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Are neutrino oscillation mixings linked to the smallness of solar neutrino scale?
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Observed reactor and atmospheric neutrino oscillation mixing values appear to be related to the neutrino scale ratio
√

∆m2
sol/∆2

ATM in
a way that suggest that the neutrino mass matrix can be expanded as a power series by using this ratio as the smallness parameter. This
approach provides a simple and natural way to expose the inner hierarchies among neutrino mass terms, which amounts to also explain the
solar oscillation mixing as well as solar oscillation scale. We explore a class of mass matrix textures that realize this scenario, for both normal
and inverted neutrino mass hierarchies, as well as CP violation and their stability under renormalization scaling.
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1. Introduction

The flavor problem, meaning, the understanding of the ob-
served pattern of fermion masses and flavor mixings in the
Standard Model (SM) of particles at a fundamental level, re-
mains so far as an open question whose answer might shed
light on possible new physics. This question is particularly
more puzzling in the case of neutrinos which are predicted to
be massless on the basis of the SM, and yet the abundant data
collected along the last decades by several oscillation neu-
trino experiments [1] undoubtedly indicates that neutrinos are
rather light and mix. Most of such data is well described with
the three standard neutrinos. Global fits [2] give for the two
independent mass scales∆m2

sol = 7.42+0.21
−0.20 × 10−5 eV2

and∆m2
ATM = 2.510+0.027

−0.027(2.490+0.026
−0.028)× 10−3 eV2, cor-

responding to the ones that determine solar and atmospheric
neutrino oscillation lengths, respectively, for the normal (in-
verted) hierarchy of masses. As a remainder for the reader,
hierarchy refers to the relative ordering of the mass eigen-
values,mi for i = 1, 2, 3, such that ifm2

3 > m2
1 the mass

pattern is said to be in a normal hierarchy (NH), otherwise it
is known as an inverted hierarchy (IH). Theoretically,∆m2

sol

is identified as the squared mass difference∆m2
21, where

∆m2
ij = m2

i −m2
j , whereas∆m2

ATM corresponds to∆m2
31

(|∆m2
32|), for NH (IH). Note that the sign of∆m2

21 is already
known due the MSW effect [3, 4] that takes place within the
sun, however the sign of∆m2

31 and therefore the hierarchy
of masses is still unknown.

With massive neutrinos, mixings arise from the fact that
neutrino mass terms are non diagonal in the flavor state ba-
sis which differs from the mass eigenstate basis. Both the
basis are connected by a unitary matrixUmix that in the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [5, 6] parame-
terization is written asUmix = V K, where K is a di-
agonal matrix containing two Majorana phases, andV is
given in terms of two real and a complex rotations, asV =
R23(θ23)R13(θ13, δCP )R12(θ12). Same global fit analysis
determines the three neutrino mixing angles to besin2 θ12 =

sin2 θsol = 0.304+0.012(3)
−0.012 , for the solar neutrino oscillations,

sin2 θ23 = sin2 θATM = 0.450+0.019
−0.016(0.570+0.016

−0.022) for at-
mospheric ones, andsin2 θ13 = 0.02246(1)+0.00062(74)

−0.00062 , cor-
responding to reactor oscillation mixings. It is worth noticing
that the most recent fit from Ref. [2] changed drastically the
best fit point on the atmospheric mixing for normal hierar-
chy, which lays now on the first octant, as compared to the
previous fit in Ref. [7], where it appeared on the second oc-
tant with the valuesin2 θATM = 0.573(5)+0.016

−0.020(19). Yet,
at three sigma level, on both fits the measured mixing re-
gions still overlaps on basically the same area that extends
on both the octants. Neutrino oscillations are also sensible
to the Dirac CP phase which so far has been narrowed to
be aboutδCP = 230+36

−25 (278+22
−30) and within the interval

[144o, 350o] ([194o, 345◦]) at three sigma level. All above
for NH (IH). Ongoing and next generation oscillation neu-
trino experiments will focus on increasing the precision on
the determination of this phase.

