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No-go theorem for static spherically symmetric configurations
composed of two charged pressureless fluid species
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We present a no-go theorem for spherically symmetric configurations of two charged fluid species in equilibrium. The fluid species are

assumed to be dusts, that is, perfect fluids without pressure, and the equilibrium can be attained for a single dust from the balance of electro
static repulsion and gravitational attraction. We show that this is impossible for two dust species unless both of them are indistinguishable
in terms of their electric charge density to matter density ratio. The result is obtained in the main three theories of mechanics, that is, in

Newtonian Mechanics, in Special Relativity and in General Relativity. In particular, as charged dust solutions have been used to study the
possibility of black hole mimickers, this result shows that such mimickers can not be constructed unless the underlying charged particle has
the correct charge to mass ratio.
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1. Introduction the relationship between charge density and matter density is

_ _ _ _ fixed and has the particular value
The general physical setting that we study is matter interact-

ing both gravitationally and electromagnetically. In particu- 7 ~86x107! C. kg™t 2)
lar, we want to consider equilibrium configurations. Within P

the Newtonian Mechanics (NM) formalism this means thatThis is tiny. For comparison, if we consider a gas made of
the gravitational attraction needs to be exactly balanced bprotons we have

the electric repulsion. For the description of matter we use e

the approximation of dust, that is, a perfect fluid whose equa- — % 9.6 10" C-kg™ !, )

tion of state is simply that the pressure is zero, which comes P

from considering that the thermal energy is negligible. Inor for single ionized lead atoms

order for the electromagnetic interaction to take place, the

(&
dust needs to be electrically charged. Therefore there are two p— 47x10° C-kg™*. (4)
densities to be known, the matter densityand the electric
charge densityy. In NM it is easy to see that if Therefore, if we want to have ECD made of ionized hydro-
gen, we need to ionize only one 18'® atoms, and for lead
o = £/4renGp, (1)  atoms the relationship & : 10'®. This responds to the fact

that all known particles belong in two classes. In one class,

then any static distribution of matter is possible, as the gravthe particles have no charge, and therefore the gravitational
itational attraction between any two elements of the fluidattraction can not be balanced by electric repulsion. In the
is balanced by the corresponding electric repulsion. In thisther class, the electric repulsion is huge compared to the
case the fluid is referred to as electrically counterpoised dugiravitational attraction. In summary, there is no naturally oc-
(ECD). A bit surprising is the fact that the same happens ircurring fluid where Eq/1) is satisfied.
General Relativity (GR): any static distribution of ECD isa  If we want to pursue the previous line of thought, where
solution of the Einstein-Maxwell system of equations [1, 2]. we start with a neutral gas and ionize the right proportion of
This has been exploited to test features of the theory, likeatoms in order for Eqll) to be satisfied, then instead of hav-
constructing regular objects with diverging density [3] or un-ing one single species fluid we have two species. For the hy-
bounded redshifts [4], to test the “hoop conjecture” [5], anddrogen example, one of the species would consist of neutral
to analyze the black hole limit for charged fluids [6, 7]. hydrogen with no charge, and the other would consist purely

Although theoretically any static distribution of matter of ionized hydrogen, having a charge density much higher
made of ECD is possible, the actual occurrence of such than required. To study the mechanical behaviour of this sys-
distribution poses a strong difficulty, as there is no fundatem it is not enough to consider only one species. It is not
mental particle that has the correct relationship between eledrivial to decide how can we physically tell if we are dealing
tric charge and mass. Leaving aside theign, which only  with one or two species, or if separating one fluid into two
amounts to the charge sign convention, Elj.télls us that components is unnecessary. It may seem that by making a
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thermodynamical average to arrive at a fluid description oimass-charge ratio, and for the setting that we are considering
matter then all the microscopic quantities can be averagedhey are effectively only one species. That is why we name
and therefore we always end up with a description by a sinthe result a no-go theorem, because if we can distinguish two
gle species. This is only true if the interactions that we arespecies then there is no equilibrium. In terms of what the
considering can not distinguish those microscopic propertiegheorem affirms about the physical world, it states that it is
For example, if only gravitational interaction is considered,not possible to construct star-like objects of ECD if there is
then we can not separate the particles by their mass-charg® fundamental particle, atom or molecule with the correct
ratio. If we also include electromagnetic interaction, as wemass-charge ratio.

