, must Do =1, (45)
be added. Then, along witd)(we have Dy =\, (46)
iéN_l(Z)+g\/N— 1CN_2(Z) =0, (40) Ds=ADy,_ 1 —Ds 5, s=2,3,...,N. 47

Rev. Mex. Fis70041303
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In turn, the normalized eigenvectors Hfare with R a (square) matrix of dimensiolN, whose elements
are given by
Do(X))
N-1 -1/2 D ()\ . 1
1(A5) R, .(2)=
|t} = (Z [Dk(Aj)f) : . (48) pal2) V2PFa(p —1)l(g — 1)!
k=0 .
. W s
Dn_1(A;) N-1 Hp <\/J§> Hy 1 (\/%) exp(igA,; )
The relations/45)-(47) turn out to be those of the Hermite X N-T ). , (33)
polynomials [45]. Therefore, the condition giving the set of 7=0 Z _— F? (J)
eigenvalueg \;} of M is "R V2
A while A is diagonal, its elements afe\; }. By means of%2)
Dy(A) = Hy (\/5) 0, (49)  and 53) we get
N-1
yvith Hk(a:) the Hermite polynomial of ordét. The normal- _ Rust.041(2)ce(0), (54)
ized eigenvectors are then =
12 ‘X;j,o or equivalently
7,1
;) = (Z ) : . (50) R |
: en(z) = Z
2np) : 264!
Vin-1 =0 j=0
1 Aj Aj Aj .
Vik = ——=Hxg <J> . (51) Hy, () Hy ( exp(ig;z)
’ 2 2
2k k! V2 x {_ T : c(0). (55)
At this point it is worth to mention thaf/ and M share ﬁH,f (;)

common eigenvalues and its eigenvectors coincide up to a k=0
constant phase factor. Through revertid8)(and replacing Response to the impulse
into [1(2)) = e~ H2|4(0)), it is obtained P impu

Again, when the initial conditiofx)(0)) is set as exciting just

[Y(2)) = Se™ Sy (0)) = R|¥(0)), (52)  one waveguide, for example that at theth site, then

|Cal2)1° |dn(2)1? |dn(2) 1
oy 4
‘(l)%&i, //// 10 100 ///////// 710 4¢ /////// /
09 iy 4 00 W///””’//”s oy/////// ///} ).
: v/, V4
10 10 L 10
n 20 0 20 0 n 20 0
2
|Cal@) 12 Itz |dn(2) 1
mﬂv, 6 ,r,%t’,///,/ 7 2 ,
i i, /, 27
/// /,,/55»;,5,,, 10 %% W{’;’;{M;’}/’ﬂ/ /14 10 1 /,// 7 54 f/ 10
R 7 % R
‘”};”;;;}};}; ;;,’ 52 0" »,'/f/”.//f//:,/ ) ,/.’f 52 2 b ; }})ﬁﬂ 5Z
10 / 10n ) 10
n 20 “p 20 0

FIGURE 6. Non-Hermitian propagation of the intensity;, (z)|? as given by67), in a finite Glauber-Fock optical lattices formedf= 25
waveguides for initial exciting of one single waveguide at thessitdn all the figures the longitudinal distanegs measured in units of the
coupling constany, while the parametey = 1 was set.
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2
| dn(2)]? | dn(2) |

0.20, 0.20

y =—0.05 y = 0.05

FIGURE 7. Stationary propagation of the supermofigs and|¢;), corresponding to an Hermitian and non-Hermtitian system of waveguides
of the Glauber-Fock type. The array is formedéf= 25 waveguides and the parameters coincide with those in Fig. 6.

ce(0) = dsm, Whered;; stands for the the Kronecker delta exist reflections at both end waveguides of the optical lattice

symbol, then (compare with the corresponding row in Fig. 6).
en(2) = Z"J:”n'm' Supermodes of the finite array
A \ If [(0)) is now chosen app(q)) = \1./1j>, where|q;) satis-
) N_1 H, (\/%) H,, <\/j§> exp(ig);z) o5 fies [44), stationary evolution is obtained:
= N_1LH2 <>\J> [¥(2)) = exp (ig);z) [¢5)- (58)
=0 2E1E V2 These are known as the supermodes of the optical lattice [2].

