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Facultad de Ciencias F́ısico Mateḿaticas, Universidad Autónoma de Nuevo León, Ciudad Universitaria,
66455 San Nicolás de los Garza, Nuevo León, México,
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This paper explores the effects of numerical algorithms on global magnetohydrodynamics simulations of solar wind (SW) in the inner
heliosphere. To do so, we use sunRunner3D, a 3-D magnetohydrodynamics model that employs the boundary conditions generated by
CORHEL and the PLUTO code to compute the plasma properties of the SW with the ideal magnetohydrodynamics approximation up to 1.1
AU in the inner heliosphere. Mainly, we define three different combinations of numerical algorithms based on their diffusion level. This
diffusion level is related to the way of solving the magnetohydrodynamics equations using the finite volume formulation, and, therefore,
we set in terms of the divergence-free condition methods, Riemann solvers, variable reconstruction schemes, limiters, and time-steeping
algorithms. According to the simulation results, we demonstrate that sunRunner3D reproduces global features of Corotating Interaction
Regions observed by Earth-based spacecraft for a set of Carrington rotations that cover a period that lays in the late declining phase of
solar cycle 24, independently of the numerical algorithms. Moreover, statistical analyses between models and in-situ measurements show
reasonable agreement with the observations, and remarkably, the high diffusive method matches better with in-situ data than low diffusive
methods.

Keywords: Solar wind; magnetohydrodynamics; numerical methods; heliosphere.

DOI: https://doi.org/10.31349/RevMexFis.70.031501

1. Introduction

The Sun continuously emits charged particles in the state of
plasma that disperse throughout the solar system, forming
what we know as the solar wind (SW). This phenomenon
originates in the solar corona, where not all the mass is in bal-
ance, which causes the release of part of it and its subsequent
dispersion into space. Since this set of charged particles is in
motion, it carries a magnetic field that forms the heliosphere.
This magnetic field protects the planets and other celestial ob-
jects in the solar system from the influence of the interstellar
wind and high-energy particles from outer space.

Knowledge about the plasma’s physical properties that
constitute the SW is essential to understanding the connec-
tion between the Sun and the Earth,i.e., the Space Weather.
The physical properties of the SW have been studied using in
situ observations,e.g., the Advanced Composition Explorer
(ACE), WIND, and the Deep Space Climate Observatory
(DSCOVR) covering the near-Earth region. Moreover, the
Parker Solar Probe (PSP) and Solar Orbiter (SolO) observe
the properties of the inner heliosphere. All the above ob-
servatories provide in-situ measurements of physical proper-

ties, such as velocity, proton density, temperature, and mag-
netic field of the SW. However, they do not accurately es-
timate key forecasting parameters, such as arrival times of
SW currents near the Earth,i.e., at about 1 AU. Therefore,
many current investigations employ numerical models to im-
prove these limitations to develop a broader picture of space
weather events, such as SW streams, Corotating Interaction
Regions (CIRs), and Stream Interaction Regions (SIRs).

Specifically, there is a more noticeable advance in numer-
ical models applied to study the propagation and dynamics of
the SW in the inner heliosphere. The numerical models are
based on photospheric magnetograms and numerically solv-
ing the magnetohydrodynamics (MHD) equations to describe
the propagation and evolution of the SW streams in the inner
heliosphere globally. Among these models are, for example,
MAS [1], ENLIL [2], SWWF [3], SIP-CESE [4], SUSANOO
[5], EUHFORIA [6], and more recently, SWASTi-SW [7].
Furthermore, MHD simulations have been used to model the
SW to analyze its behavior, including its turbulence [8], their
interaction and their effects on the Earth’s magnetosphere
[9,10], as well as in the magnetosphere of other planets, such
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as Mercury [11] or Jupiter [12]. However, despite all these
models, there are not many investigations, aside from [13,14],
that explore the potential effects of numerical methods asso-
ciated with the solution of MHD equations in 3D spherical
coordinates applied to simulate steady-state solutions of the
SW streams in the inner heliosphere.

