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Theoretical model for analysis of elastic constants
in orthotropic materials considering shear stress
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Nowadays, a general theoretical model to describe the mechanical behavior of anisotropic or orthotropic materials is still an open challenge.
In this study, we propose a new theoretical model to determine the elastic constants of these materials considering the shear components of
the stress tensor. To analyze the consistency of new approach in biaxial stress state on thin films, we used the experimental data reported in
the literature, based in thesin2 ψ technique. Here we reported, the shear modulus value equal toGxz = 0.3 GPa, for a polycrystalline Au
thin film, was calculated, in addition to other elastic constants. Finally, we demonstrate that the new proposal theoretical model considering
shear stress can be useful to determine elastic constants in orthotropic materials from experimentally measured data.
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1. Introduction

Nowadays, determining the values of the elastic constants are
one of most important challenge in the materials physics area.
For example, some studies have been standardized some ma-
terials as Au thin-films, to measurement relevant elastic pa-
rameters such, as Poisson’s ratio, Young’s and Shear modulis.
These elastic constants are used to characterize and design
new materials in physics and engineering area. In this field,
there are a growing number of studies relating to the analysis
of biaxial and triaxial stress in orthotropic materials[1–11].

Despite this growth there is still no complete theoretical
model that explains all the elastic properties of these ma-
terials types. In several applications real loads can induce
complex multiaxial fatigue problems. Furthermore, a gen-
eral model for full elastic constants analyses in orthotropic
materials are necessary. As discussed in the literature, the
study of stress is of interest for a wide range of applications
[12–15]. Thus, it is important the search of theoretical mod-
els that enable us the investigation of the stress-strain relation
in a material, to determine its elastic constants.

As is well know, stresses in a material cannot be directly
measured and to obtain the stress we need to measure, for ex-
ample, the deformation. In a material the stresses originate
from many sources and can be divided into three categories
considering their length scale. Elastic constants measure the
proportionality between strain and stress in a material, always
that the strain is not so large as to violate Hook’s law[16–19].

Experimentally, a elastic constant is determined by apply-
ing a strain to a crystal, measuring the energy versus strain,

and determining the elastic constant from the curvature of this
function at zero strain. The values of strain are associated to
a linear combination of elastic constants.

An important point to be emphasized is that the stress is
strongly dependent on the material’s anisotropy. Anisotropy
in a material is known as the dependence of its crystalline
properties in terms of its directions.

The preferential orientation inside a material is called
the texture[20] , that is an intrinsic characteristic of met-
als, ceramics, polymers, and rocks and it has a strong effect
on the anisotropy of the physical properties of a material.
The effect of texture on stress is a well-known and ongoing
problem [21] and is still an open issue from the theoretical
and experimental points of view[22–29]. In a recent work
were determined the elastic constants for a material with or-
thotropic symmetry, neglecting the shear stress[1] using a
novel model. In this study, we propose a new theoretical
model to determine the elastic constants of the orthotropic
materials considering the shear components of the stress ten-
sor.

The following sections of the paper are organized as fol-
lows. Section 2 describes the basic theoretical expression for
stress states considering orthotropic materials. In Sec. 3, the
expression for a new theoretical model for triaxial and bi-
axial stress states for orthotropic materials, considering the
shear stress, are shown. After that, the new theoretical model
proposed, are evaluated for the biaxial stress state, for thin
films. Finally, the conclusions are exposed.
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2. Expressions for Stress States considering
Orthotropic Materials

In the model is considered the constitutive relation between
stress and strain,i.e., the generalized Hooke’s law. Taking
into consideration the fact that from the experimental point
of view the stress is usually measured by a diffraction tech-
nique, our model can be applied to diffraction techniques (X-
rays and neutrons), because the experimental conditions are
consistent with those assumed in the model,i.e., (a) small de-
formations in comparison with the sample dimensions and (b)
the stress involved is not sufficient to change the material vol-
ume. The first step was to determine the components of the
orthotropic elasticity tensor, given by Eq. (17) of Ref. [1]. For
this we use the elements of the orthotropic symmetry group
with a phenomenological approach. As we saw, the charac-
terization of the elastic behavior of an orthotropic

material is given by nine independent constants that
in phenomenological terms are referred to as three
longitudinal moduli of elasticity or Young’s moduli
(Ex, Ey, Ez), three transverse moduli of elasticity or shear
moduli (Gxy, Gyz, Gzx) and three Poisson coefficients
(νxy, νyz, νzx).

