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Impact of impurities on the topological boundaries and edge state localization in
a staggered chain of atoms: SSH model and its topoelectrical circuit realization
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We study the Su-Schrieffer-Hegger model, perhaps the simplest realization of a topological insulator, in the presence of an embedded
impurity superlattice. We consider the impact of the said impurity by changing the hopping amplitudes between them and their nearest
neighbors in the topological boundaries and the edge state localization in the chain of atoms. Within a tight-binding approach and through
a topolectrical circuit simulation, we consider three different impurity-hopping amplitudes. We found a relaxation of the condition between
hopping parameters for the topologically trivial and non-trivial phase boundary and a more profound edge state localization given by the
impurity position within the supercell.
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1. Introduction interactions [21-23], two coupled SSH chains [24-26], di-
mensional extended models [31,32], and other modifications
The emergence of topological matter has challenged the poii81,32]. Depending upon the relative strength of the hopping
of view of the classification of quantum materials in termsparameters, the model exhibits a topologically trivial or non-
of their symmetry properties as described by unitary transtrivial phase, which is distinguished by the emergence of a
formations and opened the possibility of a wider classificazero mode in the spectrum. The topologically invariant quan-
tion. In that direction, number of studies have been carriedity turns out to be the Zak phase, which is either zero or one
out to understand the mechanisms responsible for topologin the trivial and nontrivial phases, respectively [33]. These
cal properties [1-7]. Time-reversal, particle-hole, and chiraffeatures make the SSH a favorite model to predict a nontrivial
symmetries, namely, unitary or antiunitary transformationgopological structure of some systems from the symmetries of
that commute or anticommute with the Hamiltonian, are thethe underlying Hamiltonian and the corresponding equations
building blocks of the so-called periodic table of topological of motion.
insulators [8]. Thesu-Schrieffer-Heegenodel (SSH) [9,10] The topological features of the SSH model have also
is one of the simplest models which represents a topologicdieen found in mechanical [34], photonic [35,36], acoustic
insulator (see, for instance, Refs. [5,11-17] and referenceld 8,37] and other systems [38-43]. The basic idea is that
therein). It describes the behavior of spinless electrons hoghesemetamaterialsan be described by a two-band Hamil-
ping through a one-dimensional lattice build up by two inter-tonian, which yields similar equations of motion in the tight-
spersed sublattices of atoms with alternating nearest neigtpinding regime as the model in question. In this regard, in the
bors (NNs)hopping amplitudes. As first introduced, this emergent field of topoelectric circuits [44-49] one can map
model is useful for studying one-dimensional molecules suclthe current flow in electric circuits with a network of pas-
as polyacetylene (CH) Its topological features, neverthe- sive elements like capacitors and inductors in similar form
less, have boosted the interest in studying it and its extensions a tight-binding Hamiltonian where capacitanceand in-
in a variety of situations, such as modulations of the hoppingsluctanced. serve to define the hopping parameters. Hence,
and on-site energies (driven SSH model [18-20]), long-rangerystal systems like the SSH model, graphene and others with
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FIGURE 1. a) Scheme of théV, i-super-SSH model foN = 3, ¢ = 3. The shaded area denotes the SSH-unit cell, the supercell number
is given by the parameter, the supercell position by, the species parameterdsand the impurity position is denoted by b) and c):
Supercells of the cas®¥ = 3,7 = 2 b) and: = 1 ¢), respectively. In all cases the green rectangles indicate the impurity atoms, the solid
thin and thick lines correspond to the hopping parametexsdw, respectively, while the dashed thin and thick lines denotetteandw’
impurity hopping parameters, respectively.

remarkable properties have found realization within thesenodel. We conclude in Sec. 5 and present some details of the
topoelectric circuits [47,50-52]. For the case of the SSHframework of topological circuits in an Appendix.

