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Impact of impurities on the topological boundaries and edge state localization in
a staggered chain of atoms: SSH model and its topoelectrical circuit realization
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We study the Su-Schrieffer-Hegger model, perhaps the simplest realization of a topological insulator, in the presence of an embedded
impurity superlattice. We consider the impact of the said impurity by changing the hopping amplitudes between them and their nearest
neighbors in the topological boundaries and the edge state localization in the chain of atoms. Within a tight-binding approach and through
a topolectrical circuit simulation, we consider three different impurity-hopping amplitudes. We found a relaxation of the condition between
hopping parameters for the topologically trivial and non-trivial phase boundary and a more profound edge state localization given by the
impurity position within the supercell.
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1. Introduction

The emergence of topological matter has challenged the point
of view of the classification of quantum materials in terms
of their symmetry properties as described by unitary trans-
formations and opened the possibility of a wider classifica-
tion. In that direction, number of studies have been carried
out to understand the mechanisms responsible for topologi-
cal properties [1-7]. Time-reversal, particle-hole, and chiral
symmetries, namely, unitary or antiunitary transformations
that commute or anticommute with the Hamiltonian, are the
building blocks of the so-called periodic table of topological
insulators [8]. TheSu-Schrieffer-Heegermodel (SSH) [9,10]
is one of the simplest models which represents a topological
insulator (see, for instance, Refs. [5,11-17] and references
therein). It describes the behavior of spinless electrons hop-
ping through a one-dimensional lattice build up by two inter-
spersed sublattices of atoms with alternating nearest neigh-
bors (NNs)hopping amplitudes. As first introduced, this
model is useful for studying one-dimensional molecules such
as polyacetylene (CH)x. Its topological features, neverthe-
less, have boosted the interest in studying it and its extensions
in a variety of situations, such as modulations of the hoppings
and on-site energies (driven SSH model [18-20]), long-range

interactions [21-23], two coupled SSH chains [24-26], di-
mensional extended models [31,32], and other modifications
[31,32]. Depending upon the relative strength of the hopping
parameters, the model exhibits a topologically trivial or non-
trivial phase, which is distinguished by the emergence of a
zero mode in the spectrum. The topologically invariant quan-
tity turns out to be the Zak phase, which is either zero or one
in the trivial and nontrivial phases, respectively [33]. These
features make the SSH a favorite model to predict a nontrivial
topological structure of some systems from the symmetries of
the underlying Hamiltonian and the corresponding equations
of motion.

The topological features of the SSH model have also
been found in mechanical [34], photonic [35,36], acoustic
[18,37] and other systems [38-43]. The basic idea is that
thesemetamaterialscan be described by a two-band Hamil-
tonian, which yields similar equations of motion in the tight-
binding regime as the model in question. In this regard, in the
emergent field of topoelectric circuits [44-49] one can map
the current flow in electric circuits with a network of pas-
sive elements like capacitors and inductors in similar form
to a tight-binding Hamiltonian where capacitancesC and in-
ductancesL serve to define the hopping parameters. Hence,
crystal systems like the SSH model, graphene and others with
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FIGURE 1. a) Scheme of theN, i-super-SSH model forN = 3, i = 3. The shaded area denotes the SSH-unit cell, the supercell number
is given by the parameterm, the supercell position byp, the species parameter isα and the impurity position is denoted byi. b) and c):
Supercells of the caseN = 3, i = 2 b) andi = 1 c), respectively. In all cases the green rectangles indicate the impurity atoms, the solid
thin and thick lines correspond to the hopping parametersv andw, respectively, while the dashed thin and thick lines denote thev′ andw′

impurity hopping parameters, respectively.

remarkable properties have found realization within these
topoelectric circuits [47,50-52]. For the case of the SSH
model, an alternating network of capacitors and inductors
play the role of a unit cell in a crystal whereas products of
capacitances and inductances define the hopping parameters.
The impedance of the system as generated by a resistor probe
and a sinusoidal signal with varying frequency can be used to
measure the response of the system. In the topological phase,
such an impedance is found to diverge at a certain frequency
in the topological phase of the system. This resonant regime
can be expressed entirely in terms of the hopping parameters
of the crystal. Moreover, localization of states can be visu-
alized in terms of edge states formation in the topologically
non-trivial phase. This opens the possibility of studying in-
teresting crystallographic properties of crystals in terms of a
network ofLC circuits [44-52].