. o N In addition, the choicgs(0)) = e7™[+);) gives the cor-
In turn, the corresponding solution in the non-Hermitian ar-responding (not normalized) stationary evolution in the non-

ray is just Hermitian system:
ern - n
o $(2)) = exp (igh;z) €7 |v;). (59)
N \ By replacingb9) into (10), we obtain the eigenvalue problem
N—1 H, (j) H,, <j> exp(ig;z) for M
X V2 V2 . (57) ~ ~ ~
: N-1 1 A M|¢]> = /\j|¢j>, M = —H, (60)
S
pors 2k R\ /2 where|¢;) = €’™|;). In Fig. 7 the supermodes of the

Hermitian (left column) and non-Hermitian (middle and right
In Fig. 6 the intensitiegd,, (z)|? are shown, as ruled b%7),  columns) systemsy;) and|¢;), respectively, are presented
for some specific values of the parameters. In the upper roior comparison. They were obtained numerically. In the up-
the first waveguiden = 0 is excited atz = 0. Pretty per row the supermodg = 0 is shown. The field is prin-
close to the corresponding row of Fig. 6, in the Hermitiancipally concentrated at the right of the arraynat- 23, in
regime~ = 0 (upper left panel) there is no attenuation or the Hermitian ¢ = 0) and non-Hermitiany # 0) regimes,
amplification of the field. In turn, in the non-Hermitian case for the indicated values of. In the lower row the super-
v = —0.05 (y = 0.05) in the upper middle (upper right) mode; = 4 is shown. Once more, the Hermitian case in
panel, an attenuated (amplified) propagation can be appréhe lower left panel preserves the non-symmetric distribution
ciated. Such attenuation (amplification) is maximal at theof the field (with respect to the central waveguides). For the
opposite edge waveguide (= 24) and can be tailored by non-Hermitian systemy = —0.05 (y = 0.05) in the lower
manipulating the parameter In the lower row the waveg- middle (lower right) panel, it can be appreciated a redistribu-
uide situated atn = 5 is excited at: = 0. In this case there tion of field caused by the # 0.
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NON-HERMITIAN TRANSPORT IN GLAUBER-FOCK OPTICAL LATTICES 9
5. SU(1,1) waveguide array The solution of§), for H as given in Eq.§2) is then

In this section we consider a variation of the Glauber-Fock [¥(2)) = eigz(A+AT)|w(())>. (68)

lattice considered in the previous sections [22]. We consider

a semi-infinite array in which the electromagnetic fieldz) ~ The commutator@5) once more forbids to express the evo-

in the n-th waveguide satisfies lution operatorexpligz(A + AT)] in Eq. (68) in the factor-

ized form 26). Nevertheless, by introducing the operator

i (2) + glf(N)en1(2) + f(n+ eng1(2)] =0, (61) Ao = 7+ (1/28) + (1/2), itis straightforward to get the

commutation relations of th8U(1,1) operator algebra for

the operator§ Ay, A, AT}. These are,

wheref(n) = n+ &n?

ner Eq. ), with H given by

, £ € R. Equation|61) has a part-
[A, AT] =240, [Ao, Al = —A, [Ag, AT]= AT. (89)

By proposing
H=—g(A+ A, (62)
|,¢}(z)> — eiu(z)AT ev(z)Aoeiw(z)AW)(O»7 (70)
Az g 1B 63
- £’ (63) subject to the initial conditiong(0) = v(0) = w(0) = 0,
it is straightforward to obtaim(z) = w(z) = tanh gz, and
- - 2
At — 1 Jr;naf, (64) v(z) = In(1/cosh” gz).

with « anda' the annihilation and creation operators definedR€SPonse to the impulse
in Sec. 3. Also as in Sec. %1) and 6) connect by means of For[¢(0)) = |m)
(24). The corresponding commutation relations are ’

1 [(2)) = (coshgz) ™ [f(m)]!
[A, AT =2A+ - +1, (65) S :
¢ 53 o gelinp S m )

[, 4] = ~4, (66) T RO -

[n, AT] = AT (67) X |m —j + k), (71)
| Cn(2) 1
1.0 ;
0§’»M%%%mwm15

0
20 0.5
n 40

n 40 4 no40
y=0 y = —0.05 y = 0.05

FIGURE 8. Non-Hermitian propagation of the intensit§, (z)|* in the semi-infinite Glauber-Fock optical lattice, as given [Bg)( in a
semi-infiniteSU (1, 1) waveguide array when one single waveguide situated statz = 0. In all the figures the longitudinal distanees
measured in units of the coupling constantvhile the parametey = 1 was set.
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10 I. A. BOCANEGRA-GARAY AND H. M. MOYA-CESSA
where[f(O)]! = fO)f(¢ —1)...f(1), with [f(0)]! = 1.  can be clearly appreciateice. an attenuation and amplifica-
Therefore the electric field in the-th waveguide is given by tion towardsn — oo, respectively.