By looking up on these measured parameters it is un-
avoidable to notice some peculiarities that are very suggestive
when they are put down together. First of all, the hierarchy
among solar and atmospheric scales are so that their ratio, in
central fit values, can be expressed as

λ =

√
∆m2

sol

∆m2
ATM

= 0.1719(26). (1)

On the other hand, for the reactor mixing one has

tan θ13 = 0.1516 ∼ O(λ). (2)

Furthermore, the deviation of the atmospheric mixing from
maximal turns out to be

| tan θATM − 1| = 0.0955 (0.1513)

∼ O(λ/2) [O(λ)]. (3)

As stressed by above expressions, it is striking to note that all
of those parameters are about the same order of magnitude
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(this peculiar numerical coincidences were early suggested
in Ref. [8]). This raises the question of whether they could
have a common source and exploring this possibility is the
main goal of the present work. As it is clear, if the answer
to such a question were on the positive, the next issue would
be to understand why solar mixing, being rather large but far
from maximal, is not in evident connection with the same pa-
rameter. As we shall argue here, the solution to the whole
riddle could indeed lay on the smallness of the solar scale,
expressed through a simple neutrino mass matrix structure
that emerges when one assumes that mass terms are func-
tions that can be (Taylor) series expanded usingλ as the only
smallness parameter. This comes out natural when one con-
siders that physical masses could be subjected to loop cor-
rection effects from a yet unknown interaction characterized
by a coupling parameter of orderλ. In such an approach, the
inner hierarchy of the mass terms provides at the zero order a
maximalθ23 with a two degenerate neutrino spectrum, where
other mixings are null. The orderλ corrections would then
be enough to predict all the mentioned mixing features, as
well as to provide an understanding to solar mixing through
the lifting of the degeneracy on the solar sector. Similar ideas
had been earlier discussed on the literature. In Ref. [8], fol-
lowing a similar motivation, a specific mass texture was sug-
gested. Here we are addressing the problem in a more general
way, though. In Ref. [9] it was shown thatθ12 andθ13 could
have a common origin related to the solar scale, but one of
the mixing angles,θ23, was there fixed to its maximal value
to stress their interest on some specific mixing matrices. In
Ref. [10], on the other hand, leptonic mixing angles were re-
lated to lepton mass ratios. Nevertheless, it is desirable to
have an explanation for all three mixings, and they indeed
could be generated by the quantityλ, as we will show.

With this aim, this paper is organized as follows. First,
in Sec. 2 we use the condition of having null reactor and so-
lar mixings and a maximal atmospheric mixing, with a two
neutrino degenerate spectrum, to search for explicit mass ma-
trix structures that be consistent with hierarchical neutrinos,
based on the Taylor series approach. Then, along Sec. 3, we
parametrize the orderλ contributions that raise the degen-
eracy, providing a∆m2

sol mass gap, which, at the same time,
would offer an explanation for the observed neutrino mixings
patterns. There we perform the analysis for both normal and
inverted hierarchies. Henceforth, in Sec. 4, we explore both
analytically and numerically the possible predictions for CP
violation of such scenarios, emphasizing that our approach
can account for values within current observed bounds. The
effect of running under renormalization group effects on the
proposed mass matrix hierarchies is explored along Sec. 5.
Finally, we close with some general concluding remarks, pre-
sented in Sec. 6.

2. Linking neutrino mixings to solar scale

Based on the suggestive numerical coincidences depicted by
Eqs. (1) to (3), we propose that the scale ratioλ can be used

to Taylor expand the general neutrino mass matrix, in order
to explore the hierarchies among the neutrino mass terms, as
dictated by atmospheric and reactor mixings. Thus, we write
the most general Majorana mass matrix as

Mν = M0 + δM(λ), (4)

whereM0 stands for the zero order matrix of the expansion
and(δM)``′ , for `, `′ = e, µ, τ , are all smooth complex func-
tions of λ, at least of order one on it. Of course, a leading
higher power onλ for some of these terms could be possible,
but that should be reflected along the calculations. Hence the
above approach can be make without lost of generality.

By taking the theoretical limit where∆m2
12 is null, as

well as the right hand side of expressions (2) and (3), one
ends with a neutrino spectrum with two degenerate neutrinos
wheretan θ23 = π/4 with not further mixings. This scenario
immediately suggest that, in the theoretical limit whereλ is
null, the neutrino mass matrix has the simple form

M0 ∝



A 0 0
0 1 σC
0 σC 1


 , (5)

whereσ stands for a positive (negative) sign that should be
taken in the normal (inverted) hierarchy case. Here,C is a
complex number withRe C > 0, and|A| = |1 − σC|. The
condition |A| = |1 − σC| is required in order to ensure a
null ∆m2

12, which is needed for the zero order matrixM0.
There are symmetry groups, likeA4, which supports this kind
of matrix configuration, however, the exploration of the pos-
sible models that generates the proposed matrix is beyond
the scope of this work. In any case the only existing mass
splitting at this limit is given by∆m2 ∝ 4Re C. Also, M0

does not generate any Dirac phase. Since theA phase can
be freely redefined, and taken to be zero, a single Majorana
phase,φ, arises from the phase difference of complex eigen-
masses,1± C, which givestan φ = 2Im C/(1− |C|2).

