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Complex band structure of thermal wave crystals: The plane-wave method
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In this paper, we present an extension of the plane-wave method (PWM) to compute the complex band structure of thermal wave crystals
(TWCs). The structural periodicity of TWC allows the possibility to manipulate non-Fourier heatvia wave interference. While the Cattaneo-
Vernotte (CV) heat conduction theory accurately models oscillatory wave-like propagation of heat in TWCs, obtaining an eigenvalue equation
for frequency using the CV wave equation is not possible. To overcome this limitation, we propose a novel approach that solves a complex
eigenvalue equation for the Bloch wave vectors.
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1. Introduction

Thermal Wave Crystals (TWCs), which were first proposed
by A-Li Chen et al in 2018, have attracted a lot of interest
for the existence of band gaps when heat flow is of oscilla-
tory nature [1]. The fact that TWCs exhibit band gaps for
their oscillatory behavior motivated the development of nu-
merous studies aimed at exploring their properties and po-
tential applications [2-6]. For instance, the presence of band
gaps within a TWC structure has the potential to reduce heat
propagation by means of interference [1]. The ability to con-
trol heat flow as a wave could have significant implications in
managing heat in electronic devices, which is crucial to their
performance [7].

The classical Fourier conduction law, which is based on
a parabolic-type heat equation, describes only diffusive heat
propagation [8]. On the other hand, TWC materials fol-
low the Cattaneo-Vernotte (CV) model, which is based on
a hyperbolic heat equation that describes thermal waves [8].
Therefore, TWCs possess a remarkable potential to manipu-
late and guide heat flow as waves, analogous to how photonic
crystals (PtCs) and phononic crystals (PnCs) control electro-
magnetic and mechanical waves, respectively. The wave-like
behavior in TWCs has inspired to carefully study them as
a promising platform for developing novel thermal manage-
ment devices and applications [9,10].

Before introducing our approach, let us discuss the frame-
work surrounding our proposal. When PtCs are studied con-
sidering only dielectric materials, the Plane Wave Method
(PWM) can be directly applied to solve the wave equation
[11,12]. This results in a matrix problem with real frequency
eigenvalues dependent on the Bloch wave vector,ω(k) [13].
However, if at least one material in the unit cell is a metal

or semiconductor with a complex dielectric function where
exist absorption, obtaining an eigenvalue problem for a real
frequency is no longer possible [14]. To study dispersive ma-
terials, several methods have been explored to obtain a com-
plex frequency as the eigenvalue [15-17].

In recent years, researchers made progress in formulating
the PWM to study dispersive PtCs. Rather than proposing the
frequency as a function of the wave vector, they sought to use
the Bloch wave vector as a function of the frequency,k(ω).
Brandet alwere the first to report on this reformulation of the
PWM in 2007. They used it to determine the effective plasma
frequency of two-dimensional arrays of metal rods modeled
with the Drude dielectric function [18]. In 2016, Guevara-
Cabreraet al applied the reformulated PWM to determine
the complex band structure of a 2D array of cylinders mod-
eled with the Lorentz dielectric function [19]. Similar ideas
have been recently implemented in PnCs to model viscoelas-
tic materials. In 2023, Schalcheret al proposed a reformu-
lation of the PWM for a standard solid material to obtain a
matrix problem with the Bloch wave vector as the eigenvalue
[20]. The goal of this work is to determine the band structure
of TWC by applying PWM for the first time in a heat transfer
problem using a non-Fourier model.

The first calculation of band gaps for one-dimensional
(1D) TWCs was carried out using an analytical formula ob-
tained via the Transfer Matrix Method (TMM) [1]. Here, we
present a new approach using the PWM to calculate the Ther-
mal Wave Band Structure (TWBS). There are at least two im-
portant reasons for developing the PWM for calculating com-
plex band structures in TWC. Firstly, PWM can be applied to
study two- or three-dimensional structures, as has been pre-
viously reported for PtCs [21,22]. Second, the PWM’s adapt-
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ability in developing homogenization theories that have been
published for PtCs and PnCs and that can also be adapted to
investigate TWC [23].

2. Method

The CV model proposes a modification of Fourier’s law of
thermal conduction by introducing a time lag between the
heat flux vector and the temperature gradient [24,25]. In the
case of a one-dimensional periodic structure, the heat con-
duction model is

q(x, t) + τ(x)
∂

∂t
q(x, t) = −κ(x)

∂

∂x
T (x, t), (1)

whereq(x, t) andT (x, t) are the time-dependent heat flux
and temperature, respectively. There are two position-
dependent material parameters,τ(x) and κ(x) that are the
relaxation time and thermal conductivity, respectively. The
conservation of energy in the absence of heat sources is given
by the equation

∂

∂x
q(x, t) = −ρ(x)cp(x)

∂

∂t
T (x, t), (2)

whereρ(x) andcp(x) are the position-dependent mass den-
sity and specific heat at constant pressure, respectively. By
combining Eqs. (1) and (2) we obtain a wave equation in the
time-domain as