Considering the Generalized Hooke’s law

σij = Λijklεkl, (1)

the inverse is given by

εkl = Λ−1
klijσij , (2)

whereΛijkl is the tensor of the elasticity andΛ−1
klij is the ten-

sor of stiffness. In the Voigt space and using the stiffness
tensor, the elastic behavior of an orthotropic material is rep-
resented as follows,


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, (3)

To consider a measurement we need to use an orthonormal coordinate system coincident with the exes of the samplePi axis
and a laboratory coordinate systemLi. So we use a transformation of the coordinates between the two reference systems and
the relationship between the strain tensors in the two coordinate systems is given by,

ε′ij = wikεklw
T
jl, (4)

whereεij is the strain tensor in the systemPi, ε′ij is the strain tensor in the laboratory systemLi, andw is the matrix giving
the coordinate transformation betweenPi andLi, obtained from.

wik = aijajk , (5)

where

aij =




cos ψ 0 − sin ψ
0 1 0

sin ψ 0 cos ψ


 ,

and

ajk =




cos φ sinφ 0
− sin φ cos φ 0

0 0 1


 ,

here the anglesψ andφ are, respectively, the Euler angles, referred to rotations of a rigid body in thexz andxy planes, for
more details see Fig. 1 of the Ref. [1]. In the Voigt space we have for the matrixwik that give the coordinate transformation:

Mw = FwF−1, (6)

where the matrixF andw are the same found in Ref. [31]. So, we have toMw,
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(7)

Re-writing the Eq. (4) in Voigt space, we find the following
relations

ε′ = Mwε , (8)

whereε is the six-dimensional strain vector in the systemPi,
ε′ is the six-dimensional strain vector in the laboratory sys-
temLi, andMw is the matrix giving the coordinate transfor-
mation betweenPi andLi, obtained from (6). So, the expres-
sion for the strain vector in both systems, considering theL3

direction is given by,

εz′z′ = cos2 φ sin2 ψεxx + sin 2φ sin2 ψεxy

+ cos φ sin 2ψεxz + sin2 φ sin2 ψεyy

+ sin 2ψ sin φεyz + cos2 ψεzz ,

εx′x′ = εy′y′ = 0 ,

εy′z′ = εz′x′ = εx′y′ = 0 . (9)

To carry out the phenomenological approach, we choose
one direction as the direction of the experimental measure-
ment (L3 direction) and assume that the shear stresses are
negligible, according with Ref. [1]. The strain and stress ten-
sors are always related to the axis in the phenomenological
approach. Therefore, we will study the states of the triaxial
stress when there are tensions in thex, y, andz directions
and the states of the biaxial stress when there are tensions in
thex andy directions.

3. New theoretical model for analysis of biax-
ial and triaxial stress in orthotropic materi-
als considering the shear stress

A state equation of triaxial stresses is obtained substituting
the theoretical Eq. (3) in Eq. (9), representing the experimen-
tal situation, and after appropriate manipulations, we arrive
the following result, which relates strain with triaxial stress
for orthotropic materials:
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]

+
σyy
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]
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Ez
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+
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sin 2φ

}
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]
−

(
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σxx+

νyz

Ey
σyy − σzz

Ez

)
, (10)

whereνxy, νxz, νyx, νyz, νzy, andνzx are the Poisson coef-
ficients;Ex, Ey, andEz are the Young’s moduli; andGxz,
Gxy, andGyz are the shear’s moduli in thex, y, andz direc-
tions, respectively. The last expressions represent the new
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theoretical model for analysis triaxial stress in orthotropic
materials considering the shear stress. Here the superficial
tension was considered, thereforeσzz = 0, then putting this
in Eq. (10), we obtain the following state equation of biaxial
stress.

εz′z′ = sin2 ψ

{
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]

+
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]

−
(
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Ey
σyy

)
. (11)

This equation is the key equation used in the proposed
model for the biaxial stress state. It’s easy to see that the
Eqs. (10) and (11) fall in Eqs. (29) and (32) of our previous
model by making the assumption of negligible shear stress.

4. Analysis of consistency with experimental
results for the biaxial stress state

In order to validate the new model in terms of experimen-
tal consistency, was used some useful reported experimental
data from the work of Faurieet al., [27]. In this work, the
authors using Au thin films produced by physical vapor de-
position, with a total thickness about700± 10 nm.