_ 1+(@mtD)E

¢n(2) = (cosh gz) ¢ (itanhgz)

—m+n

6. Driven Glauber-Fock lattice
(—1)7 sinh* g2

X [f(m))'[f(n)]! Z S - ' nz» (72)  Adifferent modification of the Glauber-Fock lattice reviewed
=Mt = m)l([f(m =) in Sec. 3 is examined here. The following Hamiltonian is

and the fields in the non-conservative system are simply considered (see [44] and references therein)

m = —wh — T
4, (2) = €7 (cosh g7) 1+@mt1e (i tanh gz)~ "+ H wn—gla"+a), w,g,€R, (74)
m (—1)d sinh? g2 with a, o' andn as given in Sec. 3. Equatio®)( for the
X [f(m)]f(n)]! Z 5- (73)  Hamiltonian [74), is related to the equation

= M+ g = m)([f(m = 7)Y

¢, +wne, + ne,—1+vn+lc =0. 75
Figure 8 shows a comparison between the non-Hermitian ' ntg(Vnen wt1) (75)

transport, given by43) and the Hermitian oney(= 0), for In turn we have Eq/X0), with H given by
specific values of the parameters. Quite generally, a behav- ’

ior very close to the one observed in Fig. 4 can be appreci- H=—wh— (kra’ + kga), (76)
ated. For the chosen valuegfsmaller distance is reached,

in comparison to the Glauber-Fock lattice in Fig. 4. Upperconnected to

row: the edge waveguider = 0 is initially excited. Simi- .

lar to the upper row in Fig. 4, the Hermitian = 0 (upper idy + wndy, + kiv/nd,—1 + kevVn + ldngq = 0. (77)
left) and non-Hermitian cases= —0.05 (upper middle) and

~ = 0.05 (upper right) are characterized, respectively, by no
attenuated/amplified, attenuated and amplified transport (sé
the vertical scales) corresponding to closed (upper left) and Aw(z)) ~ ~ Y

open systems (upper middle and upper right). Lower row: the — i———" = Hl|w(z)), H:=—wn+ — (78)
sitem = 5 is initially excited. For the Hermitian case= 0

(lower left) there is no attenuation or amplification. In turn, Therefore,

for the non-Hermitian cases = —0.05 (lower middle) and

By doing |v(z)) = D'(g/w)|w(z)) in Eq. ), we arrive at
ke following equation fofw )

~ = 0.05 (lower right), the effect of the transformatiof6) [¢(2)) = DI (%) W= p (%) [$(0)).  (79)
|dn(2) |
w15 Y s
025 O 20 s
n 40 ~
| Cal2)1? | dn(2) 12

1.0 0.6
0.5\} . 0 75 AR :
W C 0.0 M7 PTG
20 “ 025 0 0.25
n 40 n 40
=il y =—-0.05 y = 0.05

FIGURE 9. Non-Hermitian propagation of the intensiy,, (z)|? in the semi-infinite Glauber-Fock optical lattice, as given [B)( for a
semi-infinitedriven Glauber-Fock waveguide array when one single waveguide excited atz: = 0. For all the figures is measured in

units of g, and the parametets = 1, g = 2 units have been chosen.
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| Ca(2) 1 | dn(2) |2 | da(2) 12

i

«_‘ “) Wl ™7 75 0.02, i ’ " 3 W//f/f/}/f% e
OO 0.00“A iy 0.75 s O
0 20 VI, 55 0 o) 057 DM, .52
" T n o 40

L 40
i D y =—0.05 y = 0.05

‘ 2

FIGURE 10. Non-Hermitian propagation of the intensi, (z)|° in the semi-infinite Glauber-Fock optical lattice, as given [B¢){ for
a semi-infinitedriven Glauber-Fock waveguide array when it is excitedzat 0 with a distribution (ageneralized coherent stgteThe
parameters are the same of Fig. 9 and chosen equal.