model, an alternating network of capacitors and inductors
play the role of a unit cell in a crystal whereas products of
capacitances and inductances define the hopping parameters.
The impedance of the system as generated by a resistor probe

and a sinusoidal signal with varying frequency can b.e used Petus begin our discussion by considering a one-dimensional
measure the response of the system. In the topological phasdehain of alternating atoms of specidsnd B, from which we

such an impedance is found to diverge at a certain frequenCé(efine the species parameter= A, B, and hopping parame-
in the topological phase of the system. This resonant regimf\erSv andw forthe A — B andB—:4 Ii,nks, as in the standard

can be expressed entirely in terms of the hopping lOaramem[ﬁesentation of the SSH model, in which a unit cell consists

of_ the f:rystal. Moreover, Iocallzatlon.of ;tates can be VisUrt o pair of atoms4 and B [see shaded area in Fig. 1a)]. Let
alized in terms of edge states formation in the topologicall

wivial oh Thi th ibility of studving i Yus also consider a supercell constructed by concatenating
hon-trivial phase. This opens the possibility ot Stuaying IN"gqy_nit cells. Such supercell has lengthand we label

teresting crystallographic properties of crystals in terms of 3he sites within the supercell as= 1,2, ... N. Notice that

network of LC circuits [44-52]. each site consists of one SSH-unit cell in which one atom of
Of special interest is the role of impurities in the sys- speciesB is replaced by an impurity consisting of an atom of

tem from both the crystallographic and the electronic pointa third specie€’ located inp = 4, as shown in Fig. 1a) for

of view. In this article, we explore the role of an impurity the caseV = 3, i = 3. The system can then be described

into the system in different setups by defining ffigi-super- by four principal numbersin = 1,2, 3, ..., n, ... denoting the

SSH model. First, we consider an impurity in a super-cellnumber of supercells in the arra)] denoting its lengthp

that interacts with the network and observe its impact on theepresenting the label of the site position within the supercell,

position of the resonance in the impedance. Then, we study denoting the atomic species, and an additional labedi-

the impact of its position within the sites of the super-cell.cating the position of the impurity within the supercell. We

We explore the phase diagram in the parameter space of tltb this arrangement th{év, i)-super-SSH modeFigure 1a)

hoppings of the chain and the emergence of edge states §hows cases of thg, 3)-super-SSH model, while Figs. 1b)

the topological phase of the system. We analyze the dynanand c) show the supercells of tfg 2)- and(3, 1)-super-SSH

ics both from the tight-binding perspective and then from anmodel, respectively.

electric circuit simulation. The rest of this article is organized  The effect of the impurities is based on the change of the

as follows. In the next section, we present the model undehopping amplitudes between sitds— C' andC' — A to the

consideration. In Sec. 3, we analyze the system in the Tightaew hoppingsy’ and w’, respectively. Under this assump-

Binding (TB) approach through the Python package “Pythtbtion, the system can still be thought as periodic, but now with

(Python Tight-Binding) [53]. In Sec. 4, we perform a numer- a new unit supercell. In the general case, the quantities

ical simulation of a topoelectrical circuit equivalent to our andw’ can be considered as independent parameters or even

SSH model with embedded impurity super-
lattices
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functions ofv andw. Moreover, for the purposes of this study, we explore electronic and topological properties of the system
considering them as scalar parametérs- v + Jv andw’ = w + dw, under different assumptions for three different cases.
We consider the periodic and the finite cases varying the supercell |&hgtid the impurity positior within the supercell.

As a first approach, below we consider a TB description of the system.

3. TB calculation

In this section, we compute the electronic and topological properties of our system from a TB perspective. We write the TB
Hamiltonian as

Hsuper = H,JSVSH + VN7ia (1)

where we define the extended SSH Hamiltonian as

N—-1
HEsy = > (vlm,p, B)(m,p, Al + wlm,p + 1, A)(m,p, B|) + v|m, N, B)(m, N, A| + w|m,1, A)(m, N, B|, (2)

p=1

and the impurity potential

dvlm,p, B — C)(m,p, Al + dw|m,p + 1, A)(m,p,B — C|, fori =1,2,.... N — 1,
Vni= 3)

dvlm,p, B — C)(m,p, Al + dw|m + 1,1, A)(m,p, B — C|, fori = N.