∂

∂x

[
1

ρ(x)cp(x)
∂

∂x
q(x, t)

]

=
1

κ(x)
∂

∂t
q(x, t) +

τ(x)
κ(x)

∂2

∂t2
q(x, t). (3)

Considering the Fourier Transform

q(x, t) =
1√
2π

∫ ∞

−∞
q(x, ω)e−iωtdω, (4)

we obtain a wave equation in the frequency domain

∂

∂x

[
1

ρ(x)cp(x)
∂

∂x
q(x, ω)

]

= −iω
1

κ(x)
q(x, ω)− ω2 τ(x)

κ(x)
q(x, ω). (5)

The conventional approach of formulating an eigenvalue
problem to obtain the frequency as a function of the Bloch
wave vector [ω(K)] is no longer applicable to Eq. (5). In this
paper, we propose a method to solve the eigenvalue problem
that results from the implementation of the PWM where the
Bloch wave vectorsk(ω) are the eigenvalues.

The PWM is a straightforward method that operates in the
Fourier space. It requires the expansion of periodic material
parameters in the form of a Fourier series, as follows:

1
ρ(x)cp(x)

=
∑

G

αGeiGx, (6)

1
κ(x)

=
∑

G

βGeiGx (7)

and

τ(x)
κ(x)

=
∑

G

γGeiGx. (8)

In Eqs. (6)-(8) the summation extends over the infinite re-
ciprocal lattice vectors of amplitudeG = (2πn)/d, where
n = ...,−2,−1, 0, 1, 2, ... The periodd is the length of the
unit cell. To solve Eq. (5) we apply the Bloch theorem, which
states that in a periodic medium, the fields can be written as
the product of two functions. The first is a periodic function
and the second is a wave-like part that defines the series

q(x, ω) =
∑

G

QGei(G+K)x, (9)

whereK is the one-dimensional Bloch wave vector. The sub-
stitution of the Fourier series defined by Eqs. (6)-(9) in Eq. (5)
allows us to obtain, after some algebraic manipulations, the
equation

∑

G′

[
k2AG,G′ + kBG,G′ + CG,G′

]
QG′ = 0, (10)

where the matrix elements are

AG,G′ = αG−G′ ,

BG,G′ = αG−G′(G + G′),

CG,G′ = GG′αG−G′ − iωβG−G′ − ω2γG−G′ . (11)

If all the points of the reciprocal lattice are considered,
then we obtain an infinite set of equations that is convenient
to write in the form

(
K2A+ KB+ C

)
~Q = 0, (12)

whereA,B andC are matrices and~Q is a vector. Equa-
tion (12) defines a Quadratic Eigenvalue Problem, which can
be used to accurately investigate periodic systems with ab-
sorption. Many years ago, research on PtCs composed of
absorbent materials established the efficacy of this theoretical
approach [26]. Conductivity was added via PWM, in particu-
lar for materials with a complex frequency-dependent dielec-
tric function. The complex band structure is calculated by
solving the quadratic eigensystem, which is then linearized
into an ordinary eigenvalue problem. In this manner, it is
possible to find the allowed values for the Bloch wave vector
K if we write Eq. (12) in the form of a generalized eigenvalue
problem as

(
C B
O I

)[
~Q

K ~Q

]
= K

(
O −A
I O

) [
~Q

K ~Q

]
, (13)

whereI andO are the identity matrix and the zero matrix,
respectively. The complex eigenvaluesK are obtained by a
process of numerical diagonalization.
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To solve the matrix problem, we need to know the
Fourier coefficients of the periodic material parameters
1/(ρ(x)cp(x)), 1/κ(x) andτ(x)/κ(x). We consider a unit
cell of thicknessd = da +db formed by two different materi-
alsa andb of thicknessda anddb, respectively. The material
a is at the center of the unit cell. The unit cell is in the range
−d/2 < x < d/2. The periodic materials parameters are
described by the analytical function

1
ρ(x)cp(x)

=
1

ρbcp,b
+

(
1

ρacp,a
− 1

ρbcp,b

)

Θ
(

da

2
− |x|

)
, (14)

1
κ(x)

=
1
κb

+
(

1
κa
− 1

κb

)
Θ

(
da

2
− |x|

)
, (15)

and

τ(x)
κ(x)

=
τb

κb
+

(
τa

κa
− τb

κb

)
Θ

(
da

2
− |x|

)
(16)

whereΘ(x) is the Heaviside function (Θ = 1 for x ≥ 0,
Θ = 0 for x < 0). The Fourier coefficients defined by
Eqs. (6)-(8) are

αG =
1
d

∫ d/2

−d/2

1
ρ(x)cp(x)

e−iGxdx, (17)

βG =
1
d

∫ d/2

−d/2

1
κ(x)

e−iGxdx, (18)

γG =
1
d

∫ d/2

−d/2

τ(x)
κ(x)

e−iGxdx. (19)