Hereafter, to clearly exemplify the way our proposal
works, we will concentrate our discussion to the case where
C = 1, which means that we can take|A| = (1 − σ) ac-
cording to the hierarchy. This would restrict our analysis to
truly hierarchical neutrinos. Following Eq. (4), the mass ma-
trix should add toM0 some smooth complex functions ofλ,
which by construction we assume at least proportional toλ.
In this terms, the Taylor form of the neutrino mass matrix can
be written as

Mν =




Γ eλ aλ
eλ b σc
aλ σc 1


 m0, (6)

where we naturally expect the real overall mass scalem0 ∼√
∆m2

ATM/2. The choice of the scalem0 ∼ 2.5× 10−2 eV
is just a matter of convenience, but it is possible to adjust
the scale of the neutrino mass, which would require a slight
change in the parameters. However, the goal of the work is
to show that there exist matrix textures which generate the
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initial conditions, i.e., two degenerate neutrinos, null solar
and reactor mixing and maximum atmospheric mixing. The
correct observed values are obtained perturbatively. It is im-
portant to note that the model does not predict the mass scale,
but it does predict the correlation of the parameters. A com-
prehensive model with additional fields would be needed to
assess the model’s falsifiability, which extends beyond the
scope of this paper. It is also worth noticing that in theµ-τ
block, from our construction principles, generic mass termsb
andc can be expressed as1+δf ≈ eiϕ(1+Re δf +O|δf |2),
whereδf stands for the correspondingO(λ) complex correc-
tion. Hence, the overall phase turns out to be small, since
tan ϕ ≈ Im δf . This already indicates that the phases on
the first row shall be the most relevant for the analysis below.
Furthermore, without loss of generality, upon rephasing of
the flavor neutrino wave functions, and without altering the
phases relevance, we can choosee andb to be real parame-
ters. Others should, in general, stay complex numbers.

According to our Taylor expansion considerations, at the
leading order, we can write|Γ| = (1−σ)+dλ, b = 1+σδbλ,
and|c| = 1 − δcλ. Here we should assume|a|, d, e, δb, and
δc to be at most order one numerical parameters to be fixed
by the use of experimental data. Also, hereafter we denote
the phases ofΓ, a andc asφΓ,a,c, respectively.

Similar textures to the above, for normal hierarchy, were
presented in Refs. [8, 11]. The later was motivated within
the context ofµ − τ symmetry. There, however, the cor-
responding corrections tomee andmµτ where proposed to
be of orderλ2, but no connection with our current motiva-
tion was made. The former, on the other hand, was similarly
motivated by the numerical coincidences on the oscillation
parameters, nonetheless, in theremee was assumed to be ex-
actly λ2 whereasmeµ,eτ were taken to be exactlyλ, which
also exhibitsµ−τ symmetry but leaves out solar neutrino os-
cillations. Such cases, of course, are contained in the present
one since our approach is more general. Note also that a class
of models based onµ−τ symmetry orµ−τ parity can also be
reproduced in the present context (for a recent review of both
see for instance [12]). That should be expected, since such
symmetries are known to be closely attached to the smallness
of θ13 and a largeθ23. Furthermore, Eq. (6) already shows
some of the inner hierarchies that the observed neutrino os-
cillation data suggests.

3. Masses and mixing

Next, let us proceed to show that the above expression for
Mν does predict the desired spectra of masses and mixing. It
would be of particular interest to verify that the right amount
of solar mixing could arise from the texture. Because at the
zero orderm2

1,2 are degenerated, one only needs the right
amount of perturbation to split these squared masses to pro-
vide a mass gap∆m2

21 ∝ λ2m2
0. As for the large solar mix-

ing, it should naturally arise due to the same kind of pertur-
bations.