Itis important to note that in EQ3j, the notationB — C
means the replacement of an atdinby an impurity atom ! model allows to distinguish the topologically trivial
C. The exact algebraic diagonalization of the Hamiltonian(v,,(C) = 0) and non-trivial(~,,(C) = ) phases of the
in Eq. (1) gives as result tremendously intricate expressionsystem throughout the space of free parameters in each case.
for the energy-momentum dispersion, which results very dif-  We also explore the spatial wave function localization of
ficult to manipulate. For this reason, we employ the Pythtlthe topological zero mode state for a chain of finite length,
package [53] in order to get the eigenvalues and eigenveagamely, the edge states of the system, considering different
tors of the problem numerically. We consider three differentsizes of the chaim, supercell lengthV, and impurity loca-
configurations of the impurity-hopping amplitudes: In Casetion within the supercell;. For this purpose, we compute
I, we consider = 1.0 fixed andv’ = w’, namely, equal im- |+, (i)|> and observe its distribution along the location
purity hopping to both nearest neighbours, renderiagdy’
as the free parameters which we vary. In Case Il, we explorg.1. Case |
the well-known topologically non-trivial phase of the SSH
model withw = 1.0 andv = 0.5, and vice versa, namely, In this case, we fix the parameter= 1.0 and force the con-
the topologically trivial phase [5-7]. We retain these valuesditionv’ = w’, thus the parametersandv’ define the param-
fixed, while varying the free parametarsandw’. Finally,in  eter space. As can be observed in Fig. 2, from the behavior of
Case llI, we considew = w’ = 1.0 for which the impurity ~ the Berry phase we notice that the trivial or non-trivial topo-
does not affect thel — C' hopping amplitude. This permits logical phase structure of the system is not modified from the

the variation of the free parametéis v'). original SSH case [5-7], in which the topological non-trivial
For these three cases, we first explore the topologi-

cal phase of the infinite periodic system imposing periodic N=2 N=35

boundary conditions with the hopping parameters as defined e n

in each case. In order to do so, we first divide the First Bril- 271" pouas cs) I e

louin Zone (FBZ) of the system into a discrete grid /of
equally spaced intervals. In each point of the grid, we con-
sider its corresponding wave vectpr;), and we calculate
theBerry (Zak) Phas33] which represents the geometrical

phase of the system through a closed loop as 5
- 2T o 5 3 2 8 3
Yn(C) = —Im Z(Uk\aka, (4) ) v
k=0

FIGURE 2. Berry phase in the space of free parameters of the peri-
where the sum travels a closed path in reciprocal spa&e, odic NV, i-super-SSH model for Case | with = 1.0, v' = w’ and

|ug) = |uar). TheZsy underlying topological structure of the for different values ofV.
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10° 1;( « can be seen in the same figure, the supercell leNgéffects
L the edge state localization in a way thaténcreases, such
E = state resembles more and more the zero mode of the origi-
\' % % L] nal model already in the case &f = 8. This is completely
° expected since the impurity effeaddute with larger NV, that
10-4 4 \ o is, the impurity density reduces for larger supercells. From
\. X X this observations, we fix = 12 and N = 4 in what follows,
\0 ° namely, we consider chains witl8 sites.
o Now, from Fig. 4, we observe that the edge state local-
\ ization is weakened compared to the original SSH model, so
i that as long as the conditian< w is fulfilled; the parameter
5 7 9 11 13 15 17 19 v’ is not relevant in this case. On the contrary, the position of
site the impurity in the supercell is relevant, making the localiza-
FIGURE 3. Edge state localization of a finite chain of th i- tion stronger for more to the right positions and weaker for
super-SSH model for the case= 0.3, w = 1.0,v" = w’ = 0.5 more to the left positions. So that, the impurity in this case is
for different\V values with the impurity in the position= N —1. pyromoting edge localization the closer it is to the right edge.
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é In this case, we have the two benchmark SSH scenarios:
B 102 (w = 1.0; v = 0.5) which corresponds to a non-trivial topo-
P logical phase in the SSH model and & 0.5; v = 1.0) for a
g trivial topological phase. The free-parametersdrandw’.
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FIGURE 4. Edge state localization of th¥, i-super-SSH model for
the casav = 1.0 and ajv = 0.3, v' = w’ = 0.5 and b)v = 0.5,
v’ = w’ = 0.3, varying the position of the impurity, for N = 4.

phase is achieved so long@asc w. We can see that this con-
dition is maintained independently of the supercell length,
Note also that in the periodic case, the position of the impu-
rity within the supercell is irrelevant.