Response to the impulse the transformation16) produces attenuation and amplifica-
o ) tion asn — oo in the non-Hermitian cases = —0.05 and

Ifat z = 0 only them-th waveguide is excited, the(0)) =, — 0.05 shown in the lower middle and lower right panels,

[m) in (79). By using respectively. Such modulation can be of course be tailored

by adjusting the non-Hermitian parameterThen, the-wn
term in both74) and (76) produces periodic propagation, un-
like the one observed, for instance, in Fig. 4. Naturally, we re-
cover the typical Glauber-Fock response in the linit 0.

eizwﬁD(§> — D(geizw)eizwﬁ7 5 c (C7 (80)

and by definingl = I'(g,w,2) := (g/w)(e*** — 1), after
some algebra we obtain

Coherent states as initial condition

o _1p2 !
en(z) = ee 3 I0Ppom [T pnom 2y - (81
n: Now we chose|y(0)) in (79) as|¢(0)) = |m,x), as in
Sec. 3. After some calculations, and by definidg =

whered = 0(g,w, z) = (g% /w?) sin(wz) — z(g?/w) + zwm. i ;
Therefore the electric field in the non-conservative system i€(9>«: X; 2) = ([g/w] + x)e'** — (¢/w), we obtain

simply , NG !
ea(z) = €€ BAT AT [ZRpn I (AP), (83)

. !
dn(2) = ewewe_%Fl?Fn_m\/ﬁLz_mﬂFF) (82)  with © = O(g,w, x,2) := (g/w)(lg/w] + xr)sin(wz) —
' 2(g? Jw) + zwm — (g/w)x1(1 — cos(wz)), and wherey; de-

Figure 9 shows the transport of the electromagnetic field agotes the imaginary part of Therefore, the electromagnetic
ruled by B82), for specific values of the parameters, as wellfield in the non-conservative system is given by
as the comparison with the Hermitian case=£ 0). In the
upper row, form = 0 a single maximum of the electromag- g () = ewnei@eéAzAnm\/mL%qu?). (84)
netic field can be seen, following a periodic trajectory along n!
z. This is so due to the first term in botf4) and [76), and  Figure 10 shows the propagation of the electromagnetic field
can be particularly appreciated in the Hermitian case 0  for some values of the parameters, according8d).( For
(upper left). For the non-Hermitian cases (upper middle andn = 0 (upper row) the distribution (Poissonian at= 0)
upper right)y = —0.05 and~y = 0.05 a subtle attenua- has one maximum that propagates periodicallyzjnin a
tion and amplification in the waveguides at the right of theway somehowclose to the one shown in the upper row of
array (atn — oo) can be noticed, according t46). For  Fig. 9. This can be particularly appreciated in the Hermi-
m = 5 (lower row) six maxima can be distinguished, follow- tian casey = 0 (upper left panel). In the non-Hermitian
ing again a periodic propagation alongsee for instance the casesy = —0.05 andy = 0.05, a slight attenuation and am-
Hermitian casey = 0 in the lower left panel). As before, plification towardsn — oo can be observed (upper middle
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12 I. A. BOCANEGRA-GARAY AND H. M. MOYA-CESSA

and right), once more similarly to the corresponding plots inFor instance, it can be used to analyze the response of non-
Fig. 9. Form = 1 (lower row), again a distribution is in- conservative (non-Hermitian) systems by means of conser-
jected to the array at = 0. This time two lobes or maxima vative (Hermitian) ones. Also, the model can be used to
can be observed (see for instance the Hermitian gase0  simulate imperfections in the couplings between waveguides,
in the lower left panel), following a periodic transport along which are always assumed to be reciprocal (isotropic). The
z as well. This, in turn, resembles the number of maxima intransformation can be used also as a protocol of communica-
the lower row of Fig. 9 asn increases. On the other hand, tion and/or in order to encrypt optical information.

in the non-Hermitian caseg # 0 (lower middle and right) Besides, the current manuscript is intended to give a
the relative heights of such lobes can be adjusted at will byleeper insight into the understanding of non-Hermitian ef-
changing the non-Hermitian parameteand without affect- fects and the behavior of non-Hermitian systems. In particu-
ing the periodic propagation. Naturally, this coherent state$ar in systems of the Glauber-Fock type. As mentioned, the
become the ones in Fig. 5 in the limit— 0. transformation/16) can be regarded as a (non-unitary) super-

symmetric (SUSY) transformation connecting the Hamilto-

7. Conclusions niansH andH.
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