In this paper, we use sunRunner3D [15] to investigate the
effects of the numerical algorithms on global 3D MHD sim-
ulations of steady-state solutions of SW in the inner helio-
sphere. To achieve this, we define three different combina-
tions of numerical algorithms based on their diffusion level.
The numerical algorithms are related to solving the MHD
equations using the finite volume formulation and, there-
fore, can be defined in terms of the divergence-free condition
methods, Riemann solvers, variable reconstruction schemes,
limiters, and time-steeping algorithms. We organize the pa-
per as follows: in Sec. 2, we describe the sunRunner3D
model and the parameters space; in Sec. 3, we show the re-
sults of the numerical simulations for a set of Carrington Ro-
tations, the comparisons of the model results with OMNI 1-hr
in-situ measurements and the statistical analysis. Finally, in
Sec. 4, we draw our conclusions and final comments.

2. Model

To perform the simulations of the steady-state SW solu-
tions of this paper, we employ sunRunner3D, which is a
community-developed open-source package and an improve-
ment of sunRunner1D [16], which is a tool for exploring
ICME evolution through the inner heliosphere, considering
spherical symmetry in 1D. SunRunner3D has been applied
to interpret the global structure of the heliosphere from in
situ measurements [17] and to globally simulate a set of
SIRs/CIRs observed by the Parker Solar Probe (PSP) Mis-
sion during its first five orbits and by the STEREO-A (STA)
mission [18]. In particular, sunRunner3D, in the coronal do-
main, uses the boundary conditions generated by CORona-
HELiosphere (CORHEL) [19]. In contrast, in the inner helio-
sphere domain, it employs the PLUTO code [20] to compute
the plasma properties of SW with the MHD approximation
up to 1.1 AU in the inner heliosphere.

2.1. CORHEL

To generate the boundary conditions, we used the CORHEL
(CORona-HELiosphere; [21,22]) framework, which is capa-
ble of modeling the ambient solar corona and the inner helio-
sphere for a specific period of interest. Mainly, it derives the
boundary conditions using maps of the Sun’s photospheric
magnetic field derived from magnetograms. These magne-
tograms are obtained principally from SDO’s HMI instru-
ment. Then, it runs the coronal model using the MAS code
[23,24]) until obtaining a relaxed state, which serves to gener-
ate the boundary conditions for the heliospheric models. The
CORHEL solutions used in this paper are available at the Pre-
dictive Science website (https://www.predsci.com/
data/runs/ https://www.predsci.com/data/runs/). There,

the boundary conditions are already in a readable format for
the MHD code; then, we use them to drive the inner helio-
spheric MHD model, described in the following subsection.

2.2. MHD model

The inner heliosphere model employs the PLUTO code [20]
from Rb = 0.14 AU outwards to solve the three-dimensional
time-dependent MHD equations in spherical coordinates.
Specifically, we adopt the ideal MHD equations written in
the following dimensionless conservative form,

∂%

∂t
+∇ · (%v) = 0, (1)

∂(%v)
∂t

+∇ · (%vv −BB + ptI) = F, (2)

∂E

∂t
+∇ · ((E + pt)v −B(v ·B)) = v · F, (3)

∂B
∂t

+∇ · (vB−Bv) = 0, (4)

∇ ·B = 0, (5)

where% is the gas density,v represents the fluid velocity,
E is the total energy density,B is the magnetic field,pt

is the total pressure (thermal+magnetic), andI is the unit
matrix. Specifically,pt = p + B2/2, where by the ideal
gas lawp = %kBT/m̄. HereT is the temperature of the
plasma,m̄ = µmH is the particle mass specified by a mean
molecular weight valueµ =0.6, which is a typical value for
a fully ionized gas primarily consisting of hydrogen with a
small component of helium,mH is the mass of the hydro-
gen atom, andkB is the Boltzmann constant. In addition,
E = p/(γ − 1) + %v2/2 + B2/2, beingγ = 5/3 the poly-
tropic index. The source termsF represent the Coriolis and
centrifugal forces conservatively [25,26].

2.2.1. Parameters

To investigate the effects of the numerical algorithms, we
chose three models in terms of combinations of Riemann
solvers, variable reconstruction schemes, limiters, and time-
integration schemes. The three models’ specific combi-
nations are classified in terms of the diffusion level as
shown in Table I. For example, Model 1 employs the Rie-
mann solver Roe [27], the LimO3 [28], which is a compact
stencil third-order reconstruction scheme, the minmod lim-
iter, and the RK3 time-stepping algorithm. For Model 2,
we chose the Harten-Lax-van Leer-Contact (HLLC) Rie-
mann solver [29], the WENO3 scheme, which provides
third-order weighted essentially non-oscillatory reconstruc-
tion [30], VanLeer-limiter and the RK2 time-stepping algo-
rithm, which represents a medium level of diffusion. Finally,
for Model 3, we select the Total Variation Diminishing Lax
Friedrichs scheme (TVDLF; [31]), a second-order linear re-
construction scheme in combination with the minmod limiter
and the RK2 time-stepping algorithm for the time in-
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TABLE I. Numerical algorithms of the simulation models.