Focusing now on the localization of the zero mode edge
state, we notice that the length of a finite chain composed v’ v’
by the concatenation of supercells is unimportant for suf- 0l — |
ficiently long chains withn > 10. Graphics for these long Figure 5. Berry phase in the space of free parametefsi(’) of
chains where suppressed for space considerations in Fig. the N, i-super-SSH model for the case< w (v = 0.5,0.8 and
For the analysis, we work with = 12. On the other hand, as w = 1.0 were taken) fixed for differen¥ values.

a
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FIGURE 6. Edge state localization of th¥, i-super-SSH model for % i : =2
the casey < w (v = 0.5 andw = 1.0 were taken) fixed varying A i =1
the free parameters,w’ and the position of the impurity for the a) 1078 -
caseN = 4. a)v' = 0.4,w’ =2.0;b)v' =0.2,w’ = 0.8. -
1 [ ] X |

As can be observed in Fig. 5, for the first scenario, it §
is possible to have both non-trivial and trivial topological B o=m N
phases depending on the valuessbindw’. These phases o

are separated by a linear boundary in parameter space. Thisi i

a counter-intuitive behavior as compared to the original SSH %, Ha= ¢ x = o
model. Note that fotV = 2, there are many configurations g o : :
in which it is possible to switch from the non-trivial to the £ ;| mi=4 o X
trivial phase, and as the supercell length increases, the posg x 1=3

sibilities of swapping are reduced. For example, for= 8, =3 * : Zi

very largev’ and very small’ hoppings are needed to flip 107 — 1 E % B 4 & B = &
between phases. Additionally, in Fig. 6 we can observe the b) site

.pOS.SIbIIIty of reaching a more pronounced edge State_ Iocall-:lGUREB. Edge state localization of th¥, i-super-SSH model for

ization as compared to the original SSH zero mode with thqhe casey > w (v = 1.0 andw = 0.5 were taken) fixed varying

appropriate tuning of the parametersandw’. For exam- e free parameters,w’ and the position of the impurity for the

ple in case of Fig. 6a) it is accomplished with large valuescasen = 4. a)v’ = 0.05, w’ = 1.0; b) v’ = 0.05, w’ = 4.0.

of w’, whereas in the case of Fig. 6b) small values’ocre

the responsible of this unexpected behavior. Different frompossibility of switching to the non-trivial phase reduces\as

Case |, here the edge localization is reinforced as the impuritpecomes larger and the impurity dilutes. Notice also that just

locates more toward the left in the supercell, since, for examas in the previous Case, a linear interface between topological

ple, for the impurity positioni = 1, we obtain the largest and non-topological phases emerges.

localization. Figure 8 shows the interesting and counter-intuitive be-
A similar discussion follows in the scenario = 0.5; havior of the edge states localization in this case. From Fig. 7

v = 1.0, as observed in Fig. 7. It is well-known that for we know that we require small values of, and asw’ is

these values, the original SSH model exhibits a topologicallygreater we find that the localization is reinforced. In addition,

trivial character. Surprisingly, in our model we see that it isthe position of the impurity again plays a key role since the

possible to tune the system to a non-trivial topological phasedge state concentrates around its location, moving from pre-

by an appropriate choice of the impurity hopping. Thus, thevious sites and becoming more pronounced. Then, it present

Rev. Mex. Fis70040501
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N=4

FIGURE 9. Berry phase in the space of free parameters of¥hesuper-SSH model for the case= w’ = 1.0 for different NV values.

a jump to a less localized form in the next supercell, where8.3. Case Il

then it becomes mildly localized until eventually it becomes

. . . 1~ti / — A
tion becomes more pronounced for impurities placed morétriction overw’, namelyw = w’ = 1.0. As can be observed
toward the left in the supercell.

100-
ém-l
(5]
g
%10-4-
[ ]

£ o s =
B0 %3 .
g. e i=2 u -
- |'=1
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10°
LB
2

e
E
ﬁ ° H 2 & =

Y107
B
2 e o ¢ 3
‘5 10-¢ mi=4

% x I =3

g oliZ

1078 44 =1 . . ; . r ; .

1 5 9 11 13 15 17 19

b) site

FIGURE 10. Edge state localization of th¥, i-super-SSH model
for the casev = w’ = 1.0 varying the free parametersy’ and the
position of the impurity for the cast = 4. a)v = 0.5,v" = 0.2;

b)v = 1.1,v" = 0.05.

from Fig. 9, the region in parameter space where the topolog-
ical phase is found gets important modifications, relaxing the
topological conditionv < w of the ordinary model. Further-
more, the topologically trivial and non-trivial phases are sep-
arated by a more intricated shape of the boundary. Note that
for N = 2, the parameter space is symmetric under the ex-
changev «— v’. On the other hand, as the supercell length in-
creases, the impact of the parameténcreases whereas the
impact ofv’ reduces, and for large values &f, the bound-
aries of the topologically trivial and non-trivial phases of the
model tends to be as in the original SSH model (Fig. 2). This
makes sense because whi@ncreases, the impurity density
decreases and the effects of the impurity hoppings reduces.

