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with CdS quantum dots employing different metal oxides using SCAPS-1D
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This study presents a comprehensive numerical investigation into solid-state quantum dot solar cells (SSQDSCs) utilizing P3HT poly(3-
hexylthiophene) as both a hole transport and absorber layer employing SCAPS-1D simulation software, the research explores the performanc
of cells composed of FTO (Fluorine-doped Tin Oxide) as the front contact, integrated with different metal oxides (Titanium dioxige (TiO

zinc oxide (Zn0O), and tin dioxide (S CdS (Cadmium sulfide) quantum dots, P3HT, and Pt (platinum) as the back contact namely
Hybrid solar cell. The thickness of each layer is systematically optimized, and the influence of various CdS quantum dots sizes is thoroughly
examined. The study also dived into the characterization of interface defects at the P3HT/CdS junction, involving modifications to the
electron affinity of P3HT. Additionally, the impact of metal work function variations was also investigated analyzing at each case critical
parameters such as open-circuit voltage (), short-circuit current density/¢), fill factor (FF), power conversion efficiency (PCE), and
guantum efficiency. The results demonstrate that optimization of these parameters has the potential to elevate solar cell efficiency to 18%
These simulation findings offer valuable insights for comparative analysis and a deeper understanding of the challenges encountered ir
experimental research.

Keywords: CdS quantum dots; P3HT; Hybrid Solar cell; SCAPS 1D.

DOI: https://doi.org/10.31349/RevMexFis.70.061001

1. Introduction particular significance, these attributes contribute to the dis-
tinctiveness of QDSCs. Moreover, the quantum confinement

The exponential growth of the world's population has re-€ffects play a transformative role by altering the physical

sulted in an increase in energy demand to support normdlroperties of the sensitizing film, imparting quantum dots-
activities [1], pushing the scientific community to step up its Sensitized solar cells with enhanced functionalities and effi-
efforts. The growing need to handle expanding energy deci€ncies [10]. Among the quantum dots semiconductor mate-
mands has pushed academics to pursue alternative sourd®ds, Cadmium sulphide (CdS) holds particular significance.

of energy. Solar energy has emerged as an exceptional' is classified as a compound semiconductor with n-type con-
promising route among these exploratory efforts due to it uctivity and stands out for its noteworthy characteristics, in-

inherent renewability and widespread availability [2]. The cluding high transparency [11], a direct bandgap transition of
progression of solar energy research has resulted in the cof:4 €V [12], and a notably efficient electron affinity of 4.2
cept of three different “generations,” each representing a dif€V [13]- The utilization of CdS offers the additional advan-
ferent stage of technological achievement [3]. Notably, thd@d€ of improving the interface match at the lattice hetero-
third generation involves an array of cutting-edge possibiliJunction, enhancing the lifetime of additional carriers, and
ties, which includes quantum dots solar cells. These nano@Ptimizing the band alignment within the device structure
tructured devices have attracted scientific researchers, opel4l- The deposition of CdS quantum dots can be achieved
ing up opportunities for the advancement of solar technolthrough various techniques, such as direct attachment [15],
ogy [4]. Over the last decades, significant research effort§/€ctrodeposition [16], and successive ionic layer adsorption
have been dedicated to quantum dot-sensitized solar celf¥'d reaction (SILAR) [17]. Despite their promising potential
(QDSCs) [5]. These photovoltaic devices hold substantiaf® €nhance light absorption and overall efficiency, quantum
promise as one of the most prospective solar cell types, CalSi_otsolar cells (QDSCs) incorporating liquid electrolytes have

italizing on the unique benefits afforded by semiconductofgncountered a significant challenge. The use of liquid elec-

quantum dots (QDs). Notably, these sensitizing nanocwst_rolytesintroduces issues related to leakage, evaporation, and

tals (NCs) offer a range of crucial attributes, including size-long-term stability, limiting the practicality and durability of

tunable bandgap energy [6], the potential for multiple excitonthese devices [18]. However, a promising solution lies in the

generation [7], a high absorption coefficient [8], and the Ca_adopti_on of S_olid-state electrolytes and p-type inorganic or
pability to absorb a wide spectrum of wavelengths [9]. oforganic semiconductors that can overcome the drawbacks
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PT back contact reveals that interface defects play a crucial role in preventing
the occurrence of S-shaped J-V curves. By addressing these
P3HT aspects, the research provides new insights into optimizing
the performance and stability of hybrid solid-state solar cells,
CdS Quantum dots significantly advancing photovoltaic technology.