In order to estimate the mixings, we perform an approx-
imate diagonalization of the squared hermitian matrixH =
MνM†

ν . This has the clear advantage thatH is diagonal-
ized by a unitary transformation, such thatU†HU = M2

diag,
where the RHS is given by the non negative and diagonal
matrixM2

diag = diag(m2
1,m

2
2,m

2
3). Up to field phase redef-

initions of the neutrino basis,U∗ corresponds to theUPMNS

mixing matrix that diagonalizesMν (see Refs. [13,14] for the
precedents to this approach). Also, it is important to note that
we work in a basis in which the charged lepton matrix is di-
agonal, which means thatUPMNS also describes the strength
of the lepton flavor mixing in weak interactions. For the
purpose of calculation, it becomes convenient, given the ex-
pected smallness ofθ13 and the hierarchical nature of neutri-
nos, to expressU = R23(θ23, ϕ1)R13(θ13, ϕ2)R12(θ12, ϕ3),
where the block unitary rotations

R(θ, ϕ) =
(

cos θ sin θeiϕ

− sin θe−iϕ cos θ

)
, (7)

embedded into their three dimensional forms, are obtained by
consecutively diagonalizing each indicated block onH. On
this approach, Dirac CP phase on PMNS parameterization
turns out to beδCP = ϕ2 − ϕ1 − ϕ3.

Therefore, within our present setup,H can be written as

H =




α δ ω
δ∗ β ρ
ω∗ ρ∗ γ


 m2

0, (8)

where,α = |Γ|2 + e2λ2 + |a|2λ2, β = b2 + |c|2 + e2λ2,
γ = 1 + |c|2 + |a|2λ2, δ = (Γe + eb + σac∗)λ, ω =
(Γa∗ + σec∗ + a)λ, andρ = σbc∗ + σc + ea∗λ2. It is then
easy to realize that in normal hierarchyα becomesO(λ2), as
well as the perturbative corrections that would be induced by
off-diagonal matrix terms,δ andω. This would explain solar
neutrino scale without further assumptions. Such is, however,
not the case for inverted hierarchy, whereα gets an order one
correction onλ. Here, explaining a solar scale that is of sec-
ond order would require tuning some of the parameters to an
orderλ precision, as we will discuss below.

After some algebra, atmospheric mixing is expressed, at
leading order, as

tan θATM ≈ 1 +
δb

2| cosφc|λ, (9)

irrespective of the hierarchy, whereas the reactor mixing be-
comes

tan θ13

≈ |(1−σ)eiφΓ(e+a∗)+(e+a)(1+σe−iφc)|√
8(1+| cosφc|)

λ. (10)

In order to fulfill the expectation of having at most order one
Taylor parameters,| cosφc| should be close to one, otherwise
the coefficient ofλ on Eq. (9) would become too large as
to account for the observable value of the mixing. More-
over, since reactor mixing in normal hierarchy vanishes for
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φc = π, we must avoid this branch of values. This is of
course consistent with our previous expectations. In the par-
ticular case where we takeφc ≈ 0, that we assume hereafter,
atmospheric and reactor mixings reduce to

tan θATM ≈ 1 +
δb

2
λ, and

tan θ13 =
|e + a|
2
√

2
λ, (11)

for both the hierarchies. Furthermore, by looking up on best
fit value of the atmospheric mixing, we should notice thatδb

has to be negative for NH, in order to bring down the mixing
from its zero order maximal value. The opposite should be
the case for IH. From here it is straightforward to see that, at
best fit point,δb = −1.11(1.753) and |e + a| = 2.494(81)
according to our initial assumptions. As an aside comment, it
is obvious that above formula for atmospheric mixing would
still work pretty well even if the resulting best fit point from
future data were to move towards values higher thanπ/4, as
it was in the data fit of Ref. [7], for instance.

Next, we proceed to calculate the solar neutrino scale and
the solar mixing, which after a lengthy calculation get the
general forms

∆m2
sol ≈ m2

0

√
µ2 + D2, (12)

and

tan θsol ≈ 1
x +

√
1 + x2

, (13)

with x = µ/D and where the explicit expressions forD and
µ do depend on neutrino hierarchy. From Eq. (12), it is clear
that bothµ andD should be required to be∼ O(λ2), which
in turn would imply that0 < x . O(1), just as needed to
understand the large observed value of solar mixing. As a
matter of fact, at best fit point data requires thatx = 0.426.
The corresponding results to each hierarchy are as follows.