do here, then said particles can be distinguished by the mass-

charge ratio. In this case, the thgrmodynamlcal average ca  Nawtonian mechanics

be made but only among the particles that share the same dis-

tinguishable properties. In conclusion, we are led to considefy, this section we consider the problem from the perspective
the case of two charged fluid species, and to see if it is possf NM. Here and in Sec. 4 we use S units. The fundamen-
sible to construct configurations where the required relationgg| quantities to consider are the forces to which each fluid
ship Eq. Q) is satisfied "on average”. If this is possible, then gpecies is subjected, which in turn give us the accelerations
the argument of Starting with a neutral fluid and ioniZing theof the fluid elements. As we restrict the prob|em to Spher-
right amount of atoms has a solid base. If it is not possiblejca| symmetry, we use spherical coordinates, and the func-
then there is no natural situation where ECD can be expectaghns that describe the dust species distributions are the cor-

to occur. _ _ _ . responding matter and charge densities,
Here we restrict our considerations to spherical symme-
try. This problem, within GR and without spatial symmetries, pa(r), oa(r), ps(r), og(r). (8)

has been solved in [8]. Restricting to spherical symmetry per-

mits dropping one technical assumption needed in GR. W is convenient to define two functions, the total mass and
consider three theories: NM, Nordstn gravity in Special charge inside the radius

Relativity (SR) and GR. As we are dealing with electrically o

charged matter, we need to satisfy Maxwell equations in the M(r) = 477/ (pa(F) + pp(7)) F2dF, ()]
setting of each theory. 0

The article is organized as follows. The considered prob- g N oy a2 o
lem and result are stated in Sec. 2. Then, the result is proved Q(r) = 47/0 (0a(7) + op(rF)) 7dr. (10)
using the formalism of NM in Sec. 3, of SR in Sec. 4, and of ) S )
GR in Sec. 5. We conclude with a Sec. 6. If we consider an element of specidssituated at radius
with volumedV, then the gravitational force is
2. Problem statement and no-go theorem M(r
g F,=-G Tg )pA(r)av, (11)

We consider two electrically charged dust species, denoted . .
A and B, in a static and spherically symmetric distribution. While the electric force is

This means that the density of matter and density of electric 1 Q(r)
charge of the first species are described by the functions Fe = Ireg 12 oa(r)oV. 12)
pa(r), oa(r), (5)  In order for the fluid element to be in equilibrium we need

and for the second species Fe = —Fy, and therefore

pp(r), o), (6) dregGM (r)pa(r) = Q(r)oa(r). (13)
wherer is the radial coordinate. The fluid species are sub-This is the equilibrium equation for the first fluid species. The
jected to gravitational and electromagnetic interaction. same argument for the second species gives

No-go theorem:There is no static spherically symmetric
distribution with two electrically charged dust species unless dmeoGM (r)pp(r) = Q(r)op(r). (14)
o4 = t\/41eoGpa and o = £/4reoGpp. (7)  Ifwe add (L3) and (14) and use the definition®) and (L0)
we get
There are a few remarks worth making. The first is that dregGM (r)M'(r) = Q(r)Q'(r), (15)

the same sign needs to be chosen in the equali#jeag both

species need to have the same type of charge for gravitationghich , using that\/(0) = 0 andQ(0) = 0, integrates to
and electrical forces to be balanced. Also, if ET$.gfe sat-

isfied, then the two species can not be distinguished by their Q(r) = £/dmwegGM(r). (16)
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If we insert this in Eq.13) and Eqg.L4) we obtain The governing equation fab is
oa(r) = £v/4meoGpa(r), and O0f — _ﬁrﬂ 22)
C
op(r) = £/ 4reoGpp(r). a7)

where T is the trace of the energy-momentum tensor.
It is clear from Eq.13) and Eq.L4) that in both equations The energy-momentum tensor is the sum of the energy-
the same sign needs to be chosen. The conclusion is theatomentum tensor of the dust species and the energy-
the relationship between charge density and mass density isomentum tensor of the electromagnetic field. For dust, the
fixed and the same for both fluid species, otherwise there isnergy momentum tensor is

no equilibrium and the distribution is not static. This com-

pletes the proof in the Newtonian paradigm. Ty =T +Tp" = Epaulyus + Fppulpuy.  (23)

The electromagnetic energy-momentum tensor is
4. Special relativity .
v v A v
In SR we are concerned with the fields that describe the dy- T =<0 <F” - ZFMFW 4 ) ' (24)
namical behaviour of the fluid species, that is, their four-
velocities. The other fields related to the species that we havkaking the trace we havg; = —c*(pa + pp) andT, = 0,
to account for are the matter density and the electric chargderefore

density. So, we have
Y 0% = 4nG(pa + pi). (25)