Metal Oxide (TiO2, ZnO, Sn0O>)

2. Computational methodology and device
FTO front contact

structure
k The study relies on the utilization of Solar Cell Capacitance
Simulator (SCAPS-1D) version 3.3.10 for conducting all nu-
e merical computations presented herein. Numerical simula-
el —— “<7__ tion plays a foundational role in the formulation, exploration,
{"kg_ﬁ_ >.<£f_=_ and projection of the actual photovoltaic (PV) device char-
w acteristics. This approach also furnishes valuable insights

into the manipulation and enhancement of solar cell perfor-
mance through adjustments in geometric and technical at-

associated with liquid counterparts by providing enhancedributes. The software package possesses the capability to
stability [19], reduced leakage risks, and improved re-modelup to seven layers and offers the flexibility to fine-tune
sistance to environmental factors. By transitioning fromvarious input parameters-such as doping concentration, rel-
liquid to solid-state quantum dot solar cells (SSQDSCsytive permittivity, electron affinity, thickness, mobility, and
can obtain more reliable and long-lasting performancedefect concentrations-to optimize the efficiency of the solar
paving the way for their practica| integra’[ion into re- cell. Additionally, the software proficiently resolves funda-
newable energy systems [20]. Organic semiconductor§ental semiconductor equations, as well as Poisson's and
functioning as hole transport materials (HTMs) have gar-continuity equations, under conditions of steady-state oper-
nered significant research attention, with notable examation. Simulation reports play a vital role in minimizing the
ples including Spiro-OMeTAD, PTAA (poly-triaryl amine), Costs associated with fabrications. They offer deeper insights
PEDOT: PSS(poly(3,4-ethylenedioxythiophene) polystyrendnto internal processes and enable the determination of pa-
sulfonate) and P3HT. Similarly, inorganic semiconductorsrameters that might be challenging to ascertain through ex-
like CuSCN (copper(i) thiocyanate) and CuOx (copper ox_perimentation. Thanks to its user-friendly interface and a
ides) have also been extensively investigated in this regar@ide range of simulation techniques, SCAPS emerges as the
[21,22]. P3HT, as a p-type semiconductor, has capturefvored option for such tasks. The optimization of the hy-
the interest of numerous researchers due to its remarkabl¥id solar cell structure was achieved through comprehen-
|ight-ab30rbing and h0|e-transporting characteristics. Th|§lve simulations. In this process, the thicknesses of both the
has paved the way for the development of a novel type oElectron Transport Layers (ETLs) using most studies metal
solar cell known as Hybrid Solar cells [23,24]. oxides (TiG,, ZnO, SnQ) [30-32] and the Hole Transport
This paper employs SCAPS simulation to investigate thednd absorber layer P3HT Layer were systematically varied
efficiency of a solar cell with the following architecture: FTO to attain the highest efficiencies. Moreover, the band gap
utilized as the front contact, incorporating well-researched®f CdS quantum dots was varied due to quantum confine-
metal oxides such as TiQZnO, and Sn@as electron trans- ment effects. This modification influenced parameters such
port materials (ETMs), along with CdS quantum dots and®s density of states [33] and electron affinity [34,35], lead-
P3HT. The back contact is composed of Pt as illustrated ifng to intricate alterations. The electron affinity of P3HT was
Fig. 1. The selection of this particular structure is guided by2lso subject to variation. Additionally, the interface defect
extensive prior experimental research into this specific condensity between CdS quantum dots and P3HT was manipu-
figuration, as documented in Refs. [25-27]. This simulationlated. Furthermore, the work function of the back contact was
study aids in comprehending the challenges and limitation§xplored as a parameter influencing device performance. No-
associated with low efficiency [28,29]. It demonstrates thatably, the initial testing phase encompassed the exploration of
by integrating quantum dots with optimized parameters, it iother p-type semiconductors like spiro-OMeTAD, CuSCN,
possible to achieve an efficiency level of 18%. To the bes@nd NiO (nickel oxide). However, spiro-OMeTAD exhibited
of our current knowledge, this study appears to be the firsg notably low Power Conversion Efficiency (PCE) of around
to combine these materials within a SCAPS-1D simulationt-1%, while CUSCN and NiO exhibited non-convergence due
for the analysis of hybrid solar cells featuring this specificto band alignment mismatches. It is crucial to highlight that
structure, employing different quantum dot band gaps. linterface defects play a pivotal role in avoiding the occur-
also demonstrates the enhancement of ohmic contact by dience of S-shaped J-V curves, a phenomenon that has been
tering the electron affinity of P3HT. Additionally, the study experimentally observed [36]. Moreover, the incorporation

