Numerical investigation into the Nd doped YAG rod grooving impact on the sunlight-pumped-laser performance

Said Mehelloua,b, Noureddine Hamrounia,b, and Rehouma Ferhata,b

aDepartement of physics, University of El Oued, El Oued 39000, Algeria.
bLEVRES laboratory, University of El Oued, El Oued 39000, Algeria.

Received 14 December 2023; accepted 9 February 2024

This paper presents a numerical analysis of the impact of grooving the Nd doped YAG rod on the sunlight-pumped lasers performance. The study analyzes laser systems that utilize side-exciting and end-side-exciting approaches to activate both grooved and non-grooved Nd doped YAG laser rods. The effects of the rod surface groove on the performance of the sunlight-pumped-lasers are thoroughly examined using ZEMAXc and LASCADc softwares. To excite the grooved and non-grooved Nd doped YAG rods alternately, a ring-array sunlight flux concentrator is employed. Moreover, in the side-exciting technique, the head of the laser system contains a rectangular light guide of an extremely transparent glass made from fusing silica and an excitation cavity with a V-shaped configuration, housing the Nd doped YAG rod. This exciting method with a grooved laser rod resulted in a 13.70\% increase in laser power and a 28.20\% reduction in stress intensity compared to the non-grooved rod. In the end-side-exciting technique, the head of the laser system comprises an aspheric lens made of a fused silica glass and a conical-shaped excitation cavity, accommodating the Nd doped YAG rod. Results indicate that using grooved laser rod in this exciting system did not lead to an amelioration in output laser power. However, this technique enhanced the stress intensity by a reduction of 35.03\%.

Keywords: Sunlight-pumped-laser; ring-array sunlight flux concentrator; grooved laser rod; end-exciting method; side-exciting configuration.

DOI: https://doi.org/10.31349/RevMexFis.70.041301

1. Introduction

Systems of sunlight-pumped laser have emerged as a full of promise technology altering sunlight directly into laser light. It provides a vast range of uses in both terrestrial and space fields. The first research on sunlight-pumped lasers was conducted by Kiss et al. and C. G. Young in the early 1960s [1,2]. Since then, several researchers have contributed to the improvement of sunlight-pumped laser systems. Scholars made such remarkable contribution including Arashi et al. [3], Weskler et al. [4], Vasylyev et al. [5], Lando et al. [6,7], Zhao, et al. [8], Saiki et al. [9], Yabe et al. [10], Ohkubo, et al. [11], Dinh et al. [12], Xu et al. [13], Payziyev et al. [14-16], Bouadjemine et al. [17], Mehellou et al. [18,19], Guan et al. [20, 21], Masuda et al. [22], Liang et al. [23-35], Almeida et al. [36-43], Vistas et al. [44-52], Garcia et al. [53-58], Matos et al. [59], Tibúrcio et al. [60-65], Costa et al. [66,71], Boutaka et al. [72], Catela et al. [73-78], Berwal et al. [79], Cai et al. [80], who have made significant progress in enhancing the performance of sunlight-pumped lasers.

Sunlight-pumped laser systems operate by collecting, concentrating, homogenizing and distributing the solar radiation, afterwards, compressed into, or wrapped around, the active medium. Two commonly employed techniques for activating the laser medium are end-side-exciting and side-exciting. While end-side-exciting is known for its efficiency, it often leads to thermal loading issues caused by the concentration of absorbed excitation light at the end of the laser rod. Side-exciting, on the other hand, offers regular distribution of the exciting light inside the laser rod but is relatively less efficient compared to end-side exciting [81]. To enhance the efficiency of side-exciting, grooved laser rods have been proposed. The grooved surfaces minimize optical reflection losses and provide a larger interface with cooling liquid, facilitating improved heat dissipation [13,44].

Sunlight-pumped lasers have utilized grooved Nd doped YAG laser rods in various experiments (Table I recapitulates the main research in which this kind of rods have been employed).