Of special interest is the role of impurities in the sys-
tem from both the crystallographic and the electronic point
of view. In this article, we explore the role of an impurity
into the system in different setups by defining theN, i-super-
SSH model. First, we consider an impurity in a super-cell
that interacts with the network and observe its impact on the
position of the resonance in the impedance. Then, we study
the impact of its position within the sites of the super-cell.
We explore the phase diagram in the parameter space of the
hoppings of the chain and the emergence of edge states in
the topological phase of the system. We analyze the dynam-
ics both from the tight-binding perspective and then from an
electric circuit simulation. The rest of this article is organized
as follows. In the next section, we present the model under
consideration. In Sec. 3, we analyze the system in the Tight-
Binding (TB) approach through the Python package “Pythtb”
(Python Tight-Binding) [53]. In Sec. 4, we perform a numer-
ical simulation of a topoelectrical circuit equivalent to our

model. We conclude in Sec. 5 and present some details of the
framework of topological circuits in an Appendix.

2. SSH model with embedded impurity super-
lattices

Let us begin our discussion by considering a one-dimensional
chain of alternating atoms of speciesA andB, from which we
define the species parameterα = A,B, and hopping parame-
tersv andw for theA−B andB−A links, as in the standard
presentation of the SSH model, in which a unit cell consists
of a pair of atomsA andB [see shaded area in Fig. 1a)]. Let
us also consider a supercell constructed by concatenatingN
SSH-unit cells. Such supercell has lengthN and we label
the sites within the supercell asp = 1, 2, ..., N . Notice that
each site consists of one SSH-unit cell in which one atom of
speciesB is replaced by an impurity consisting of an atom of
a third speciesC located inp = i, as shown in Fig. 1a) for
the caseN = 3, i = 3. The system can then be described
by four principal numbers:m = 1, 2, 3, ..., n, ... denoting the
number of supercells in the array,N denoting its length,p
representing the label of the site position within the supercell,
α denoting the atomic species, and an additional labeli indi-
cating the position of the impurity within the supercell. We
dub this arrangement the(N, i)-super-SSH model. Figure 1a)
shows cases of the(3, 3)-super-SSH model, while Figs. 1b)
and c) show the supercells of the(3, 2)- and(3, 1)-super-SSH
model, respectively.

The effect of the impurities is based on the change of the
hopping amplitudes between sitesA − C andC − A to the
new hoppingsv′ andw′, respectively. Under this assump-
tion, the system can still be thought as periodic, but now with
a new unit supercell. In the general case, the quantitiesv′

andw′ can be considered as independent parameters or even
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functions ofv andw. Moreover, for the purposes of this study, we explore electronic and topological properties of the system
considering them as scalar parametersv′ = v + δv andw′ = w + δw, under different assumptions for three different cases.
We consider the periodic and the finite cases varying the supercell lengthN and the impurity positioni within the supercell.
As a first approach, below we consider a TB description of the system.

3. TB calculation

In this section, we compute the electronic and topological properties of our system from a TB perspective. We write the TB
Hamiltonian as

Hsuper = HN
SSH + VN,i, (1)

where we define the extended SSH Hamiltonian as

HN
SSH =

N−1∑
p=1

(v|m, p, B〉〈m, p, A|+ w|m, p + 1, A〉〈m, p, B|) + v|m,N,B〉〈m,N, A|+ w|m, 1, A〉〈m,N, B|, (2)

and the impurity potential

VN,i =

{
δv|m, p,B → C〉〈m, p, A|+ δw|m, p + 1, A〉〈m, p,B → C|, for i = 1, 2, ..., N − 1,

δv|m, p,B → C〉〈m, p, A|+ δw|m + 1, 1, A〉〈m, p,B → C|, for i = N.
(3)