FIGURE 1. The structure of the proposed Hybrid solar cell.
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TABLE |. List of physical and electronic properties for each layer parameter.

Parameters TiQ[39,40] SnQ [41,42] ZnO[43,44] CdS[11,15,43,45] P3HT [40,46]
Thickness (nm) 500 (Varied) 500 (Varied) 500 (Varied) 40 (Varied) 1000 (Varied)
Electron affinity (eV) 4 4.3 4.3 4.2 (Varied) 3.2 (Varied)
Dielectric permitivity (e.) 9 9 9 10 3
Effective conduction band densiti{. (cm™®)  2.2E + 18 2.2E + 18 2.2E+18  2.2E + 18 (Varied)  2.2E + 18
Effective valence band densitiX, (cm‘3) 1.8E + 19 2.2E + 18 2.2E + 18  2.2E + 18 (Varied) 2.2E + 18
Electron thermal velocity(cms ™) L.OOE 407  1.00E+07  1.00E + 07 1.00E + 07 1.00E + 07
Hole thermal velocity (Cms_l) 1.00E 4 07 1.00E 4+ 07 1.00E 4+ 07 1.00E + 07 1.00E + 07
Electron mobility (cm? V™" s7") 20 260 166 360 10

Hole mobility (cm® V™' s™1) 10 10 20 40 2.8

Gap energyE, (eV) 3.2 3.6 34 2.4 (Varied) 2.0
Donor concentrationNg (cm ™) 1.O0E+18  1.00E+18  1.00E + 18 1.00E + 18 0
Acceptor concentratiorN, (cm’3) 0 0 0 0 1.00E + 18
Total defect density(cm™?) neutral LOOE +15 1.00E+15  1.00E+ 15 1.00E + 15 L.00E + 16

of a CdS layer was deemed essential in achieving convesolar cell measurements, includingy¥, FF, 1., and PCE.
gence since with the P3HT/metal oxide combination andRemarkably, \b- and FF displayed consistency across the
without this CdS layer, the band alignment mismatch hindersange of thickness variations for all metal oxides. For3liO
convergence with P3HT/metal oxide structures, potentiallv oo was measured at 0.91 V, while for Sp@nd ZnO, it
explaining the limited convergence observed in some reporteas 0.92 V each. The FF hovered around 83% to 84% for
[37,38]. In this study, priority was given to examining the all metal oxides (Fig. 2), aligning with previously reported

impact of intrinsic material parameters on solar cell perfor-results [47,48]. This suggests that changes in the thickness

mance, leading to the intentional omission of shunt resistancef the electron transport layer (ETL) have limited impact
variation. To maintain clarity and handle complexity, we as-on these two properties. It implies that the ETL's thickness
sumed a constant high value for shunt resistance, while aldoas minimal effect on charge carrier recombination and other
treating defects and interface defects as analogous to shulesses within the cell becausey¥ is primarily affected by

resistance. This methodology ensured a comprehensive andhe absorber layer (P3HT) and the energy level alignment be-

ysis of the effects of intrinsic factors on performance. How-tween the absorber layer and the CdS layer [49]. Conversely,
ever, we acknowledge the importance of explicitly considerthe fill factor FF is influenced by various factors related to the

ing shunt resistance variation and propose it as a focal poirftont and back contacts, as well as resistive losses within the

for future research to enhance our understanding of solar cedlolar cell. FF reflects the efficiency of retrieving generated
behavior. The cell modeling utilized the AM1.5G spectrum current from the cell and is affected by series resistance,

shunt resistance

at 300 K, with an incident solar power of 1000 W/nAddi-
tionally, Table | provides a comprehensive overview of all op-
erational parameters and numerical coefficients. For all sim-