The absorption and distribution of exciting light within the laser medium play a decisive role in the efficiency of sunlight-pumped lasers. Therefore, optimizing sunlight-pumped laser systems requires careful consideration of these factors. While non-grooved rods are more commonly used, grooved rods offer improved absorption of exciting light when utilizing the side-pumping configuration.

Given the potential of grooved rods as laser medium in side-sunlight-pumped lasers, it is essential to investigate the impact of grooved surfaces on the performance of these systems. Consequently, the focus of this study is to inspect the influence of rod grooved surfaces on the output performance of sunlight-pumped lasers. Although both types of rods have been employed in sunlight-pumped lasers, there is currently no comparative study evaluating their effects on the performance of these systems.
<table>
<thead>
<tr>
<th>Primary concentrator</th>
<th>Secondary concentrator</th>
<th>Pumping</th>
<th>Active medium</th>
<th>Laser power (W)</th>
<th>Collection efficiency (W/m²)</th>
<th>Laser beam brightness (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Kind, collection area</td>
<td>Cavity</td>
<td>Method</td>
<td>Type</td>
<td>Diameter (mm)</td>
<td>Length (mm)</td>
</tr>
<tr>
<td>P. Xu et al., 2014, [13]</td>
<td>Fresnel lens, (1.3 m²)</td>
<td>Ceramic conical cavity</td>
<td>End-side</td>
<td>Grooved Nd : YAG</td>
<td>20.3</td>
<td>15.61</td>
</tr>
<tr>
<td>C. R. Vistas et al., 2015, [44]</td>
<td>Parabolic mirror, (3.14 m²)</td>
<td>Silica semi-cylindrical lens</td>
<td>2V-shaped cavity</td>
<td>Side</td>
<td>Grooved Nd : YAG</td>
<td>Num. TEM₀₀</td>
</tr>
<tr>
<td>Z. Guan et al., 2016, [20]</td>
<td>Fresnel lens, (1.3 m²)</td>
<td>Water tube lens</td>
<td>Conical cavity</td>
<td>End-side</td>
<td>Grooved Nd : YAG</td>
<td>TEM₀₀</td>
</tr>
<tr>
<td>C. R. Vistas et al., 2016, [45]</td>
<td>Parabolic mirror, (1.0 m²)</td>
<td>Silica tube lens</td>
<td>2V-shaped cavity</td>
<td>Side</td>
<td>Grooved Nd : YAG</td>
<td>TEM₀₀</td>
</tr>
<tr>
<td>C. R. Vistas et al., 2020, [48]</td>
<td>Parabolic mirror, (3.14 m²)</td>
<td>Rectangular hollow pipe</td>
<td>2V-shaped cavity</td>
<td>Side</td>
<td>Grooved Nd : YAG</td>
<td>TEM₀₀</td>
</tr>
<tr>
<td>C. R. Vistas et al., 2016, [45]</td>
<td>Parabolic mirror, (1.0 m²)</td>
<td>Silica tube lens</td>
<td>2V-shaped cavity</td>
<td>Side</td>
<td>Grooved Nd : YAG</td>
<td>TEM₀₀</td>
</tr>
<tr>
<td>H. Costa et al., 2023, [71]</td>
<td>Six Fresnel lens, (Total collection (10 m²))</td>
<td>Six fused silica aspheric lenses and rectangular CPCs</td>
<td>Cylindrical cavity</td>
<td>Side</td>
<td>Seven grooved Nd : YAG</td>
<td>TEM₀₀</td>
</tr>
</tbody>
</table>

To address this gap, a sunlight-pumped laser system composed of a stage for solar radiation collection and concentration using a ring-array sunlight flux concentrator (RAC) described by Garcia et al. [54] is exploited. The RAC is utilized to side-exciting and end-side-exciting a grooved and a non-grooved Nd doped YAG rods, respectively. In the side-exciting technique, the laser rod is activated through a rectangular light guide of an extremely transparent glass made from fusing silica and a 3V-shaped excitation cavity, while in the end-side-exciting approach, an aspheric lens made of a fused silica glass and a conical-shaped excitation cavity are used to excite the Nd doped YAG rod.
TABLE II. Parameters of the elements constituting the RAC (Rings and Fresnel lens).