It is important to note that in Eq. (3), the notationB → C
means the replacement of an atomB by an impurity atom
C. The exact algebraic diagonalization of the Hamiltonian
in Eq. (1) gives as result tremendously intricate expressions
for the energy-momentum dispersion, which results very dif-
ficult to manipulate. For this reason, we employ the Pythtb
package [53] in order to get the eigenvalues and eigenvec-
tors of the problem numerically. We consider three different
configurations of the impurity-hopping amplitudes: In Case
I, we considerw = 1.0 fixed andv′ = w′, namely, equal im-
purity hopping to both nearest neighbours, renderingv andv′

as the free parameters which we vary. In Case II, we explore
the well-known topologically non-trivial phase of the SSH
model withw = 1.0 andv = 0.5, and vice versa, namely,
the topologically trivial phase [5-7]. We retain these values
fixed, while varying the free parametersv′ andw′. Finally, in
Case III, we considerw = w′ = 1.0 for which the impurity
does not affect theA − C hopping amplitude. This permits
the variation of the free parameters(v, v′).

For these three cases, we first explore the topologi-
cal phase of the infinite periodic system imposing periodic
boundary conditions with the hopping parameters as defined
in each case. In order to do so, we first divide the First Bril-
louin Zone (FBZ) of the system into a discrete grid ofM
equally spaced intervals. In each point of the grid, we con-
sider its corresponding wave vector|uk〉, and we calculate
theBerry (Zak) Phase[33] which represents the geometrical
phase of the system through a closed loop as

γn(C) = −Im
M∑

k=0

〈uk|∂kuk〉, (4)

where the sum travels a closed path in reciprocal space,i.e.,
|u0〉 = |uM 〉. TheZ2 underlying topological structure of the

model allows to distinguish the topologically trivial
(γn(C) = 0) and non-trivial(γn(C) = π) phases of the
system throughout the space of free parameters in each case.

We also explore the spatial wave function localization of
the topological zero mode state for a chain of finite length,
namely, the edge states of the system, considering different
sizes of the chainn, supercell lengthN , and impurity loca-
tion within the supercell,i. For this purpose, we compute
|ψ0(i)|2 and observe its distribution along the locationi.

3.1. Case I

In this case, we fix the parameterw = 1.0 and force the con-
ditionv′ = w′, thus the parametersv andv′ define the param-
eter space. As can be observed in Fig. 2, from the behavior of
the Berry phase we notice that the trivial or non-trivial topo-
logical phase structure of the system is not modified from the
original SSH case [5-7], in which the topological non-trivial

FIGURE 2. Berry phase in the space of free parameters of the peri-
odic N, i-super-SSH model for Case I withw = 1.0, v′ = w′ and
for different values ofN .
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FIGURE 3. Edge state localization of a finite chain of theN, i-
super-SSH model for the casev = 0.3, w = 1.0, v′ = w′ = 0.5
for differentN values with the impurity in the positioni = N − 1.

FIGURE 4. Edge state localization of theN, i-super-SSH model for
the casew = 1.0 and a)v = 0.3, v′ = w′ = 0.5 and b)v = 0.5,
v′ = w′ = 0.3, varying the position of the impurity,i, for N = 4.

phase is achieved so long asv < w. We can see that this con-
dition is maintained independently of the supercell length,N .
Note also that in the periodic case, the position of the impu-
rity within the supercell is irrelevant.

Focusing now on the localization of the zero mode edge
state, we notice that the length of a finite chain composed
by the concatenation ofn supercells is unimportant for suf-
ficiently long chains withn ≥ 10. Graphics for these long
chains where suppressed for space considerations in Fig. 3.
For the analysis, we work withn = 12. On the other hand, as

can be seen in the same figure, the supercell lengthN affects
the edge state localization in a way that, asN increases, such
state resembles more and more the zero mode of the origi-
nal model already in the case ofN = 8. This is completely
expected since the impurity effectsdilute with largerN , that
is, the impurity density reduces for larger supercells. From
this observations, we fixn = 12 andN = 4 in what follows,
namely, we consider chains with48 sites.

Now, from Fig. 4, we observe that the edge state local-
ization is weakened compared to the original SSH model, so
that as long as the conditionv < w is fulfilled; the parameter
v′ is not relevant in this case. On the contrary, the position of
the impurity in the supercell is relevant, making the localiza-
tion stronger for more to the right positions and weaker for
more to the left positions. So that, the impurity in this case is
promoting edge localization the closer it is to the right edge.

3.2. Case II

In this case, we have the two benchmark SSH scenarios:
(w = 1.0; v = 0.5) which corresponds to a non-trivial topo-
logical phase in the SSH model and (w = 0.5; v = 1.0) for a
trivial topological phase. The free-parameters arev′ andw′.