Regarding the edge state localization, in Fig. 10 we ob-
serve the same behavior as in Case Il. In Fig. 10a), it can
be seen that through the tuning of impurity hopping param-
eter, it is possible to reinforce the localization as compared
to the original case. On the other hand, Fig. 10b) shows the
possibility of reaching to a non-typical non-trivial topologi-
cal phase for values > w. In both cases, the more to toward
the left the impurity is located within the supercell, the more
pronounced the localization becomes.

4. Topolectrical circuit calculations

In this section we explore again the topological phase
structure of the(V, i)-super-SSH model from an analogue
topolectrical circuit. For a self-contained discussion of the
subject, in the Appendix we present a brief introduction to
the framework of topolectrical circuits and the analogy of
their effective Hamiltonian with the Hamiltonian of a TB ap-
proach [44-49]. The connection is established from the ob-
servation that the role of the hopping amplitudes in the TB
approach are mapped to the capacitari¢esf capacitors in
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FIGURE 11. Topolectric circuit set up of th&', i-super-SSH model faN = 4 with the impurity placed in positioh= 4.

the network, whereas the “orbital” sites are considered as thef the variation of the’; = C, is to displace the resonance
nodes in which two capacitors and an inductor intersect. o the left of the frequency spectra as this parameter grows,
order to get trace of the topological edge states, we look foapproaching to the value of the original SSH resonance fre-
a resonance in the impedance of the circuit with a sinusoidajuencyw;..

signal probe. We further study the localization of the states by  In close analogy with the wave function localization of
the voltage drops in the nodes. We simulate our topolectricahe edge states, the voltage in the topological circuit is higher
circuit within the Pyspice package [54]. The topolectrical cir- at the edge of the circuit. The voltage localization is shown
cuits in this case have the network structure shown in Fig. 11in Fig. 12a) and b), where we can observe that for values
For all the next calculations we computed the circuit's re-C3; < (1, the localization is reinforced with respect to the
sponse to an sinusoidal input voltage current with amplitudgopolectrical SSH circuit shown in the blue line, while in the
of 1, = 10V, frequencyf = 100 kHz, and inductance value opposite case c), the localization is weakened. The position

L =10 pH. of the “impurity” in the circuit also plays a role, reproducing
the same behavior as in the TB calculations where the more
4.1. Casel to the right the impurity is located, the more pronounced the

In anal with C | of the TB calculation. w nsid rIocalization becomes. We must also mention that as in the
C a :dogy fr ase ; c;n ter ﬁ)fi"’rllcu a_o 1’0 cho nsél 18 calculation, the effect of the circuit length is irrelevant
1 and s as Iree parameters, G> = 10 pF a for long enough chains of circuit elements and that the effect

with the conditionCs = Cy, i.e. the sarr:_e capacnance_ of the supercell length is to dilute impurity effectsigsgets
value to both nodes connected from the “impurity capaci-

tor”. In Fig. 12(top) we depict the expected resonances of th(laarge.

impedance %,.) of the circuit as a function of the frequency

of the signal probe. Such resonance appears only when tle2. Case Il

systems is found in the non-trivial topological phase [44-49].

Figure 12(top, right) shows the behavior of the resonance urin this case we translate the conventions of Case Il of the
der the variation of”;. To understand the behavior of these TB calculation, and study the well-known topologically non-
curves, we recall that the resonance frequency for the origindfivial (C1 < C2) and trivial (C; > C3) cases under the

SSH model is found when variation of the free parametetg andC,. We compute the
1 impedance of the system and identify its resonant vaiue
Wy = W (5)  upon varying the values af; andC,. We are mostly inter-