(i) For normal hierarchywe get at the lower order

D ≈ 1√
2

∣∣(e− a)(δb + 2δc) + 2deiφΓ(e− a∗)
∣∣ λ2, (14)

whereas,

µ ≈ 1
4

(
(δb + 2δc)2 − 4d2

)
λ2. (15)

(ii) For inverted hierarchythe situation is more challeng-
ing, since, as we have anticipated, both contributions to the
solar scale,µ andD, arise at first order level, such that

D ≈ 2
√

2
∣∣e(1 + eiφΓ)− (a + a∗eiφΓ)

∣∣ λ +O(λ2), (16)

and

µ ≈ − (4d + 2(δb + 2δc))λ +O(λ2). (17)

Thus, in order to warrant the right prediction for the solar
scale, some tuning conditions must be imposed on the pa-
rameters, such that they cancel each other within the orderλ

contributions. From above expressions, it is straightforward
to see that such conditions amount to fix

a ≈ e− gλ, and d ≈ −1
2
(δb + 2δc)− hλ, (18)

with |g| andh order one numbers. This express the required
level of accuracy of our approximation. It has the aside im-
plication thatφa would become small (and perhaps irrelevant
for CP violation), since nowtanφa ≈ −Im(g/e) ·λ. Notice
that no restrictions are made toφΓ so far, which should then
become the most relevant CP phase in this case.

Using the above tuning conditions, we then get

D ≈
√

2
∣∣eδb(1 + eiφΓ)− 2(g + g∗eiφΓ)

∣∣ λ2, (19)

and

µ ≈
(

1
2
δ2
b + 2h− |e + a|2

)
λ2. (20)

Finally, atmospheric scale is given, for both the hierar-
chies as

∆m2
ATM ≈ (4 + (σδb − 2δc)λ)m2

0. (21)

Sinceδb has been fixed by the observed value of the at-
mospheric mixing, in Eq. (9), the model is left with five free
parameters: That is,m0, e, δc anda andd for normal hi-
erarchy, butg and h for the inverted one. Hence, there is
plenty of room to accommodate the remaining four neutrino
observables,tan θ13, tan θsol, ∆m2

sol and ∆m2
ATM , from

Eqs. (11), (12), (13) and (21). To have a feeling of the
order of magnitude the model parameters should have, we
can solve the system in the non CP violating case, by fixing
m0 =

√
∆m2

ATM/2 = 0.025 eV , which gives at central
valuesa = 0.664, d = 0.61, e = 1.829 and δc = 1.867
for normal hierarchy, ande = 1.24, g = 0.437, h = 3.092
and δc = 0.877 for the inverted one. Of course, taking a
slightly different value form0 would render a bit different
set of solutions, but all would be of similar order, which
validates our approximations. Note, also, that these values
emerge for the approximated expressions we have derived
above. More precise results can be obtained either from ex-
tending our analysis to include higher order corrections or by
proceeding through a completely numerical calculation. We
shall consider the later below.

4. CP violation

The amount of CP violation in any neutrino mass model can
be estimated by using the Jarlskog invariant [15]

J =
1
8

sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δCP , (22)

which can also be written in terms of the previously defined
squared hermitian matrixH as (See for instance [16])

J = − Im (H21H32H13)
∆m2

21∆m2
31∆m2

32

. (23)
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Using our parameterization, we can straightforwardly ex-
press the invariant in the approximated form

J ≈ −
(

m2
0

∆m2
ATM

)3

Im[δ∗ρ∗ω] λ−2. (24)

It turns out that, at the leading order,Im[δ∗ρ∗ω] ∼ O(λ3),
which means that the model could without stress accommo-
date asin δCP ∼ O(λ) which is well within the expected
experimental value range. As a matter of fact, by writing
down

Im[δ∗ρ∗ω] λ−2 ≈ κ0 + κ1λ + . . . , (25)

and after some calculations, we get, for normal hierarchy,
κ0 = (|a|2 − e2) sin 2φc and

κ1 =
[
δb(|a|2 − e2) + 2e2δc

]
sin 2φc

+ 2 cos φc

[
e|a|(δb + 2δc) sin φa

+ e2(δc − d) sin(φΓ + φc)

+ |a|2d sin(φΓ + φc − 2φa)
]
. (26)

Notice that this implies thatκ0 . O(λ) as a consequence of
the smallness ofφc, just as discussed along previous sections.
Furthermore, in the limit where we do neglectφc, κ0 = 0,
and thus, the CP violation phase is given by

sin δCP ≈ −0.466
(

4m2
0

∆m2
ATM

)3

κ1 λ, (27)

whereκ1 ≈ 2[e|a|(δb + 2δc) sin φa + e2(δc − d) sin φΓ +
|a|2d sin(φΓ − 2φa)]. It is not difficult to see that with order
one parameters we can easily get an adequate value for the
CP violating phase.