FIGURE 5. Berry phase in the space of free parameters (v′, w′) of
theN, i-super-SSH model for the casev < w (v = 0.5, 0.8 and
w = 1.0 were taken) fixed for differentN values.
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FIGURE 6. Edge state localization of theN, i-super-SSH model for
the casev < w (v = 0.5 andw = 1.0 were taken) fixed varying
the free parametersv′,w′ and the position of the impurity for the
caseN = 4. a)v′ = 0.4, w′ = 2.0; b) v′ = 0.2, w′ = 0.8.

As can be observed in Fig. 5, for the first scenario, it
is possible to have both non-trivial and trivial topological
phases depending on the values ofv′ andw′. These phases
are separated by a linear boundary in parameter space. This is
a counter-intuitive behavior as compared to the original SSH
model. Note that forN = 2, there are many configurations
in which it is possible to switch from the non-trivial to the
trivial phase, and as the supercell length increases, the pos-
sibilities of swapping are reduced. For example, forN = 8,
very largev′ and very smallv′ hoppings are needed to flip
between phases. Additionally, in Fig. 6 we can observe the
possibility of reaching a more pronounced edge state local-
ization as compared to the original SSH zero mode with the
appropriate tuning of the parametersv′ andw′. For exam-
ple in case of Fig. 6a) it is accomplished with large values
of w′, whereas in the case of Fig. 6b) small values ofv′ are
the responsible of this unexpected behavior. Different from
Case I, here the edge localization is reinforced as the impurity
locates more toward the left in the supercell, since, for exam-
ple, for the impurity positioni = 1, we obtain the largest
localization.

A similar discussion follows in the scenariow = 0.5;
v = 1.0, as observed in Fig. 7. It is well-known that for
these values, the original SSH model exhibits a topologically
trivial character. Surprisingly, in our model we see that it is
possible to tune the system to a non-trivial topological phase
by an appropriate choice of the impurity hopping. Thus, the

FIGURE 7. Berry phase in the space of free parameters of theN, i-
super-SSH model for the casev > w (v = 1.0 andw = 0.5 were
taken) fixed for differentN values.

FIGURE 8. Edge state localization of theN, i-super-SSH model for
the casev > w (v = 1.0 andw = 0.5 were taken) fixed varying
the free parametersv′,w′ and the position of the impurity for the
caseN = 4. a)v′ = 0.05, w′ = 1.0; b) v′ = 0.05, w′ = 4.0.

possibility of switching to the non-trivial phase reduces asN
becomes larger and the impurity dilutes. Notice also that just
as in the previous Case, a linear interface between topological
and non-topological phases emerges.

Figure 8 shows the interesting and counter-intuitive be-
havior of the edge states localization in this case. From Fig. 7
we know that we require small values ofv′, and asw′ is
greater we find that the localization is reinforced. In addition,
the position of the impurity again plays a key role since the
edge state concentrates around its location, moving from pre-
vious sites and becoming more pronounced. Then, it present

Rev. Mex. Fis.70040501
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FIGURE 9. Berry phase in the space of free parameters of theN, i-super-SSH model for the casew = w′ = 1.0 for differentN values.

a jump to a less localized form in the next supercell, where
then it becomes mildly localized until eventually it becomes
more localized and it jumps again. In this sense, the localiza-
tion becomes more pronounced for impurities placed more
toward the left in the supercell.

FIGURE 10. Edge state localization of theN, i-super-SSH model
for the casew = w′ = 1.0 varying the free parametersv,v′ and the
position of the impurity for the caseN = 4. a)v = 0.5, v′ = 0.2;
b) v = 1.1, v′ = 0.05.

3.3. Case III

Next, we replicate the conditions of Case I with a different re-
striction overw′, namelyw = w′ = 1.0. As can be observed
from Fig. 9, the region in parameter space where the topolog-
ical phase is found gets important modifications, relaxing the
topological conditionv < w of the ordinary model. Further-
more, the topologically trivial and non-trivial phases are sep-
arated by a more intricated shape of the boundary. Note that
for N = 2, the parameter space is symmetric under the ex-
changev ↔ v′. On the other hand, as the supercell length in-
creases, the impact of the parameterv increases whereas the
impact ofv′ reduces, and for large values ofN , the bound-
aries of the topologically trivial and non-trivial phases of the
model tends to be as in the original SSH model (Fig. 2). This
makes sense because whileN increases, the impurity density
decreases and the effects of the impurity hoppings reduces.