1 2

ested in the non-intuitive cases in which a non-trivial topo-
We draw these values af. as vertical dotted lines in the fig- logical phase is found even though > C5. In Fig. 13 we

ure. We notice a deviation from these values in our model dugresent the resonances of the impedance and the voltage lo-
to the “impurity” capacitance€'s andCy. We can conclude calization forC; = 1.1uF, Cy = 1.0uF, varying C3 and

that, the value of’; slightly displaces the resonance peaks ofC,. From Fig. 13a), we observe the appearance of a sec-
the impedance. On the other hand, analyzing Fig. 12a), as wand resonance peak which contributes to voltage localiza-
fixed C; all the resonance peaks share essentially the sami®n. It has been shown that Fano resonances [55] appear as a
impedanceZ (w) so that we can easily detect that the effectdispersion mechanism in the circuits [56-58], and that is the

Rev. Mex. Fis70040501
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FIGURE 12. Impedance resonancg. (w) for the valuesC>

1.0 uF and a)C; = 0.5 uF, for different values o5 = C4; b) different

values ofC with Cs = C4 = 0.5 uF. Edge state localization of th¥, i-super-SSH topolectrical circuit for the cae = 1.0uF, )
Ci1 =05 uF, Cs =Cy = 0.3 uFand d)C; = 0.5 uF, Cs = C4 = 0.7 uF, varying the position of the “impurity” (capacitors) fof = 4.
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FIGURE 13. Impedance resonances (w) for the valuesC>; = 1.0 and a)Cy = 0.5 uF, for different values o5 = Cu uF; b) different
values ofCy with Cs = Cy = 0.5 uF. Edge state localization of th¥, i-super-SSH topolectrical circuit for the ca€e = 1.0 uF, ¢)
C1 =05 uF,Cs =Cy = 0.3 uFand d)C; = 0.5 uF, Cs = C4 = 0.7 uF, varying the position of the “impurity” (capacitors) fof = 4.
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responsible of the asymmetry of the resonance peaks as well Finally, in Fig. 14b) we show the voltage drops in the dif-

as the secondary peak appearance. The effe€t,af to  ferent nodes of the topolectrical circuit for different values of

slightly displace resonance peaks to the left as it grows. Od’; > 1uF, C3 and the impurity position;. We observe the

the other hand, the effect df; is to displace the resonances same behavior as with the TB approach: A staggered local-

peaks to the left as it grows. ization around the impurity with jumps every supercell, a re-
Voltage localization in the circuit is depicted in Fig. 13b). inforcing localization at the edge as the impurity places more

We observe on the one hand the same behavior regarding the the left, and the greater; and the smallet’s the more

impurity position as in the TB approach, that is, a staggereghronounced the localization becomes (compare with Fig. 10).

localization around the impurity with jumps every supercell,

and a reinforcing localization at thg edge as thg impyrity iSS. Conclusions

located more to the left. Also, keeping fixed the impurity po-

sition (i = 2), localization becomes more pronounced’@s |n this paper we have performed an study of the effects of

andC decrease (c.f. Fig. 8). embedded impurity superlattices in the SSH model over elec-
tronic and topological properties of the system. We consid-
4.3. Caselll ered impurity effects through the modification of the hopping

amplitudes between these impurities and their nearest neigh-
For this Case, which adopts the conventions of Case Ill of thgours in the array. Three different cases of these modified
TB calculation withC> = Cy = 1.0 pF, we focus our atten-  hoppings were considered: the Case | in which= 1.0,
tion into the non-intuitive region in which even fat, > C, v = w'; Case Il, wherev, w where fixed (=1.0, 0.5, re-
[notice thatC; = 2.0 uF is taken in Fig. 14a)], a non-trivial  spectively, and vice versa); and Case IlI, in which= 1.0,
topological phase develops. Thus, the only free parameter ig’ — . We used two frameworks to explore the proteries

actually C's. The resonance peak of the impedance for thesf the system: the TB approach and a topolectrical circuit
corresponding topolectrical circuit is plotted in Fig. 14a) for analogy.