<table>
<thead>
<tr>
<th>Reflective ring (from great to small)</th>
<th>Ring 1</th>
<th>Ring 2</th>
<th>Ring 3</th>
<th>Ring 4</th>
<th>Ring 5</th>
<th>Ring 6</th>
<th>Ring 7</th>
<th>Fresnel lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum aperture (mm)</td>
<td>500</td>
<td>470</td>
<td>420.84</td>
<td>352.33</td>
<td>272.62</td>
<td>197.08</td>
<td>136.45</td>
<td>92.37</td>
</tr>
<tr>
<td>Minimum aperture (mm)</td>
<td>470</td>
<td>420.84</td>
<td>352.33</td>
<td>272.62</td>
<td>197.08</td>
<td>136.45</td>
<td>92.37</td>
<td>0.00</td>
</tr>
<tr>
<td>Radius of curvature (mm)</td>
<td>282.35</td>
<td>237.07</td>
<td>177.88</td>
<td>115.19</td>
<td>64.28</td>
<td>31.99</td>
<td>14.84</td>
<td>208.13</td>
</tr>
<tr>
<td>Vertical distance between the minimum aperture and the focal plane (mm)</td>
<td>250.00</td>
<td>255.00</td>
<td>260.00</td>
<td>265.00</td>
<td>270.00</td>
<td>275.00</td>
<td>280.00</td>
<td>413.27</td>
</tr>
</tbody>
</table>

Figure 1. RAC designed by seven rings and a Fresnel lens.

2. Ring-array sunlight flux collector and concentrator system

Figure 1 illustrates a ring-array sunlight flux concentrator system consisting of seven rings, each with unique diameters and radii of curvature. All the rings adopt a profile of off-axis parabolic and have a reflectivity of 95%. To maximize the utilization of the collection surface, a little Fresnel lens is sited at the RAC central zone.

The reflective ring with a diameter of 1.0 m creates 0.785 m² collection area. Given an average of 950 W/m² solar irradiance, the system is capable to concentrate 745.75 W sunlight power into a spot of a full-width of 5 mm at half maximum diameter and a profile of a near-Gaussian aspect. This spot is located 250 mm in relation to the center of the minimum aperture of the large ring, as depicted in Fig. 2. To complete the description of the ring-array concentrator system, its parameters are summarized in Table II.

3. Sunlight-pumped laser exiting system

Typically, the exciting process is conducted using two main methods, namely side-exciting and end-side-exciting techniques.

3.1. Side-Exciting method

The side-exciting setup offers several advantages, such as enabling uniform absorption distribution throughout the length of the laser rod, conducting to a laser beam of high quality. However, this configuration typically exhibits a relatively lower efficiency in transferring solar energy to laser light liken to the end-side-exciting technique. One method to enhance the efficiency of side-pumping is to use a grooved laser rod. To demonstrate the effectiveness of the grooved laser rod, a comparative analysis will be conducted to evaluate the performance of non-grooved and grooved laser rods.

3.2. Sunlight-pumped laser head

Figure 3 illustrates the laser head composition, which includes a rectangular light guide of an extremely transparent glass made from fusing silica and an excitation cavity with a V-shaped configuration, housing the Nd doped YAG rod.
3.3. Simulations with ZEMAX© and LASCAD © softwares

In the initial stage, a non-grooved Nd doped YAG laser rod of a diameter = 4.0 mm and length = 30 mm is placed within a 3 V-shaped excitation cavity. This rod is then side-excited using the concentrated sunlight by the ring-array concentrator, with the assistance of a silica light guide. The absorbed exciting power amounts to 48.92 W, and the optimized distribution of this power within the non-grooved Nd doped YAG rod, as determined by the ZEMAX© software, is illustrated in Fig. 4. Table III summarizes the dimensions of the head of the laser system elements.

The absorbed excitation power information from ZEMAX© software is after integrated in LASCAD© software. To get a maximum laser power in multi-mode regime, an optical resonator with a symmetrical configuration is considered, as indicated in Fig. 5.