Regarding the edge state localization, in Fig. 10 we ob-
serve the same behavior as in Case II. In Fig. 10a), it can
be seen that through the tuning of impurity hopping param-
eter, it is possible to reinforce the localization as compared
to the original case. On the other hand, Fig. 10b) shows the
possibility of reaching to a non-typical non-trivial topologi-
cal phase for valuesv > w. In both cases, the more to toward
the left the impurity is located within the supercell, the more
pronounced the localization becomes.

4. Topolectrical circuit calculations

In this section we explore again the topological phase
structure of the(N, i)-super-SSH model from an analogue
topolectrical circuit. For a self-contained discussion of the
subject, in the Appendix we present a brief introduction to
the framework of topolectrical circuits and the analogy of
their effective Hamiltonian with the Hamiltonian of a TB ap-
proach [44-49]. The connection is established from the ob-
servation that the role of the hopping amplitudes in the TB
approach are mapped to the capacitancesCi of capacitors in
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FIGURE 11. Topolectric circuit set up of theN, i-super-SSH model forN = 4 with the impurity placed in positioni = 4.

the network, whereas the “orbital” sites are considered as the
nodes in which two capacitors and an inductor intersect. In
order to get trace of the topological edge states, we look for
a resonance in the impedance of the circuit with a sinusoidal
signal probe. We further study the localization of the states by
the voltage drops in the nodes. We simulate our topolectrical
circuit within the Pyspice package [54]. The topolectrical cir-
cuits in this case have the network structure shown in Fig. 11.
For all the next calculations we computed the circuit’s re-
sponse to an sinusoidal input voltage current with amplitude
of V0 = 10 V, frequencyf = 100 kHz, and inductance value
L = 10 µH.

4.1. Case I

In analogy with Case I of the TB calculation, we consider
C1 and C3 as free parameters, fixingC2 = 1.0 µF and
with the conditionC3 = C4, i.e. the same capacitance
value to both nodes connected from the “impurity capaci-
tor”. In Fig. 12(top) we depict the expected resonances of the
impedance (Zr) of the circuit as a function of the frequency
of the signal probe. Such resonance appears only when the
systems is found in the non-trivial topological phase [44-49].
Figure 12(top, right) shows the behavior of the resonance un-
der the variation ofC1. To understand the behavior of these
curves, we recall that the resonance frequency for the original
SSH model is found when

ωr =
1√

L(C1 + C2)
. (5)

We draw these values ofωr as vertical dotted lines in the fig-
ure. We notice a deviation from these values in our model due
to the “impurity” capacitancesC3 andC4. We can conclude
that, the value ofC1 slightly displaces the resonance peaks of
the impedance. On the other hand, analyzing Fig. 12a), as we
fixed C1 all the resonance peaks share essentially the same
impedanceZ(ω) so that we can easily detect that the effect

of the variation of theC3 = C4 is to displace the resonance
to the left of the frequency spectra as this parameter grows,
approaching to the value of the original SSH resonance fre-
quency,ωr.

In close analogy with the wave function localization of
the edge states, the voltage in the topological circuit is higher
at the edge of the circuit. The voltage localization is shown
in Fig. 12a) and b), where we can observe that for values
C3 < C1, the localization is reinforced with respect to the
topolectrical SSH circuit shown in the blue line, while in the
opposite case c), the localization is weakened. The position
of the “impurity” in the circuit also plays a role, reproducing
the same behavior as in the TB calculations where the more
to the right the impurity is located, the more pronounced the
localization becomes. We must also mention that as in the
TB calculation, the effect of the circuit length is irrelevant
for long enough chains of circuit elements and that the effect
of the supercell length is to dilute impurity effects asN gets
large.