Model Riemann Solver Reconstructor + Limiter + Time-stepping Divergence-free method Diffusion level

1 Roe (HLLD) LimO3 + MINMOD + RK3 Powell method (HDC) Low

2 HLLC WENO3 + VANLEER + RK2 Powell method & HDC Medium

3 TVDLF LINEAR + MINMOD + RK2 Powell method & HDC High

FIGURE 1. Maps of simulated SW parameters in the heliospheric equatorial and meridional planes for CR2215. We show velocityVr

(km s−1) at the left, and at the right, we display the radial magnetic fieldBr (nT), overlay with magnetic field lines in black color.

tegration; this model represents the maximum level of dif-
fusion. For the three models, to ensure the divergence-free
condition [Eq. (5)], we selected the Powell eight-waves for-
mulation [32], which we denote as the Powell method from
now on, and the hyperbolic divergence cleaning method [33],
which we call HDC throughout the paper. According to the
aforementioned, Model 1 is the low-diffusive method since it
uses higher-order algorithms. Model 2 is the medium diffu-
sive combination, employing a lower-order Riemann solver
and time-stepping algorithm. Model 3 is highly diffusive
since it includes the lowest-order algorithms. For HDC,
Model 1 employs the Harten-Lax-van Leer-Discontinuities
(HLLD) Riemann solver [34] instead of Roe. This choice
is based on stability reasons, but HLLD is typically more ro-
bust and efficient than the linearized Riemann solver such as
Roe, and it is also a low diffusive solver. Finally, we do not
use HLLD combined with the Powell method since they are
incompatible.

3. Results of the numerical simulations

We select the following Carrington rotations (CRs) to in-
vestigate the effects of the numerical algorithms: CR2215,
CR2220, CR2230, CR2250, and CR2260. These CRs are
between March 2019 and August 2022, coinciding with the
decreasing phase (solar minima conditions) of cycle 24 and
the early ascending phase of cycle 25. Notably, in CR2250,
a transient event related to a Coronal Mass Ejection (CME)
was detected; therefore, for this CR, the results of the ambient
SW solutions could not be accurate.

In Fig. 1, we show the results for the relaxation of the
SW conditions corresponding to CR2215 using the solution
of Model 1 for the Powell method. For this simulation, we
ran sunRunner3D long enough to convect any/all transient
phenomena created att = 0 past the outer radial boundary.
In particular, we display equatorial and meridional cuts, ob-
serving standard features of interplanetary solutions expected
for the steady state SW. We recognize the fast and slow SW
streams in the radial velocity as CIRs in steady-state SW con-
ditions. Notably, in the plot of the radial velocityVr, it is also
visible that the high-speed (> 700 km s−1) SW dominates in
the north and south poles, as shown in the meridional plane.
We also observe a mix of slow and fast wind at all latitudes.
Finally, in the radial magnetic field cuts, we identify the for-
mation of the Parker spiral represented by the magnetic field
lines colored in black.

Besides, in Fig. 2, we show the results of the radial ve-
locity Vr in km s−1 for the relaxation of the SW conditions
corresponding to CR2215 and CR2260 for Models 1 and 3
using the Powell method. In the four panels, we display radial
velocity cuts in the equatorial plane obtained with the PsiPy
[35] tool, which is helpful for reading, processing and visu-
alizing MHD models developed by Predictive Science Inc.
Particularly in these cuts, we observe the typical structures,
such as slow and fast SW streams, typically denominated as
CIRs. We also note that the solutions for Model 1 show the
SW streams well structured, and the solutions for Model 3
look more diffusive than Model 1, but they consistently re-
produce the SW streams’ global structure.
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FIGURE 2. Snapshots of the radial velocityVr (km s−1) for the relaxed SW solutions in the equatorial plane corresponding to CR2215 (top)
and CR2260 (bottom), for Model 1 (left panels) and Model 3 (right panels).