different values ots. Using the TB approach, for the Case |, we obtain no mod-
ification of the topological boundaries of the different phases
2.00 ; of the model as compared to the original SSH model, indi-
—-==- C3=0.2 yF \ . . . K .. .
1759 v C3=0.8 uF ! cating that this kind of impurities do not impact the topolog-
T 150 T Gt E ical condition for finding the topological phase of the model.
£ T v Moreover, the position of the impurity within the supercell
%1'25' . | plays an important role in strengthening the localization of
K 1001 : i H e edge-states, specially as the impurity location is more to
{ . the ed tat peciall th p locat t
g 0.754 : ?; the right edge of the supercell. For Cases Il and lll, non-
g 050 i ii intuitive, interesting boundaries of the topologically differ-
' . | i i ent phases were obtained: a linear boundary that separates
E : t ph btained: a | boundary that t
S L ’ﬁ,\ LY topologically non-trivial and trivial phases, although the or-
0.00 venemu = dinary conditionv < w or v > w iS no longer required,
a) 26000 28000 30000 32000 34000 36000 38000 40000 and a non-linear-boundary between these phases. Effects are
EEpeney more notorious for smalV, recovering the usual SSH model
behavior for largeN, as the impurity effects get diluted. In
. R B K these cases, the position of the impurity within the supercell
—_— 5 ® W B N W i_s important in the Ioc_alizati_on of the_ edge-states jl_Jst as_in t_he
e o o o first case, but now reinforcing localization as the impurity is
o 1071 x x ® M placed more to the left.
s " # Using the topolectrical circuit analogue of the system, the
5 107 + s * ¢ expected resonances in the impedance of the circuit with a
g 1o-s| m ci=11,c3=001,i=4 sinusoidal signal probe where found in each case, deviating
X Cl=11,C3=0.01,1=2 from the resonant frequency, of the original SSH model
1070 s camocor i oo I because of the presence of the impurity. The free parame-
+ C1=2.5,C3=0.001,1=2 + 7 ters in each case are relevant in the position of the resonance
lm_“ T R TR peaks, while the same behavior in the voltage localization
) Node was realized as in the TB approach calculation. In all cases,

FIGURE 14. a) Impedance resonancas(w) for the values’, = the effect of the system Iength,_ is irrelevant for sufficiently
C11.0 uF andC; = 2.0 uF, for different values of’;. b) Edge  long systems, witln < 10, while the supercell lengthy,
state localization of théV, i-super-SSH topolectrical circuit for the ~ reduces the effect of the impurities in the systemévagets
caseC, = Cy = 1.0 uF varying the position of the “impurity”  larger, because of the impuritiilution in the system. The
(capacitors) forlV = 4. topolectrical circuit analogue of these models confirmed the
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results obtained in the TB approach. Additionally, within the a conductance,; plus the the current flowing to ground with
numerical simulation of the circuit, the existence of other resimpedances, !. Equation/A.1) can be expressed in matrix
onances was shown, related to Fano resonance in the sylerm as

tem, and perhaps these are responsible of small differences R . .

between models. Even though, we conclude that topologi- I'=(N+W)V=JV, (A.2)

cal circuits are as useful for studying electric and topological
features of materials as TB calculations. where N is the circuitLaplaciandepending on the conduc-

A general remark is that the results of this investigationta"ces. is a diagonal matrix depending on the circuit's

provide evidence for the possibility of relaxing the conditionsgr(l)lugdigg and/ = N + WAiz(;he grclblundhedLLapl)Iacian alsg
for the hopping amplitudes to distinguish between topologi da eda mltéance mfgnx c 't'r?';a %”t 3 aplacian can be
cally trivial and non-trivial phases in the model and to prowde ecomposed a&/ wit the adjacency or con-
a more tight localization of the edge-states by means of e ductances matrix and a diagonal matrix representing the

bedded impurity superlattices. Impurities in non-topologica I|st of total currents out of each node. For LC circuits, the
materials could be an important tool to provide them W|thd”V'ng voltage frequency is the cornerstone. In this sense,
topological features. Furthermore, impurities could be of in- itis convenient to Fourier transform E@.2), obtaining [49]
terest for technological applications by tightening the local-

o S . 1, = . A.3
ization of the wave vectors, that is, improving the surface a(w) Zjab( WVo(w) (A-3)
conduction in these materials.