For inverted hierarchy we get

κ0 = 2 cosφc

(
2
[|a|2 sin(φΓ + φc − 2φa)

− e2 sin(φΓ + φc)
]
+ (|a|2 − e2) sin φc + 4e|a| sin φa

)
,

and the rather complicated expression

κ1 = 2δb

[
2e|a| sin(φc − φa)− |a|2 sin(2φc + φΓ − 2φa)

+ e2 sinφΓ

]
+ (e2(2δc − δb)− δb|a|2) sin 2φc

− 2 cos φc

[
e|a|(6δc − δb − 4d) sin φa

+ 2e|a|δb sin(φa − φΓ) + e2(d− δc) sin(φΓ + φc)

− |a|2(d− 4δc) sin(φΓ + φc − 2φa)
]
. (28)

In this case, the conditions imposed through Eq. (18), and the
implied smallness ofφc,a amount again to considerκ0 to be
of orderλ. Indeed, by neglecting these phases in above ex-
pressions, they simplify intoκ0 ≈ −8eRe(g) sin φΓ λ, and
κ1 = e2(4δb + 6δc) sin φΓ. Hence, for inverted hierarchy we
get the approximated formula

sin δCP ≈ −0.4688
(

4m2
0

∆m2
ATM

)3

(κ0 + κ1 λ), (29)

which is now controlled by the singleφΓ phase, as already
anticipated.

In order to explore in a more accurate way the possible
predictions for the Dirac CP phase from our neutrino mass
matrix proposal, we have numerically scanned the parame-
ter space looking for value sets that reproduce the observed
mixings and oscillation scales within the current level of ac-
curacy. To this aim, we numerically solve for the eigensystem
of the hermitian matrixH that is generated out of the mass
matrix Mν , in Eq. (6), by randomly assigning values to the
parameters. Once the eigenvectors are numerically known,
without further considerations nor approximations, we calcu-
late the corresponding mixing angles and the Dirac CP phase
as given in the PMNS parameterization, as well as the corre-
sponding squared mass differences, and keep only those pa-
rameter sets that reproduce neutrino oscillation observables
within the range of one sigma deviation for the mixings, and
up to three sigma deviations for the mass scales ratio. Given
thatm0 appears in Eq. (6) as a global scaling, we have found
more appropriate to use the scale ratio as the discriminator
rather than the scales themselves since this reduces one pa-
rameter on the analysis.

Also, in order to simplify the numerical computation we
fixed our small parameter to the valueλ = 0.1719 throughout
the numerical analysis for both hierarchies, with the under-
standing that any possible change on it can always be com-
pensated by a scaling on the other parameters. It is also worth
noticing that for any given matrixH which is diagonalized
by the unitary matrixU , its complex conjugatedH∗ would
be diagonalized byU∗. Since the Dirac phase inU does cor-
respond to the opposite phase inU∗, the parameter map for
δCP should be symmetric under reflection symmetry. We use
this fact to locate additional point solutions on the parameter
space.

For normal hierarchy we searched the parameter space
using the following parameter ranges:|a| ∈ (1, 2), d ∈
(0, 2), e ∈ (0, 2), δb ∈ (−1.2,−0.4), δc ∈ (0, 2) and
φa,c,Γ ∈ (0, 2π). We show in Fig. 1 the solution sets for
thee-|a| ande-δb subspaces, where the allowed region is best
depicted. Notice the apparent correlation amonge and |a|,
that was expected from the way they combine themselves to
produce the reactor mixing in Eq. (10). Also, all the pre-
sented solutions were found to have a very small value ofφc,
as expected from our previous analytical discussions. Blue
dots correspond to the values of the parameters which gener-
ate a∆m2

sol/∆m2
ATM ratio within the1σ range, while orange

dots correspond to those solutions with the quotient lying in
the3σ range. The same colormap is used for all the figures
presented in this work. As we can see from the plots, there is
not a clear distinction between the1σ and3σ regions, indi-
cating the sensibility of the mass texture to the values of the
parameters regarding the prediction of neutrino mass scales.
This may be an indication that certain level of tuning would
be required in the underlying theory to keep masses under the
expected accuracy.
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FIGURE 1. Allowed parameter space for the normal hierarchy,e is shown as a function of|a| and δb. Blue (orange) dots generate a
∆m2

sol/∆m2
ATM ratio at1σ (3σ) accuracy.