3.1. Comparisons with in-situ measurements

To identify the differences between the solutions of the mod-
els listed in Table II more clearly, we compare the steady-
state SW solutions obtained with sunRunner3D with in-situ
measurements from OMNI (Earth-based spacecraft) for all
the CRs listed above. To do so, we use the PsiPy tool, which
can also compare in-situ data with sunRunner3D model re-
sults. Notably, for the CRs studied in this paper, the posi-
tion of both spacecraft is around the L1 Lagrange point,i.e.,
more than 0.394 solar radii upstream of Earth. Therefore, the
spacecraft’s location was not close to the magnetopause since
its distance from the Earth’s center to the “nose” is about
0.096 solar radii and to the flanks abreast of the Earth about
0.137 solar radii. In comparison, the radius of the distant tail
is 0.229-0.275 solar radii.

In Fig. 3, we show the results for comparisons between
the steady state SW solutions of Model 1 (green curves),
Model 2 (brown curves), and Model 3 (blue curves) using
the Powell method for the divergence-free condition with the
OMNI 1-hr in-situ measurements (black curves) for three
representative CRs: CR2215, CR2230, and CR2260. For
example, the comparisons between the models and the ra-
dial velocity Vr for CR2215 show regions of slow SW (∼
300 km s−1) in the first twelve days observed by OMNI,

which the three models globally capture. However, the three
models overestimate the two rises of the SW speed from
300 km s−1 to 500 km s−1 observed on 2019-04-01 and
2019-04-08. As expected, Model 3 seems more diffusive than
Models 1 and 2. Additionally, we see that Model 2 and Model
3 give similar solutions. In the case of the radial magnetic
field, we see that the three models are similar and only cap-
ture global variations,i.e., the changes of sign, but underes-
timate their amplitude. Regarding number density, the three
models overestimated the observed values of OMNI, but they
behave similarly despite the algorithmic combination. It is
also evident in the number density that Model 3 is more dif-
fusive than Models 1 and 2 since it shows lower densities at
the sharply observed regions. For the comparisons with tem-
perature, we see that the three models consistently capture
the regions of low temperatures; however, the models over-
estimate the regions with high temperatures. Also, the most
diffusive solution is given by Model 3. The global behavior
is consistent with the results shown in the number density.

Regarding the results of the comparisons between mod-
els with OMNI in-situ measurements for CR2230, we note
a similar behavior as the results for CR2215. Remarkably,
three models overestimated temperature, and the most dif-
fusive solution was achieved by Model 3. In the case of
CR2260, we show that three models underestimated the rise
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TABLE II. Statistical Results of PCC/NRMSE for comparing Models 1, 2, and 3 using Powell eighth-waves and HDC with the OMNI 1-hr
in-situ measurements.

CR Divergence-free method Model Vr (km s−1) Br (nT) Np (cm−3) Tp (MK)