1,50

ulations conducted in this software, the voltage scan range _ “’g B
was setfromOVto2 V. ag e Bl s Bl o L 10,1 o
> 0,75 % -
"_“’Enu,u '-._\.‘
. . 0,00 -"._
3. Results and discussion R T e
Thickness (nm) Thickness (nm)
3.1. Metal oxides thickness optimization 84,0

The study involved altering the thickness of metal oxide lay-
ers, specifically Ti@, ZnO, and Sn@, which play a crucial

role in the performance of solar cells. The thickness vari-
ations ranged from 500 nm to 2000 nm. It is important to

FF %

83,2

B |

note that the P3HT layer and Bulk CdS layer remained un- 400
changed according to the provided table. Additionally, the

800 1200 1600 2000
Thickness (nm)

7,6
400 800 1200 1600 2000
Thickness (nm)

front and back contacts remained constant throughout theicure 2. TiO, thickness variation with respect to,V, Js., FF

study. Notably, significant changes were observed in variouand PCE.
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(which was omitted for simplicity), and charge carrier recom-3.2. P3HT thickness optimization

bination within the device [50,51]. Since our study kept the

contacts (Pt and FTO) constant and observed no significagiven that the P3HT layer functions as both the Hole Trans-
changes in other parameters that could impact FF, it remainegebrt Layer (HTL) and Absorber layer, it becomes a pivotal
stable across different metal oxide thicknesses. Howevefactor in optimizing photovoltaic cells. Evaluating solar cell

it was noted that both,J and PCE decreased with increas- efficiency requires careful consideration of the thickness of
ing ETL thickness. For instance,.Jdecreased from 10.19 this absorber layer. To enhance current density, the thickness
mA/cm? to 9.93 mA/cm for the TiO, layer, from 10.99 must be meticulously adjusted [56,57]. Thinner absorber lay-
mA/cm? to 9.95 mA/cni for the SnQ layer, and from 11 ers in solar cells result in reduced current densities and ef-
mA/cnm? to 10.9 mA/cnt for the ZnO layer. In the case ficiency due to inadequate light absorption. Conversely, a
of PCE, it decreased from 7.83% to 7.62% for TjGrom  thicker absorber layer creates a longer path for photogener-
8.46% to 8.40% for ZnO, and from 8.41% to 8.36% for SNO ated charge carriers, which increases recombination but does
This behavior can be attributed to the increased absorptionot significantly benefit solar cell performance [58,59]. The
of light within the ETL layer itself, leading to a reduced thickness of the P3HT layer was varied from 500 nm to 2000
availability of photons for absorption in the main absorbernm, while the metal oxide and bulk CdS layers remained un-
layer P3HT. Consequently, the generation of electron-hol@ltered. It is noteworthy that ¥ (open-circuit voltage) re-
pairs decreased, and the short-circuit current decreased agins constant at 0.92 V throughout this range of thickness
well. Moreover, increasing the thickness of the ETL extendedvariations, and the fill factor (FF) experiences a slight de-
the path of carriers from the photoactive layer to the eleccrease from 83.57% to 82.72%. However, the short circuit
trode, thereby increasing carrier recombination and ohmieurrent (J.) and power conversion efficiency (PCE) increase
losses. These factors collectively contributed to the decreasép to a maximum value of 10.82 mA/émand 8.30%, respec-

in overall charge transport efficiency, which in turn affectedtively, between 500 nm and 1000 nm. Then, they gradually
the short-circuit current [52,53]. decrease from 1000 nm to 2000 nm (Fig. 4). This implies

In addition to affecting J. and PCE, changes in the thick- that Vo stability is independent of the P3HT layer thick-

ness of the metal oxide layers also had an impact on o 1ess and is more likely influenced by the P3HT layer's band

ternal quantum efficiency (QE). The QE spectra can be di_alignment with the CdS layer. A stableyy: can be achieved
vided into two regions: below 400 nm and above 400 ameven with varying P3HT thicknesses if the band alignment
(Fig. 3). Above 400 nm’ the response remained nearly iden:31II0WS effective charge carrier separation and minimizes re-
tical for both thicknesses (500 nm and 1000 nm), mainly duecombmgpon [60]_' L . .
Additionally, it is important to consider that interface de-