FIGURE 2. Allowed parameter values for the inverted hierarchy as seen in thee-|g|-h parameter subspace.
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FIGURE 3. φΓ as a function of|g|. There are well delimited regions
for the values of the model parameters which generate neutrino os-
cillation parameters within the required accuracy.

For the inverted hierarchy, we have explicitly introduced
the tuning conditions given in Eq. (18) to focus our search.
Thus, the parameters were assigned to arbitrary values within
the intervals: |g| ∈ (0, 2), h ∈ (1, 2), e ∈ (1, 1.5), δb ∈
(1, 2), δc ∈ (0, 1.8) andφc,g,Γ ∈ (0, 2π). Fig. 2 shows the
results on thee, |g| andh subspace. Unlike the parameter
space for the NH case, which present just a slight correlation
only between two of them, for the inverted hierarchy there is
a clear correlation between all parameters. For the sake of
simplicity we only show here three plots, however,δb andδc

have shown a similar dependence in|g| as that fore andh.
In Fig. 3 we show the phaseφΓ as a function of|g|. This

phase is of particular interest because our results were also
found to allow only small values for theφc,g phases, as ex-
pected. Therefore, it is theφΓ phase the one that would deter-
mine the overall shape of the Dirac CP phase. Furthermore,
as we can observe on Figs. 2 and 3, there are well delim-
ited regions in the parameter space, although, once again, the
points which generate a mass scale ratio within1σ and3σ
ranges are mixed together. Thus, the already observed sen-
sibility of the mass scales in NH to small variations of the
parameters also appears for IH.

The predicted values of the Dirac phase that emerge from
the found parameter sets that are consistent with oscillation
mixings and mass scales at the given level of accuracy, are
depicted in Figs. 4 and 5 for normal and inverted hierarchy,
respectively. The blue (orange) band indicates the current
1σ (3σ) region forδCP , as reported in Ref. [2]. As we can
observe, the model at hand has quite enough room on the pa-
rameter space to allocate a future measurement ofδCP well
within the current expectations. Notice that in the NH case
the majority of the points lying within the1σ range forδCP

correspond approximately toe ∈ (0.2, 0.8), whereas in the

FIGURE 4. δCP predictions in terms of thee parameter for the nor-
mal hierarchy. The current allowed values are within the colored
bands, as explained in the text.

FIGURE 5. δCP predictions in terms of the|g| parameter for the
inverted hierarchy.

IH case, we have fewer points within the1σ and 3σ re-
gions, these lying approximately in the intervalg ∈ (0, 0.5)∪
(1.5, 2). Thus, indeed, the numerical analysis shows that
there exist a parameter space for the proposed mass texture
consistent with the1σ values of masses and mixings in both
cases. This validates the interest on our phenomenological
approximation and enforces the possible link among the ob-
servables that suggested it.

5. Renormalization effects

As a final note we would like to comment on the effects
that energy scaling would have over the mass matrix struc-
ture that has been derived above, by using the Taylor expan-
sion approximation. This issue arises as a necessary analysis
when one considers that any realistic flavor model of neutrino
masses should rely on some new physics, either in the form
of new interactions or new particles, that very likely would
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emerge at some high energyΛ. Therefore, to reproduce what
we measure at a low energy,Λ0, below electroweak scale,
the effect of running parameters of the theory fromΛ down
to Λ0 has to be considered. This running is governed by the
renormalization group equations (RGE), which, at one-loop,
relate the effective neutrino mass matrix with that defined at
higher energy by [17–19]

Mν(Λ0) = Iζ IMν(Λ)I, (30)

where we assume thatM(Λ) has the structure given in
Eq. (6). Iζ is the scaling factor

Iζ = exp

[
− 1

16π2

∫ ln Λ

ln Λ0

ζ(t) dt

]
, (31)

which only contributes to rescale the overall neutrino scale,
but has no relevance on the renormalization of the mix-
ing angles. Here, with the Standard Model content,ζ =
−3g2

2 + λH + 6y2
t , whereg2 stands for theSU(2)L gauge

coupling,λH for the Higgs self coupling andyt for the top
Yukawa coupling. On the other hand, the flavour dependent
components of the diagonal matrixI = Diag{Ie, Iµ, Iτ},
are given by

I` = exp

[
3

32π2

∫ ln Λ

ln Λ0

y2
` dt

]
, (32)

with y` the lepton Yukawa couplings. Due to charged lepton
hierarchy, from whichye ¿ yµ ¿ yτ ¿ 1, the scaling fac-
torsI` would be close to unity andIτ shall be the dominant
one. Because of this, we can safely assume thatIe,µ ≈ 1
whereasIτ = erτ ≈ 1 + rτ , where

rτ ≈ 3
32π2

y2
τ (Λ0) ln

(
Λ0

Λ

)
. (33)