1 0.52/0.56 0.24/0.15 0.36/0.20 0.10/0.32

CR2215 Powell eight-waves 2 0.51/0.55 0.24/0.15 0.37/0.20 0.10/0.33

3 0.48/0.47 0.29/0.14 0.42/0.20 0.14/0.26

1 0.51/0.56 0.23/0.15 0.36/0.21 0.09/0.34

Cleaning 2 0.51/0.56 0.28/0.14 0.37/0.20 0.10/0.33

3 0.48/0.47 0.23/0.15 0.42/0.20 0.15/0.26

1 0.46/0.27 0.41/0.15 0.17/0.43 -0.05/0.22

CR2220 Powell eight-waves 2 0.46/0.27 0.41/0.15 0.17/0.43 -0.04/0.22

3 0.45/0.25 0.46/0.15 0.12/0.42 0.02/0.20

1 0.45/0.28 0.38/0.15 0.16/0.43 -0.05/0.23

Cleaning 2 0.46/0.27 0.24/0.15 0.17/0.43 -0.05/0.22

3 0.45/0.25 0.43/0.15 0.12/0.42 0.02/0.21

1 0.52/0.60 -0.09/0.21 0.24/0.32 0.23/0.70

CR2230 Powell eight-waves 2 0.52/0.60 -0.13/0.21 0.25/0.32 0.24/0.69

3 0.56/0.43 -0.12/0.21 0.26/0.29 0.32/0.48

1 0.52/0.61 -0.06/0.21 0.23/0.32 0.22/0.74

Cleaning 2 0.52/0.60 -0.004/0.22 0.25/0.32 0.23/0.67

3 0.56/0.44 -0.08/0.21 0.26/0.29 0.32/0.48

1 -0.34/0.34 -0.08/0.11 -0.06/0.25 -0.14/0.09

CR2250 Powell eight-waves 2 -0.34/0.34 -0.07/0.11 -0.07/0.25 -0.13/0.09

3 -0.38/0.33 -0.06/0.11 -0.07/0.25 -0.14/0.09

1 -0.34/0.34 -0.05/0.11 -0.07/0.25 -0.13/0.10

Cleaning 2 -0.35/0.34 -0.07/0.11 -0.08/0.25 -0.14/0.10

3 -0.38/0.33 -0.03/0.11 -0.07/0.25 -0.15/0.10

1 0.50/0.33 0.55/0.17 0.29/0.24 0.13/0.17

CR2260 Powell eight-waves 2 0.51/0.33 0.56/0.17 0.29/0.23 0.14/0.17

3 0.55/0.32 0.58/0.16 0.32/0.21 0.16/0.16

Cleaning 1 0.50/0.33 0.54/0.17 0.27/0.24 0.12/0.18

3 0.55/0.32 0.63/0.16 0.31/0.21 0.16/0.16

in speed. However, they globally matched the number den-
sity and, again, underestimated the magnetic field strength of
the radial field. The highly diffusive solution is shown for
Model 3, but Models 1 and 2 are similar in all the variables
for these three representative CRs.

In Fig. 4, we show the results for comparisons between
the steady state SW solutions of Model 1 (green curves),
Model 2 (brown curves), and Model 3 (blue curves) using
the HDC method for the divergence-free condition with the
OMNI 1-hr in-situ measurements (black curves) for three
representative CRs: CR2215, CR2220, and CR2230. For in-
stance, the results for all the variables for CR2215 are simi-
lar to the obtained with the Powell method for the same CR
for the three models, as shown in the top panel of Fig. 3.

In the middle panel of Fig. 4, we show the comparisons for
CR2220; in this case, three models partially capture the ob-
served rise of SW speed. In particular, three models underes-
timate the strength of the radial magnetic field, and for num-
ber density and temperature, both models overestimate the
observed values. Interestingly, the low, medium, diffusive,
and high diffusive models give comparable results, except in
some sharp regions of density, similar to those obtained for
the Powell eight-waves formulation. At the bottom of Fig. 4,
we display the results for CR2230, where it is discernible that
three models behave similarly to the model using the Pow-
ell method. The models significantly overestimate the slow
SW streams observed by OMNI and capture denser and hot-
ter SW streams compared to in-situ measurements. Further-
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FIGURE 3. Comparison of Model 1 (green curves), Model 2
(brown curves), and Model 3 (blue curves) solutions for the Pow-
ell method corresponding to the radial velocityVr (km s−1), radial
magnetic fieldBr (nT), number densityN (cm3), and temperature
T (MK) with OMNI 1-hr in-situ measurements (black curves) for
a) CR2215, b) CR2230, and c) CR2260.

more, three models underestimate the radial magnetic field
at 1 AU, a typical issue of the numerical models. The latter
results may suggest that this is to be expected for the solu-
tions of MHD equations do not significantly modify the way
of underestimating the observable magnetic field strength of
the SW streams at 1 AU.

3.2. Statistical analysis

We performed a statistical analysis to validate the quality
of the three models and identify accuracy compared to in
situ OMNI measurements. In particular, we compared mea-
surements and model solutions by estimating the Normalized
Root Mean Square Error (NRMSE) and the Pearson Correla-
tion Coefficient (PCC). The NRMSE represents the normal-

FIGURE 4. Comparison of Model 1 (green curves), Model 2
(brown curves), and Model 3 (blue curves) solutions using the HDC
method for the radial velocityVr (km s−1), radial magnetic field
Br (nT), number densityN (cm−3), and temperatureT (MK) with
OMNI 1-hr in-situ measurements (black curves) for a) CR2215, b)
CR2220, and c) CR2230.

ized mean squared difference between measurements and
models and facilitates comparing models with different scales
[36], while the PCC measures linear correlation between two
data sets. These two statistical measures are defined as fol-
lows:

NRMSE=

√
1
N

∑N
k=1(fk −Ok)2

(max(Ok)−min(Ok))
, (6)