The adopted procedure was apply these data into the new
proposal model to obtain the elastic constants considering the
shear stress, which was compared with those reproted by Fau-
rie et al.,[27,29]and our previous paper [1]. Considering the
transversely isotropic anisotropy of the thin film under study,
we have the conditions[22]:

νxz = νyz, Ex = Ey = E, νxy = νyx. (12)

We emphasize that the use of biaxial stress does not allow the
determination of the elastic constantEz, furthermore,Ez =
undetermined for a biaxial state.

According to Faurieet al., [27], the x-ray measurements
were carried out in the longitudinal (φ = 0o) and perpendic-
ular (φ = 90o) directions to the stress direction. Due to this,

the first stage of the experimental data analysis procedure be-
gins by rewriting the expression of the model proposed in the
Eq. (11) for φ = 0o, that is,

ε0,ψ = A0 sin2 ψ + B0 sin 2φ + C0, (13)

where theA0, B0 andC0 coefficients have the following ex-
pressions:

A0 =
σxx

Ex
(1 + νxz) +

σyy

Ey
(νxz − νxy), (14)

B0 =
τxz

2Gxz
, (15)

C0 = −
(

νxz

Ex
σxx +

νyz

Ey
σyy

)
. (16)

Figure 1 shows a very good non-linear fitting ofε0o,ψ

experimental data. Here we show the analysis of the prelim-
inary experimental results of the application of the proposed
new theoretical model, for analysis of thin films in states with
biaxial stresses. The Figs. 1 and 2, represents the experimen-
tal data with a load applied to the sample with stresses in
the x andy directions. For the values ofφ = 0◦ and 90◦

the strain average according to the theoretical Eq. (11) in our
new model was used, to obtain the elastic constants.

FIGURE 1. The non-linear fit behavior of experimental dataε0◦,ψ

vsψ for longitudinal directions (φ = 0◦).

TABLE I. Performance comparison of elastic constants.

Model E (GPa) ν G (GPa)

Faurieet al. [27] E = 75.7 Ez undetermined ν = 0.517 - -

Santoset al. [1] E = 74.1 Ez undetermined νxy = 0.551 νxz = 0.311 -

Faurieet al. [29] E = 91 Ez = 117 νxy = 0.53 νxz = 0.30 Gxz = 0.02

Ours E = 78.6 Ez undetermined νxy = 0.59 νxz = 0.34 Gxz = 0.3
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FIGURE 2. Au thin-film mean strain forφ = 0◦, 90◦ versusψ.

In similar way, we can rewrite the Eq. (11) for values of
φ = 90◦, that is,

ε90,ψ = A90 sin2 ψ + B90 sin 2φ + C90, (17)

where theA90, B90 andC90 coefficients have the following
expressions,

A90 =
σxx

Ex
(νxz − νxy) +

σyy

Ey
(1 + νyz), (18)

B90 =
τyz

2Gxz
, (19)

C90 = −
(

νxz

Ex
σxx +

νyz

Ey
σyy

)
. (20)

Finally, the last step we did was to found the average be-
tween the Eqs. (13) and (17), obtained the following expres-
sion,

1
2
(ε0,ψ + ε90,ψ) = A∗ sin2 ψ + B∗ sin 2φ + C∗, (21)

where theA∗, B∗ andC∗ coefficients can be defined as,

A∗ =
1

2E
(1 + 2νxz − νxy) + (σxx + σyy), (22)

B∗ =
τxz + τyz

4Gxz
, (23)

C∗ = −νxz

2E
(σxx + σyy) . (24)

Now we used the followings values, from to Faurieet al.,
[27], σyy = 135 MPa, σyy = 37 MPa. The shear stress

values wasτxz = 0.01575 MPa andτyz = 0.00185 MPa.
In addition to these data, the nonlinear fit coefficients from
our proposed model, and shown in Fig. 2, were used to deter-
mine, through Eqs. (22) - (24), the elastic constants presented
in Table I.

Also, in Table I we show a performance comparison of
the elastic constants obtained by our proposed model with
those obtained by Santoset al. [1] and Faurieet. al.
[27]. We observe that the elastic constants obtained using

our model are consistent in terms of magnitude with the co-
efficients obtained by Faurieet al. [29], except the constant
related with Shear modulusGxz. This difference could be
explained, because in our proposed model is considered the
shear components of the stress tensor, in comparison with
other works that did not do that. These experimental results
demonstrate the consistency of our model for analysis of Bi-
axial and triaxial stress in orthotropic materials considering
the Shear Stress.
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