to the consistent parameters of other layers. However, the ) | , "
response of solar cells decreased in the 300-375 nm randgCtS: Which remain constant, also impacsy stability. Ac-

as the thickness of Ti9) SN0, and ZnO increased. This is c0rding to Eq. 1) [61], a stable \bc implies that the short
because as the thickness increased, less photons could be gireutt gurrer_n () is greater thz_;m_the_ dark curreng(across
sorbed by the absorber layer, resulting in reduced samples rd1€ entire thickness range. This indicates thaghd J vary

sponsiveness [54]. Furthermore, the higher bandgap of thed§€arly, @ positive sign of effective light-induced current gen-

thicker layers decreased the responsiveness at shorter wafgation with minimal recombination or leakage. This under-

lengths [55]. scores efficient charge separation and the system’s ability to
convert light energy into electrical current [62]. Regarding

TiO; (0,5um) _10.8 ..
TiO, (01um) 010 “E w e
80- a&’j(}g - - - - - - -l E‘FD,S
2 5
60- 038 “102] &
O\o 400 800 1200 1600 2000 400 800 1200 1600 2000
8 40 - Thickness (nm) Thickness (nm)
20- *
87 e .
2 g m” “rm
a0 Poef, gey =
300 400 500 600 700 o SR L
Wavelenght (n m) 400 800 1200 1600 2000 "260 860 1200 1600 2000
Thickness (nm) Thickness (nm)
FIGURE 3. Quantum efficiency with respect to TiGhickness vari- FIGURE 4. P3HT thickness variation with respect tQ. Y Js., FF
ation. and PCE.
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FIGURE 5. Quantum efficiency with respect to P3HT thickness

variation. FIGURE 6. CdS thickness variation with respect ta¥, Js., FF

and PCE.

the quasi-stability of FF, it results from the device operat-

ing optimally, extracting the maximum available power while 3.3, cds thickness optimization

maintaining maximum voltage and current conditions. Ac-

cording to Eq./2), maintaining FF constant implies thap¥ To optimize the CdS layer thickness which was varied from
is approximately equal to M/ pp (maximum power voltage) 10 nm to 100 nm (Fig. 6), it could be noticed that there were
and J. is approximately equal to,dpp (current at maxi- no changesin¥¢, J;., FF, PCE and neither the quantum ef-
mum power point). This indicates that the device is operatficiency. The stability trend of these factors alongside thick-
ing efficiently and utilizing available energy effectively with- ness variation is the result of stable electron- hole pair genera-
out compromising voltage potential. This alignment ensuresion. With increased buffer layer thickness, the same quantity
that the device extracts its maximum attainable power with-of electron-hole pair can reach the active layer. Furthermore,

out sacrificing current potential [63]. due to its band gap of 2.4 ev, a 100 nm thick CdS layer does
not absorb photons that could be passed into the active layer
KBT T easily, hence holding efficiency constant [68-70].
Voc=——In 7 +1], (1)
q 0 3.4. The effect of CdS quantum dots layer on the perfor-
PR V]V[‘};P.JMPP. @) mance of the solar cell
oc.Jsc

Due to the quantum confinement effect the band gap of CdS
increases and other electronic parameters alter when the size
The thickness of the P3HT layer in solar cells signifi- of the quantum dot decreases where this change has conse-