PCC=
∑N

k=1(fk − f̄k)2(Ok − Ōk)2∑N
k=1(fk − f̄k)2

∑N
k=1(Ok − Ōk)2

, (7)

where (fk, Ok) are thek − th element ofN total model val-
ues and in situ observation pairs in the time series,i.e., it is

Rev. Mex. Fis.70031501



INVESTIGATING THE EFFECTS OF NUMERICAL ALGORITHMS ON GLOBAL MAGNETOHYDRODYNAMICS SIMULATIONS. . . 7

FIGURE 5. Statistical results of PCC a) and NRME b) of Models
1, 2 and 3 compared with OMNI 1-hr data.

a point-to-point comparison. The max(Ok) and the min(Ok)
indicate the maximum and minimum values of the observed
data, respectively. Thēfk and Ōk in Eq. (7) represent the
mean values.

Table II contains the full statistical results represented by
PCC/NRMSE of Models 1, 2, and 3 for the Powell method
and HDC compared to OMNI’s 1-hr data for the radial veloc-
ity Vr in km s−1, proton number densityN in cm−3, proton
temperatureT in MK and radial magnetic fieldBr in nT.

To identify more clearly the behavior of the statistical re-
sults of Table II, in Fig. 5, we show plots of the results of
PCCs and NRMSEs for radial velocityVr, radial magnetic
field Br, proton number densityNp and proton tempera-
tureTp using the Powell method in the comparisons between
models and OMNI measurements for all the CRs considered
in this paper. Each point of Figs. 5 and 4 represents the value
of the PCC and NRMSE calculated by a point-to-point com-
parison using the Eqs. (6) and (7) as explained above for each
variable for each CR.

At the top of Fig. 5, we display the distribution of PCCs,
where it is discernible that the best correlations are shown
for the radial velocity and radial magnetic field, especially,
Model 3 gets the highest value of the whole analysis for the
radial velocity, that is, PCC = 0.56 for CR2230. The three
models get negative PCCs for CR2250,i.e., simulation re-
sults and OMNI observations tend to be anti-correlated, but

FIGURE 6. Statistical results of PCC a) and NRME b) of Models
1, 2, and 3 using the HDC method compared with OMNI 1-hr data.

for this CR, we should consider that steady-state SW solu-
tions could be poor due to transient events such as CMEs. A
remarkable result is that the three models have very similar
values of PCC for all the variables and all the CRs,i.e., the
plots practically overlap. The latter implies that using robust
numerical methods to achieve acceptable PCC values with in-
situ measurement at 1 AU is not strictly necessary. At the bot-
tom of Fig. 5, we display the distribution of NRMSEs, which
look similar for the three models and CRs. Surprisingly, for
most CRs, Model 3 performs better regarding NRMSE than
Models 1 and 2 for all the SW parameters.

In Fig. 6, we show plots of the results of PCCs and NRM-
SEs for radial velocityVr, radial magnetic fieldBr, pro-
ton number densityNp and proton temperatureTp using the
HDC method obtained in the comparisons between models
and OMNI-1 hr measurements for all the CRs considered in
this paper. In the two panels of Fig. 6, we note that the distri-
bution of PCCs and NRMSEs are comparable to those shown
in Fig. 5 for the case of the Powell method. However, some
values slightly vary; for example, the highest PCC was 0.63,
corresponding to Model 3 in the case of the radial magnetic
field for CR2260. In the case of NRMSE, the lowest values
were achieved for CR2215 and CR2220 for the radial mag-
netic field. Overall, the values of PCC and NRMSE for both
divergence-free methods (Powell and HDC) are comparable.
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4. Conclusions

In this paper, we have used sunRunner3D to explore the ef-
fects of numerical methods on global MHD simulations of
steady-state SW solutions in the inner heliosphere. Accord-
ing to the results for the three models for both divergence-
free methods (Powell and HDC) for the selected CRs, we find
that sunRunner3D is capable of capturing the typical proper-
ties of the SW streams in the inner heliosphere, including the
CIRs and the Parker Spiral structures. Specifically, Model
1 for both divergence-free methods shows more developed
CIRs. While Model 2 shows comparable solutions to Model
1, Model 3, which has a highly diffusive combination of algo-
rithms, obtains more diffusive structures than Models 1 and
2. Despite the diffusion, the three models for the Powell and
HCD methods capture the typical SW features in the inner
heliosphere.