This model can be described by the Hamiltonian The admittance matrix now reads
N Jap(w) = iw[Ngp(w) + dap Wa (w)], (A.4)
HS’SH:UZ |m B (m A|+hC)

m=1 where
N-1 1

erz |m + 1, A)(m, B| + h.c.), (6) Nab(w):*Oab+ma (A.5)
m=1

S . . and
resulting in eigenenergies given by
E = V2 + w? + 20w cos k. (7) Waw) = Ca w2L Z Nac, (A.6)

In Fig. 2a) are shown some energy-momentum dispersiowhereC,;, and L,; are the capacitance and inductance be-
relations for different values of, w. From Eq. (1), itis clear tween nodes: andb, respectively, and’, and L, are the
that Hssy = d(k)é. The path of thel(k) vector [Fig. 7b)]  capacitance and inductance between nadasd the ground.
is useful to calculate thBerry phasef the system [Fig. 3e)]. Most commonly, circuits are often studied by its voltage re-
Usually, a continuum model describes low-energy syssponse to an applied current. This can be done through the
tems in the large wavelength limit. The topology of the bandscorresponding impedance,. The two-point impedance is
structure should reveal the properties of all the bands struczalculated as [59]
ture in the first Brillouin zone. In practice, people prefer to
adopt a lattice model instead of handling with the continuum Zop = M7
model to explore the topology of these systems. A contin- I
uum model can be mapped into a lattice model within theyherer = I,,|. Expression in Eq/A.7) is used to calcu-
tight-binding approximation, in which the Brillouin zone is |ate the impedance of different circuits throughout this paper.
considered finite and periodic. This approximation is knowngxpressing the potentials in terms of the input current, that

(A7)

as aMinimal Lattice Model is inverting Eq.A.2), we use the regularized circuit Green’s
function,
Appendix
G = Z ¢n 19 (A.8)
A. Topolectrical circuits in0 )
Electrical circuits are described by Kirchoff's laws. Follow- Wherej, denotes the admittance eigenvalues/aindy, is
ing [49], we start from Kirchoff’s current law the corresponding.—dimensional eigenvector matrix. No-
tice that the admittance is defines¥is= Z~!. Thus, it is
I, = Z Cai(Va = Vi) + waVa, (A.1)  possible to express the impedance as
|wna 1/an\
which establishes that the input current in a nddeis equal Z (A.9)
to the current flowing out this node to other nodianked by In#0
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that is, the sum of the squared modulus of the differencdocalization is computed by measuring the voltage in each

between of the:—th admittance eigenmode divided by the node.

admittance eigenvalue. As can be seen from B)( the For comparative reasons, it is useful to establish some

impedance becomes larger, namely, exhibits a resonance, dharacteristics of the original topolectrical SSH circdit (=

the admittance eigenmodes are well-localized at one regiog, andC, = C,) [49]. First, when the conditio; < Cs

with small admittance eigenvalyg. This is the case of topo-  fulfills, a topological boundary mode exists, leading to a dras-

logical boundary resonances in topolectrical circuits, whereic increase in impedance (resonance) which presents in the

there exists a large density of protected boundary modes witfesonant frequencis). Also, applying an alternate current

Jn = 0. probe generates potential differences between the plates of
To make the correspondence between topolectrical cireach capacitofy; andV; for capacitorsC; andCs, respec-

cuits and Tight-Binding approaches, we should note that wevely, which indeed oscillate in anti-phase. Whépn < Cs,

are dealing with two eigenvalue equations: the potential configuration on the nodes (mid-gap mode) is
Circuits: J‘? = 9‘7 — f’ (AlO) given by’llio(n)a(]., 0, —t, Q, t2, O—t.‘g, 0, o ((_ﬂn’ O)), with
. . t = C1/C5. In the opposite case in whiagth > Cs (¢t > 1),

QM: Hy = Ev. (A.11) there exists no topological boundary mode and no mid-gap

node is found. Finally, In terms of the grounded Laplacian,

If we relate the nodes in the topolectrical circuit to lat- . o - : .
P the system with periodic boundary conditions is described by

tice sites, it is possible to establish the relatifip(w) =
iwHg,(w), with H(w) the Hamiltonian of the TB ap-

1
proach [49]. Jssm(kz) = iw (01 + Cy — w?L> 1
A.1. Topolectrical circuit of the (N, )-super-SSH model — iw[(C1 + Cycosky)o,
The topolectrical analogue of thed B)N —' -~ AC—SSH TB + Cosinkyoy). (A.12)

model in accomplished by considering the lattice sites as the

nodesl, 2, ... of the circuit in Fig. 11. The hopping amlitudes

between sitesl and B and vice versa are set as capacitanceAcknowledgements

valuesC; and Cjy, respectively. An impurity is represented

by a change in the capacitance linking its site with its nearesilCPP and AR would like to thank support from CONAH-

neighbours sites by the values@f andC, (Fig. 11). CyT under grant FORDECYT-PRONACES/61533/2020. AR
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