) g ) u'u' b b o ) u'u' b 18 . .
pa A 4 PB P B (18) As the last set of equations, we need the equations of mo-

as the mass densities, charge densities and four-velocities tén for the fluid species. The Lorentz force in a fluid element
the fluid species. The electromagnetic theory was incorpois

rated from the onset in SR, and in fact it was one of the main

motivations for the development of SR. On the contrary, the J& = oF"u,, (26)
;tgf\,?,ggfaﬁl:?h?; %?gitgr:n\fvoeffésggce:?ti?: ;:I)Sr;t?lgsr,r? isntrﬁlgrhdt__gnd the.gra\./itational force, which comes from the scalar field
strom scalar theory of gravity. This theory is constructed inlnteractlon, IS

S_R, the spgcetime is Minkowski qnd wg use staqdard Carte- FU = —pd,®(g" + ulu”) — pdak, 27)
sian coordinates. For a general discussion of Noddsthe- g

ory and for the conventions in units and signs we follow [9]. wherea* is the four-acceleration of the fluid element. The
This theory of gravity allows the introduction of the gravita- equation of motion is

tional interaction trough a scalar potential, whose source term

is the trace of the energy-momentum tensor. It needs to be pc’at = fI + fi. (28)
mentioned that Nordsim theory is not a physically correct ) _ ) )
theory, as it is not compatible with observations. In particu-If we put this together for each fluid species, the equations
lar, it predicts a periastron retardation instead of the observe@®
periastron advance. Nevertheless, it is a useful middle step

2 Mmoo w o, v
between NM and GR, which permits gaining insights within pale” + @)ay = oaFhuj

the relativistic setting. — pad,®(g" + uhut), (29)
For the electromagnetic field, we use the description ) " y

through a vector potentiald#, and gravity is given by a pp(c” + ®)aly = opF up

scalar potentialp. The electromagnetic field is governed by — ppO, (g + uluby). (30)

Maxwell equations. The Faraday tensor is

Now that we have collected all the equations that have
to be satisfied, we restrict them to the static case. In the
first place this means that none of the functions depend on
the time coordinate. Also, the four-velocities and four-
accelerations are

F,, =0,A, —0,A,. (29)
For simplicity we use the Lorenz gaugeé,A* = 0, and
therefore the equation fot# is

1
K K
DAl == (20) W=t =88 ah =t =0, (31)

wherelJ is the d’Alembertian operattrand;* is the electric Using these inZ0) we have that’
current density. With the notatioid8) we have )

1
(21) AA* = ——(0a +0)dy, (32)

T “w N
JH = oauly + opuly. co
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and therefore
AF =V, (33)

whereV is a function that does not depend and satisfies

1
AV =——(oa+o0p).
€

(34)

With this V' the Lorenz gauge condition oA* is directly
satisfied. Also, fromZ5),
AP =47G(pa + pB). (35)

Completing the transition to the static cas2g)(and B0)
give?
paV® = —04VV, ppV® =—opVV. (36)

It is interesting to note that the system of E@)((35)-(36)
is the same as in the static case in NM.

Finally, if we also impose spherical symmetry, then all
considered functions depend only on the radial coordinate,

and
1
AD = 72(73@’)/. (37)
Then, B5) can be integrated as
4 " M
o — :f / (pa(F) + p(F)7P2dF = 4G r(;)' (38)
0
Analogously, from84),
1 T
V'=——5 [ (0a(F) + op(F) Pdr
€T 0
1 Q(r
=—— (2 ). (39)
€y T
Inserting these last two equations in E86)we obtain
dregGMpa = Qoa, 4dwegGMpp = Qop. (40)

These equations are the sameE3){14) and the result fol-
lows identically.

5. General relativity

The Einstein equations are

Guv = 81T, (42)
whereG ), is the Einstein tensor,
1

G,Lw = R;w - iRg,uw (43)

being R, the Ricci tensor and the curvature scalaf,,

is the energy momentum tensor, and in our case it has a con-
tribution from the dust species and a contribution from the
electromagnetic field,

d 3
Ty =T, + T, (44)
The dust part is
TS, =Th +Th = pauiul + ppulu).  (45)
The electromagnetic energy-momentum tensor is
e 1 Y 1 YA
T;w = E ny/z,F v Z ’MF Guv | 5 (46)
where the Faraday tensor is givert’by
ELV = V;LAV - VVA,M' (47)
Although not an independent equation, the energy-

momentum conservatio/, T*" = 0, is useful to simplify
the calculations. This equation encodes an equation of mo-
tion if there is only one four-velocity in spacetime, meaning
the presence of only one species. It constitutes the most di-
rect and typical procedure for solving equilibrium equations
for isolated systems in GR, and it can be a direct analogy
to Newton’s equations. However, in this case, it is merely a
conservation equation, as happens in NM with energy con-
servation.

The Maxwell equations are

V,FR = dmjt, (48)

where j# is the current density. With the notatiodl) we
have
(49)

. L
gt = oauly + opuly.