Regarding the comparison of the models with OMNI-1hr
in-situ measurements using the Powell and HDC methods,
the statistical analysis shows that the values of the three mod-
els are acceptable regarding the PCC and NRMSE for the se-
lected CRs. The three models get high PCC values for radial
velocity and radial magnetic field for most CRs except for
CR2250. On the other hand, the three models get the low-
est PCC values for number density and temperature, which
could be related to the use of an ideal equation of state. In the
case of NRMSE, again, the three models obtained the low-
est values,i.e., the best solutions, for radial magnetic field
for most of the CRs, while the highest NRMSE values,i.e.,
the worst solutions are for radial velocity and temperature for
CR2215 and CR2230. On the other hand, the results of the
comparisons of the three models with OMNI-1 hr observa-
tions for the case of the HDC method are overall comparable
with those obtained with the Powell method, which could in-
dicate that the use of any divergence-free condition method
leads to similar results regarding the steady-state solutions
of the SW in the inner heliosphere. A relevant result in the
statistical analysis is that Model 3,i.e., the highly diffusive
model, behaves better than Models 1 and 2 for most of the
variables in all the CRs. The latter result raises the ques-
tion of using a low diffusive, which could be more computa-
tionally demanding, or a high diffusive, which is less time-
consuming. However, we should also consider other param-
eters that we do not consider in this paper, such as spatial
resolution, which could increase the computational time and
necessitate the use of supercomputers. Also, this paper does
not study other divergence-free condition methods, such as
constrained transport, which has already been used for global
MHD SW simulations in the heliosphere [6]. However, we
need to define staggered variables from the boundary con-
ditions of CORHEL (which are cell-centered) to implement
it properly into PLUTO. Nevertheless, the spatial resolution
and the divergence-free methods used here have produced
consistent results comparable with those of the state of the
art regarding simulations of SW streams in the inner helio-
sphere. Furthermore, as the primary purpose of this paper is

to investigate the effects of numerical algorithms, we also de-
cided to study different methods to numerically maintain the
∇ · B close to zero. These two methods are available in the
MHD module of the PLUTO code and are naturally consis-
tent with the finite volume method adopted to solve the ideal
MHD equations. Also, the analysis of different divergence-
free methods has rarely been studied in the context of global
MHD simulations of SW in the heliosphere. Therefore, in-
cluding this analysis in our paper represents a novel study
that could be helpful for the space physics community mod-
eling when deciding the most appropriate algorithm combi-
nation. Besides, it would be interesting to test the constraint
transport method because it has been used by other models
in global MHD simulations of the SW as in Ref. [6]. This
method maintains∇ · B around the machine round-off er-
ror. Unfortunately, it is not straightforward to implement in
spherical coordinates due to technical issues such as the def-
inition of a staggered mesh so that we might consider it for a
future study. In summary, since the SW magnetic field is pre-
dominantly radial, the divergence-free methods (Powell and
HCD) employed in this paper control∇ · B to a truncation
error, but this does not affect the global structure of the SW
streams in the heliosphere and their comparisons with in situ
measurements of the OMNI data.

Finally, according to the steady-state solutions of the SW,
the comparisons between the models and OMNI-1hr in-situ
measurements, and the statistical analysis, we can conclude
that the numerical methods related to the solutions of MHD
equations using finite volume do not significantly affect the
global MHD simulations of steady-state SW in the inner he-
liosphere. Notably, the diffusion level only affects the struc-
tures of the SW streams and slightly modifies the morphol-
ogy. Nevertheless, it does not affect the accuracy of the phys-
ical parameters associated with the SW since the comparisons
with in-situ measurements show similar results for the three
models with the two divergence-free methods despite the dif-
fusion in sharp regions of number density or high-speed SW
streams. Therefore, this paper’s results could encourage us-
ing less robust numerical methods that imply fewer computa-
tional resources but without losing accuracy in global MHD
simulations of steady-state SW streams in the inner helio-
sphere. Also, our results suggest that the simulations should
not necessarily run on supercomputers. For example, Model
1 for CR2215 with the Powell method lasts about 3 hours us-
ing 32 cores on a workstation, while Model 3 lasts around
2 hours in the same workstation. Then, we could contem-
plate the use of a decent workstation (at least with 40 cores)
to obtain consistent results of the global behavior of the SW
streams and, going further, we could make forecasting of the
SW conditions near the Earth environment (∼ 1 AU) quickly,
which might be meaningful for Space Weather applications.
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