As a matter of fact, by assumingΛ = ΛGUT ∼ 1016 GeV
and Λ0 the electroweak scale, one gets thatrτ ∼ 10−5,
which represent a too small correction when compared to
λ, which defines the inner hierarchy of the mass matrix –
actuallyrτ ∼ O(λ6)–. Therefore, we would not expect RGE
scaling effects to substantially alter the inner structure of the
mass matrix. We can verify this by explicitly writing

M(Λ0) =




ΓR eRλ aRλ
eRλ bR σcR

aRλ σcR 1


 m0R(Λ0), (34)

where the renormalized parameters stand forΓR ≈ Γ(1 −
2rτ ), aR ≈ a(1 − rτ ), bR ≈ b(1 − 2rτ ), cR ≈ c(1 − rτ ),
eR ≈ e(1 − 2rτ ) andm0R(Λ0) = m0IζI

2
τ . From here it

is clear that the whole effect of the RGE scaling, from SM
corrections, would be rather negligible as far as the size of
the parameters goes. Nevertheless, it is worth noticing that
the relative scaling oncR respect to the ones onbR andΓR

would produce a slight splitting amongm2
1,2 that still will be

much smaller than the required by solar neutrino scale. This
situation is particularly most prominent for the inverted hier-
archy, although still remains under control.

6. Concluding remarks and outlook

Measured reactor mixing and the deviation of the atmo-
spheric mixing from maximal value, as given in Eqs. (2) and
(3) respectively, are about the same order of magnitude of the
squared root of the ratio among neutrino oscillation scales.
This curious observation could be more than just a numerical
coincidence and rather be an indication of a common physical
origin of those parameters. Here, we have elaborated over the
idea that all these value parameters may arise from perturba-
tive corrections, to the neutrino mass matrix, that depend on
powers of a single small parameter,λ, such that mass terms
can be expressed as power series on the last. Clearly, this idea
would be well motivated, as well as natural, if there were hid-
den interactions in the neutrino sector, where loop corrections
would be the ones responsible of fixing the (bare) zero order
mass structure. Although we do not know yet what such in-
teractions might be, the simplest scenario is to consider at
least a single coupling parameter, which could be interpreted
asλ.

In such an approximation, we have shown that the class of
neutrino textures that arise at the zero order, for either normal
or inverted hierarchies, are quite unique. They are required to
comply with having two degenerate neutrino states and null
θ13 and θ12 but a maximalθ23 mixing angles, which fixes
the initial mass structure. Furthermore, the addition of linear
corrections inλ are quite enough to generate the masses and
mixings observed from neutrino oscillation experiments, us-
ing only factor coefficients that at most are of order one. The
predicted CP phase is also compatible with the current ex-
perimental bounds at1σ and3σ accuracy. And, as we have
shown, the proposed mass structures are stable under the en-
ergy scaling goberned by RGE with the SM particle content.
Our results strongly support the validity of approaching mass
terms with the suggested power series approximation, in par-
ticular to describe the inner hierarchies of the mass matrix. It
would be interesting to explore this idea even further.

The present modeling of the neutrino mass structure,
however, seems to require some level of tuning on the pa-
rameters in order to provide precise predictions on neutrino
mass scales, as our numerical exploration suggests. The re-
quired tuning should be of orderλ2 or so on most parameters,
though. Mixing predictions, on the other hand, are quite ro-
bust. This feature of the model may suggest the existence
of further correlations among the different mass terms, and
perhaps be indicative of a non trivial interplay among the pa-
rameters of the possible underlying theory. It would be inter-
esting to explore this possibility in an extended way once a
complete theoretical realization of the present idea could be
provided.

The texture suggested from our series expansion proposal
may be obtained in models withµ − τ symmetry, orµ − τ
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parity, although we have not explored this possibility any fur-
ther. The zero order mass matrix in the case of normal hierar-
chy seems consistent with models with aLe symmetry. This
may suggest the kind of flavor symmetries to further explore
in search for a complete model realization of our proposal.
In particular, models withS3, A4 or other discrete flavor
symmetries which may hold a doublet fermion representa-
tion could explain the structure in the2 − 3 sector, which
has almost universal mass terms beforeλ perturbations are
introduced.
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