Sunlight-pumped laser power of 11.18 W was computed adding to quality factors $M_x^2 = 33.92$ and $M_y^2 = 34.20$. The heat-load, the temperature, and the stress-intensity in the non-grooved Nd doped YAG rod, are exposed in Fig. 6.

In the second stage, the non-grooved Nd doped YAG rod is replaced with a grooved rod. To make the simulation more
3.4. End-exciting method

Despite the fact that end-exciting approaches are known for their high efficiency in sunlight-pumped laser systems, their
effectiveness is compromised by the negative impact of thermal loading. This is due to the non-regular distribution of the absorbed excitation light in these exciting methods.

3.5. Sunlight-pumped laser head

The head of the laser system is comprised of an aspheric lens of a fused-silica glass and an excitation cavity with a V-shaped configuration, where the Nd doped YAG rod is positioned. Figure 10 illustrates this arrangement of the laser head. Table V recapitulates the dimensions of the elements constituting the laser head.

Table IV. Parameters of the grooved-Nd doped YAG rod.

<table>
<thead>
<tr>
<th>Grooved-Nd doped YAG rod</th>
<th>Dimensions</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (mm)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Length (mm)</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Grooved pitch (mm)</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Grooved depth (mm)</td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>

![Figure 9](image9.png)

Figure 9. Computed heat load, temperature, and stress intensity distributions of the grooved Nd doped YAG rod.

![Figure 10](image10.png)

Figure 10. 3D design of the sunlight-pumped laser head, for end-exciting approach.
TABLE V. Dimensions of the laser head components.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Aspheric lens of fused silica</th>
<th>Nd doped YAG rod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (mm)</td>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Radius of curvature of front surface (mm)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Rear r² parameter</td>
<td>−0.003</td>
<td></td>
</tr>
</tbody>
</table>

Table VI. Results of the numerical study.

Side exciting

<table>
<thead>
<tr>
<th></th>
<th>Non grooved rod</th>
<th>Grooved rod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbed exciting power (W)</td>
<td>48.14</td>
<td>55.67</td>
</tr>
<tr>
<td>Laser power (W)</td>
<td>11.18</td>
<td>12.71</td>
</tr>
<tr>
<td>M^2_x</td>
<td>33.92</td>
<td>32.42</td>
</tr>
<tr>
<td>M^2_y</td>
<td>34.20</td>
<td>32.66</td>
</tr>
<tr>
<td>Heat load (W/mm³)</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>307.8</td>
<td>305.5</td>
</tr>
<tr>
<td>Stress intensity (N/mm²)</td>
<td>13.23</td>
<td>9.5</td>
</tr>
</tbody>
</table>

End exciting

<table>
<thead>
<tr>
<th></th>
<th>Non grooved rod</th>
<th>Grooved rod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbed exciting power (W)</td>
<td>85.08</td>
<td>82.40</td>
</tr>
<tr>
<td>Laser power (W)</td>
<td>23.96</td>
<td>22.85</td>
</tr>
<tr>
<td>M^2_x</td>
<td>45.43</td>
<td>44.67</td>
</tr>
<tr>
<td>M^2_y</td>
<td>45.32</td>
<td>44.12</td>
</tr>
<tr>
<td>Heat load (W/mm³)</td>
<td>0.6</td>
<td>0.63</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>344.3</td>
<td>344.1</td>
</tr>
<tr>
<td>Stress intensity (N/mm²)</td>
<td>83.56</td>
<td>54.29</td>
</tr>
</tbody>
</table>