cantly influences variations ifi;. and efficiency with thick- quences for the design and engineering of nanoscale mate-
ness variation. This is attributed to changes in light absorprials for different application in electronics, optoelectronics,
tion and charge carrier generation. An optimal thickness oind photonics [71,72]. In our study, the band gap has been al-
1000 nm strikes a balance between efficient charge transpaetred from the bulk CdS layer at 2.4 eV to quantum dot layers
to the electrodes and avoiding excessive carrier recombinavith band gaps of 2.6 eV, 2.8 eV, and 3.0 eV. These variations
tion [64]. Thicker P3HT layers may act as recombinationcorrespond to quantum dot sizes of approximately 3.1 nm,
centers, leading to reducell. and efficiency due to a high 2.3 nm, and 2.1 nm, respectively, as indicated in Ref. [73].
defect density §; = 10'6 1/cn?) [65]. Additionally, ex-  As it could be noticed that the 3, FF and PCE increase
cessive thickness may increase the distance that charge carhen CdS band gap increases for all metal oxides while the
riers need to travel to reach the electrodes, potentially result),. maintains stable, a larger band gap allows higher energy
ing in higher recombination losses. The absorption profile ophotons to be absorbed, resulting in a greatgs\and over-
P3HT may also vary with thickness, affecting the path lengthall efficiency as well as a fill factor [74]. This shows that
of light within the device [66]. Apart from the changes in increasing the band gap can potentially align the energy lev-
Jse and PCE, there is a slight increase in quantum efficiencels in semiconductor materials, reducing energy barriers that
between 500 nm and 600 nm as the thickness of P3HT inmight hinder charge carrier transportation or increase recom-
creases (Fig. 5). This indicates that a thicker layer enhancdsination [75].
the conversion of photons into charge carriers within this  On the other hand, the stability of.Jneans the decreas-
wavelength range. The improved quantum efficiency can bég of dark current g that suggests that the device has im-
attributed to better photon absorption and lower recombinaproved charge carrier mobility, collection efficiency, and re-
tion losses [67]. duced losses owing to non-radiative recombination since the
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OTYY IRPINIE L e b o 3.5. The effect of interface defect density
it a1 W v’
o E 2 I The appearance of various defects at the interface causes mul-
i : v’ tiple traps and recombination centers within the bandgap,
¢) 24 28 28 30 24 28 28 30 along with undesirable band bending [80]. In this study,
Egjev) Egfev) the interface defect density of P3HT/CdS is varied. This

variation has shown a remarkable change in solar cell effi-
ciency and other parameters, unlike the interface defects of
CdS/metal oxides, which resulted in a slight change of only
0.08% in PCE. The simulation was conducted to vary the in-
quantum confinement affects the dark current [76,77]. Theerface defect density within the range of'iQql/cn?) to
variation of Vo, FF, 1. and PCE as well as Quantum effi- 10'¢ (1/cn?) (Fig. 10). Notably, there was a dramatic de-
ciency and I-V curve for Ti@, ZnO, SnQ based solar cells crease in PCE from 11.10%, 11.68%, and 11.45% to 7.87%,
are shown in Figs. 7, 8 and 9 for CdS bulk band gap and dif8.59%, and 8.34% for TiQ SnG,, and ZnO-based solar
ferent CdS quantum dot band gaps. It can be observed thaells, respectively. These decreases were attributed to the re-
SnG, and ZnO show better performance than Ti@hich is  duction in Vo for all devices. Additionally, it was observed
due to their higher electron mobility similar to [78]. How- that FF decreased slightly, unlike.J which remained sta-
ever we can see that there is a slight decrease in quantubte across the entire range of variation. This drop -V
efficiency in the shorter wavelength 300 to 350 nm for allindicates the introduction of recombination centers by the
samples when moving from bulk CdS layer to CdS quantundefects, which leads to the recombination of charge carri-
dot layer which is due to the higher bandgap of these layersrs [81].

lowers responsiveness at short wavelengths suggesting that it To dive more the energy levels introduced by interface de-
contributes less to electron generation [79]. fects can trap and immobilize charge carriers, causing their

FIGURE 7. CdS Qds Eg variation with respect t¥, Js., FF and
PCE for a) ZnO, b) Sn@and c) TiG.
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Zn0, S d TiQ, based sol IIs.
n nQ and Ti; based solar cells generated current for useful work Jmp [84]. Neutral defects

recombination. The amount of charge carriers available t@t the interface that introduce recombination centers or traps
generate voltage is decreased throughout this recombinatiaan impede charge transport, leading to a decrease in the ac-
process, which eventually has an impact on the device's petual extracted current and a subsequent reduction in FF [85].
formance. Increased charge carrier trapping and recombi-

nation rates lead to a reduction in the device's efficiencyg 6. The effect of electron affinity of P3HT