The explicit form of the Fourier coefficients are

αG =
[

1
ρbcp,b

+ f

(
1

ρacp,a
− 1

ρbcp,b

)]
δG,0

+

[
f

(
1

ρacp,a
− 1

ρbcp,b

)
sin(Gda/2)

Gda/2

]

× (1− δG,0), (20)

βG =
[

1
κb

+ f

(
1
κa
− 1

κb

)]
δG,0

+
[
f

(
1
κa
− 1

κb

)
sin(Gda/2)

Gda/2

]

× (1− δG,0), (21)

and

γG =
[

τb

κb
+ f

(
τa

κa
− τb

κb

)]
δG,0

+
[
f

(
τa

κa
− τb

κb

)
sin(Gda/2)

Gda/2

]
(1− δG,0), (22)

wheref = da/d is the filling fraction of materiala within
the unit cell.

FIGURE 1. Complex band structure of a 1D-TWC, composed of
alternating layers of dermis and stratum with equal layer widths
and a period ofd = 20 µm. The solid curves represent the results
obtained using the PWM, and the open circles correspond to the
TMM calculations. a) The real part of the wave vector is displayed
in blue, and b) the imaginary wave vector is displayed in red in
panel. We used 101 plane waves for the PWM in this calculation.

3. Results

To validate our method, as a first test, we have computed
the TWBS with the analytical formula given by Eq. (17)
in Ref. [1], where it was obtained using the TMM. The
multilayer consists of a layera of Stratum-like material,
and a layerb of Dermis-like material [1]. For the material
a we have the following parameters: thermal conductivity
κa = 0.235 W/m K, specific heatca = 3600 J/kg K, density
ρa = 1500 kg/m3, and relaxation timeτa = 1 s. For the ma-
terial b we have the following parameters: thermal conduc-
tivity κb = 0.445 W/m K, specific heatcb = 3300 J/kg K,
densityρb = 1116 kg/m3, and relaxation timeτb = 20 s. The
period of the unit cell isd = 20 µm and the filling fraction is
f = 0.5.

In Fig. 1, the band structure obtained with the TMM is
presented with open blue and red circles for the real (Kr) and
imaginary (Ki) part of the wave vector, respectively. Our re-
sults obtained with the PWM are presented with blue and red
lines for the real (Kr) and imaginary (Ki) part of the wave
vector. We have found an excellent agreement between the
TMM and PWM results.

For a second test of our method, we analyze a semicon-
ductor multilayer composed of silicon (Si) and germanium
(Ge). The multilayer consists of a layera of Si, and a layer
b of Ge [7]. For the materiala we have the following pa-
rameters: thermal conductivityκa = 150 W/m K, specific
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FIGURE 2. Complex band structure of a 1D-TWC, composed of
alternating layers of Si and Ge with equal layer widths and a pe-
riod of d = 2 nm. The solid curves represent the results obtained
using the PWM, while the open circles correspond to the TMM
calculations. a) The real wave vector is displayed in blue, b) while
the imaginary wave vector is displayed in red. We used 101 plane
waves for the PWM in this calculation.

heatca = 710 J/kg K, densityρa = 2330 kg/m3 and re-
laxation timeτa = 150 ps. For the materialb we have the
following parameters: thermal conductivityκb = 60 W/m K,
specific heatcb = 310 J/kg K, densityρb = 5300 kg/m3

and relaxation timeτb = 200 ps. The period of the unit
cell is d = 2 nm and the filling fraction isf = 0.5. It
is found that the semiconductor multilayer has band gaps
in the GHz range. It is important to point out that recently
it has been reported the experimental observation of ther-

mal waves for Ge at room temperature [27]. The existence
of band gaps for thermal waves in semiconductor multilayer
opens up new possibilities to manipulate the flow of heat in
electronic devices. We have computed the TWBS with the
analytical formula given by Eq. (3) in Ref. [7]. In Fig. 2,
the TWBS obtained with the TMM is presented with open
blue and red circles for the real (Kr) and imaginary (Ki) part
of the Bloch wave vector, respectively. Our results obtained
with the PWM are presented with blue and red lines for the
real (Kr) and imaginary (Ki) part of the Bloch wave vector,
respectively. We have found an excellent agreement between
the TMM and PWM results.

4. Conclusions

In summary, we have successfully adapted the PWM to cal-
culate the TWBS of TWCs. By solving the resulting eigen-
value equation, we can determine the complex Bloch wave
vector as a function of the real frequency. Our results were
compared to an analytical solution obtained by the TMM, and
we found excellent agreement between the two methods. We
applied our approach to two specific cases: a biological mul-
tilayer composed of dermis and stratum, which exhibits band
gaps in the Hz range, and a semiconductor multilayer com-
posed of Ge and Si, which exhibits band gaps in the GHz
range.

The results presented in this paper validate the PWM’s
applicability for 1D thermal waves described by the CV
model. The applicability of the PWM is expected to hold true
for other thermal wave models as well as the investigation of
2D or 3D systems.
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