As the last set of equations, we need the equations of mo-
tion for the fluid species, since the conservation equation does
not give them individually. Although there is more than one

In this section we attack the problem from the perspectiveyay to arrive at said equations, the shortest path is to take the

of GR. We use geometrized units, where= ¢ = 1, and

already known equation of movement for a fluid subjected

alsoey = (4m)~'. As in SR, for the description of the dust 1o electromagnetic interaction in SR, and use the equivalence
species the variables are the matter densities, charge densitig$nciple to generalize it to curved spacetime. The Lorentz

and four-velocities, that is

PA, TA, uiv PB; 0B, U% (41)

force in a fluid element is

fl=oF"y,,

(50)

For the electromagnetic field, we use again the electromagand the equation of motion is

netic potential,4,,, and for the spacetime the fundamental

object is the metricg,,,,.

pu’Vyut = fi (51)

Rev. Mex. Fis70030701
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Then, for each fluid species
paua Vyuly = oo F* July, (52)

ppupVyuly = opF!* ulp. (53)

Now we impose staticity and spherical symmetry, consid-
ering that we use adapted coordinatgsr, 6, ¢), and there-

Substituting this in Eq/G0) we get that
V = 4e?. (66)

Finally, Egs. 63) give

(67)

oa==tpa, op==Lpg,

fore all the involved functions depend only on the radial co-Where the sign needs to be the same as in@). This com-

ordinater. In these coordinates, the metric has the form

Guvdatdx” = —e22dt? + 2N dr?
+1r?(d6* + sin” 0d¢?). (54)
As both species are static, then
uy=up=e % (55)
and
j* = (oa+op)e "6, (56)

which used in Eq.48) shows that there is an "electrostatic

potential”, V' (r), such that
A, =V, (57)

and Maxwell equations simplify to
2
V"t ( —A - <I>’> V' = 471e? (54 + o). (58)
T
The non-zero Einstein equations are therr, 00 and

¢¢ components, although this is directly equivalent t@6.
After some rearrangement, the Einstein equations are

2N + e — 1 — 12722V = 811r2e® M (pa + pB), (59)

N — 1 —2r® = p2e2PY72, (60)
r®" 4 (1470 ) (' — ') = re 2*V"2, (61)
The conservation equation is
V'V + (2 — A — @’) V2
r

= 4we* 22 (p 4 + pp). (62)

For the fluid species, Eq$3) and 64) become:
pae*® =g V', ppe®d® =opV’. (63)

If we multiply (61) by » and subtracig0), we get
AN (1479 = (1+70)2 +r(rd” + @), (64)

which can be integrated as

A =1In(1 +r®"). (65)

pletes the proof.
For completeness, if we multiplis8) by V' and subtract
(62), then

oA+ OB =:|:(,0A—|—p3), (68)

where again the sign needs to coincide with the sigi®@), (
and is also a consequence 6f7). To have the full set of
equations, an equation fd¥ can be obtained frombg) or
(62). We get

O 4 (D +2/r)
47(1 4+ rd’)3

pa+pB = (69)

6. Discussion

We have presented and proved a no-go theorem in NM, SR
and GR. The first remark to be made is that the extension of
the theorem to more than two species is straightforward. The
problem at hand, as it has the same stating and result for the
three theories considered, highlights the particular perspec-
tive of each theory. In NM, the emphasis is on forces, and
the equilibrium of forces is what is important for the equilib-
rium of the fluid elements. In SR, also forces are important,
but the forces are the results of the fields, in this case the
electromagnetic field and the scalar gravitational field. Fi-
nally, in GR there is no gravitational field, and therefore the
fluid elements are accelerated, there is equilibrium because
the electromagnetic force has the exact value as to produce
the correct acceleration.

Our result implies that it is not possible to form spher-
ically symmetric static ECD objects using charged dust
species that do not satisfit)(and averaging the mass and
charge densities. Given that no known particle satisfis (
being the charge and mass not balanced by orders of magni-
tude, then star-like distributions of charged dust are not ex-
pected to occur.

In the context of GR, this means that black hole mimick-
ers made of ECD are not viable. Also, extremal black holes
are seen as the way of passing (or being an impassable bar-
rier) between black holes and naked singularities. It seems
that to form an extremal black hole by gravitational collapse
it is necessary to start with a distribution of matter which
is already extremal [10-12]. But it also seems that before
this extremal matter limit is attained any object undergoes
gravitational collapse, which strongly suggests that extremal
Reissner-Nordstrm (ERN) black holes can not be produced
by the collapse of charged spheres [13]. Then, ECD is the
natural candidate to form an ERN black hole by collapse,

Rev. Mex. Fis70030701
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being the relationshipl} the microscopic equivalent of the Acknowledgements
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shows that unless there is a particle with the correct charge-

mass ratio to start with this would not happen.
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