open-circuit voltage (W), and power conversion efficiency

(PCE), which are all affected by the density of these defects afhe impact of varying the electron affinity of P3HT was in-
the interface [82]. On the other hand, 3tays constant even vestigated to explore how adjusting the band alignment could
in the presence of neutral defects at the interface because itilmprove solar cell performance. The electron affinity was
primarily influenced by the amount of absorbed light and thechanged from 3.2 eV to 3.8 eV (Fig. 11), leading to signifi-
resulting generation of electron-hole pairs. The quantity ofcant alterations iy, PCE, J., and FF. This variation can
produced charge carriers will not be considerably influencedbe categorized into two ranges: from 3.2 eV to 3.6 eV, where
by the defects at the interface as long as the absorber layeras increase in Yo and FF was observed, subsequently en-
exposed to the same amount of incident light [83] while FFhancing PCE. During this range,.Yemained relatively sta-

is more sensitive to the effects of charge transport within théle with only a minor increase. Specifically, o¥ im-
solar cell because it reflects the efficiency of utilizing theproved
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suited for aiding the movement of charge carriers and mini-
mizing recombination. Such alignment usually has a positive
effect on the overall efficiency of the solar cell [87].

This effect is particularly noticeable between P3HT and
the metal contact because, upon the interaction of a metal
with a semiconductor, a barrier forms at the boundary be-
tween the two materials. This barrier plays a pivotal role in
controlling the current flow. In our context, an Ohmic con-
tact exists, and when the electron affinity is raised, the barrier
diminishes, simultaneously leading to a decrease in contact
resistance Rc. This alteration contributes to a rise gV
(open-circuit voltage) and FF (fill factor), thus enhancing the
power conversion efficiency (PCE) of the solar cell. Never-
theless, when the electron affinity surpasses 3.6 eV, the nature
of the contact shifts from being ohmic to becoming rectify-
ing, resulting in an increase in contact resistance. Conse-
quently, this alteration in the contact type has a notable im-
pact on the parameters of the solar cell, influencing its overall
performance [88].

3.7. The effect of metal work function variation

To understand more about the effect of ohmic contact and
rectifying contact, the simulation study involves altering the
work function of metals that are in contact with P3HT semi-
conductor where the work function is the energy needed for
an electron to be removed from a solid surface [89]. The
range of metal work functions studied is from 4.5 eV to 5.7
eV. For metals with a work functiomn,,, lower than 5.2 eV
(Fig. 12), there were decreases in solar cell performance due
to the formation of a rectifying Schottky barrier at the in-
terface between the P3HT layer and the back electrode. A
Schottky barrier is an energy barrier that forms at the metal-
semiconductor junction, which can rectify the flow of charge
carriers (electrons or holes). In this case, it impedes the
movement of holes from the P3HT layer towards the back
electrode since it allows current flow in only one direction,
blocking the flow in the opposite direction [90]. This ob-
struction leads to an increase in contact resistance, making it
more difficult for charge carriers to move through the junc-
tion. Additionally, the barrier can lead to occurrences of car-

from 1.22 V to 1.53 V for TiQ- based solar cells, and rier recombination and this barrier decrease with the increase
from 1.23 V to 1.54 V for Sn@ and ZnO-based solar cells. of work function that is why there was an increasing trend
Consequently, PCE increased from 11.10% to 14.7% foin Voc, Js., FF and PCE [88]. On the other hand, when
TiO,, from 11.45% to 14.88% for ZnO, and from 11.68% the metal work function values are equal to or greater than
to 15.15% for Sn@-based solar cells. FF also showed en-5.3 eV, all parameters of the device exhibit a consistent sat-
hancements, rising from 84% to 88%, from 85% to 89%, andiration trend since it shifts from forming rectifying contact

from 86.4% to 90% for Ti@, ZnO, and Sn@-based solar
cells, respectively. Furthermore,.&xhibited slight changes,
increasing from 10.76 mA/cfrto 10.79 mA/cm, from 10.81
mA/cn? to 10.83 mA/cm, and from 10.93 mA/cito 10.95

to ohmic contact which allows for easy movement of charge
carriers (in this case, holes) between the layers. An ohmic
contact has minimal energy barriers and results in efficient
current flow without significant energy loss due to recombi-

mA/cm?.to understand this, Modifying the electron affinity, nation or resistance, Ohmic contacts are preferred for solar
leading to different values, frequently results in an enhanceeells as they have low contact resistance, allowing for effi-

ment of band alignment [86]. This improvement typically cient charge carrier extraction thus there was the maximum
signifies that the energy levels of the materials are betteof solar cell performance results [91].
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