The asymmetric optical laser resonator is hence formed by both HR 1064 nm reflector and PR 1064 nm output coupler, with 95% reflectivity and −1 m radius of curvature, as determined by the ZEMAX© software.
depicted in Fig. 12. The calculations yield a sunlight-pumped laser power of 23.96 W, and the factors of the laser beam quality $M^2_x = 45.43$ and $M^2_y = 45.32$. The corresponding heat-load, temperature, and stress-intensity in the non-grooved Nd doped YAG rod are displayed in Fig. 13. Next, a grooved Nd doped YAG laser rod is employed, which has a diameter = 4 mm and a length = 20 mm. The grooved rod features a grooved pitch = 0.6 mm and a grooved depth = 0.1 mm. By substituting the non-grooved rod with this grooved rod, an absorbed excitation power of 82.40 W is
achieved. The optimized distribution of the absorbed excitation power, determined using the ZEMAX© software, is presented in Fig. 14. Figure 15 presents an asymmetric optical resonator that leads to attain a sunlight-pumped laser power of 22.85 W, $M_{x}^2 = 44.67$, and $M_{y}^2 = 44.12$. Figure 16 exposes the heat load, temperature, and stress intensity in the grooved Nd doped YAG rod.

4. Discussions

Since the initial report on sunlight-pumped Nd doped YAG lasers in the early 1960s, various exciting designs have been introduced to advance the performance of sunlight-pumped...
lasers. While end-side exciting approaches are known for their efficiency, they often suffer from thermal loading issues. On the other hand, side-exciting methods offer better laser beam quality by distributing the absorbed excitation light uniformly along the laser medium, effectively mitigating problems arising from thermal loading. However, side-pumping methods generally exhibit lower efficiency. One approach to enhance the efficiency of side-exciting systems is the use of grooved laser rods. V-shaped grooves on the rod’s surface can minimize optical reflection losses, leading to improved efficiency and better heat dissipation through enhanced contact with the cooling liquid.

This, in turn, reduces stress intensity (as observed in this study, a decrease of 28.2%) and improves the laser beam quality. As known in side-exciting method all the excitation light wraps the laser rod through its lateral surface, consequently, when this surface is grooved the excitation light absorption rises (meaning low-optical reflection losses) resulting in an increase of the output laser power (13.68% in this study). Hence, this pumping technique can be an attractive option for an efficient exciting system leading to a high laser beam quality.

In end-side exciting approach, the majority of exciting light is compressed into the laser rod through its input-face, with a small portion laterally redirected by the excitation cavity to the rod’s surface. As a result, the reduction of optical reflection losses through grooved surfaces has a weaker impact on end-exciting. The primary benefit of using grooved rods in end-exciting systems lies in improved heat dissipation through enhanced contact with the cooling liquid, leading to reduced stress intensity (as observed in this study, a decrease of 35.03%). While this reduces the thermal loading effect, it does not increase the absorbed exciting light into the laser rod or result in higher laser power. Table VI provides a summary of the results obtained in this study.

These findings highlight the significance of the present study in initiating discussions regarding the practicality of employing grooved laser rods in end-side-exciting configurations.

5. Conclusion

A numerical investigation was conducted using ZEMAX© and LASCAD© software to survey the impact of grooving the Nd doped YAG rod on the performance of sunlight-pumped lasers in side-exciting and end-side-exciting techniques. The study examined how the grooved surface of the laser rod influenced the sunlight-pumped laser’s performance. In the side-exciting method, the grooved rod demonstrated a 13.70% increase in sunlight-pumped laser power and a 28.2% reduction in stress intensity compared to the non-grooved rod. On the other hand, in the end-side exciting scheme, the grooved rod primarily contributed to reducing thermal loading, resulting in a 35.03% reduction in stress intensity.

The grooved sides of the laser rod effectively minimized optical reflection losses, which played a main role in increasing the laser power in the side-exciting configuration. Based on the analysis of the obtained results, it is evident that the grooved laser rod offers a promising option for improving sunlight-pumped laser efficiencies in side-exciting configurations. Additionally, it is noteworthy that the side-exciting approach, in addition to generating high-quality laser beams, can serve as an efficient solar laser exciting system by utilizing the grooved laser rod.

10. Z. Cai et al., Efficient 38.8W/m² solar pumped laser with a Ce: Nd: YAG crystal and a Fresnel lens, *Optics Express*, 31 (2023) 1341, https://doi.org/10.1364/OE.481590.