4.2. Case II

In this case we translate the conventions of Case II of the
TB calculation, and study the well-known topologically non-
trivial (C1 < C2) and trivial (C1 > C2) cases under the
variation of the free parametersC3 andC4. We compute the
impedance of the system and identify its resonant valueZr

upon varying the values ofC3 andC4. We are mostly inter-
ested in the non-intuitive cases in which a non-trivial topo-
logical phase is found even thoughC1 > C2. In Fig. 13 we
present the resonances of the impedance and the voltage lo-
calization forC1 = 1.1µF, C2 = 1.0µF, varying C3 and
C4. From Fig. 13a), we observe the appearance of a sec-
ond resonance peak which contributes to voltage localiza-
tion. It has been shown that Fano resonances [55] appear as a
dispersion mechanism in the circuits [56-58], and that is the

Rev. Mex. Fis.70040501
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FIGURE 12. Impedance resonanceZr(ω) for the valuesC2 = 1.0 µF and a)C1 = 0.5 µF, for different values ofC3 = C4; b) different
values ofC1 with C3 = C4 = 0.5 µF. Edge state localization of theN, i-super-SSH topolectrical circuit for the caseC2 = 1.0µF, c)
C1 = 0.5 µF, C3 = C4 = 0.3 µF and d)C1 = 0.5 µF, C3 = C4 = 0.7 µF, varying the position of the “impurity” (capacitors) forN = 4.

FIGURE 13. Impedance resonancesZr(ω) for the valuesC2 = 1.0 and a)C1 = 0.5 µF, for different values ofC3 = C4 µF; b) different
values ofC1 with C3 = C4 = 0.5 µF. Edge state localization of theN, i-super-SSH topolectrical circuit for the caseC2 = 1.0 µF, c)
C1 = 0.5 µF, C3 = C4 = 0.3 µF and d)C1 = 0.5 µF, C3 = C4 = 0.7 µF, varying the position of the “impurity” (capacitors) forN = 4.

Rev. Mex. Fis.70040501
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responsible of the asymmetry of the resonance peaks as well
as the secondary peak appearance. The effect ofC4 is to
slightly displace resonance peaks to the left as it grows. On
the other hand, the effect ofC3 is to displace the resonances
peaks to the left as it grows.

Voltage localization in the circuit is depicted in Fig. 13b).
We observe on the one hand the same behavior regarding the
impurity position as in the TB approach, that is, a staggered
localization around the impurity with jumps every supercell,
and a reinforcing localization at the edge as the impurity is
located more to the left. Also, keeping fixed the impurity po-
sition (i = 2), localization becomes more pronounced asC3

andC4 decrease (c.f. Fig. 8).

4.3. Case III

For this Case, which adopts the conventions of Case III of the
TB calculation withC2 = C4 = 1.0 µF, we focus our atten-
tion into the non-intuitive region in which even forC1 > C2

[notice thatC1 = 2.0 µF is taken in Fig. 14a)], a non-trivial
topological phase develops. Thus, the only free parameter is
actuallyC3. The resonance peak of the impedance for the
corresponding topolectrical circuit is plotted in Fig. 14a) for
different values ofC3.

FIGURE 14. a) Impedance resonancesZr(ω) for the valuesC2 =
C41.0 µF andC1 = 2.0 µF, for different values ofC3. b) Edge
state localization of theN, i-super-SSH topolectrical circuit for the
caseC2 = C4 = 1.0 µF varying the position of the “impurity”
(capacitors) forN = 4.

Finally, in Fig. 14b) we show the voltage drops in the dif-
ferent nodes of the topolectrical circuit for different values of
C1 > 1µF, C3 and the impurity position,i. We observe the
same behavior as with the TB approach: A staggered local-
ization around the impurity with jumps every supercell, a re-
inforcing localization at the edge as the impurity places more
to the left, and the greaterC1 and the smallerC3 the more
pronounced the localization becomes (compare with Fig. 10).

5. Conclusions

In this paper we have performed an study of the effects of
embedded impurity superlattices in the SSH model over elec-
tronic and topological properties of the system. We consid-
ered impurity effects through the modification of the hopping
amplitudes between these impurities and their nearest neigh-
bours in the array. Three different cases of these modified
hoppings were considered: the Case I in whichw = 1.0,
v′ = w′; Case II, wherev, w where fixed (=1.0, 0.5, re-
spectively, and vice versa); and Case III, in whichw = 1.0,
w′ = w. We used two frameworks to explore the proteries
of the system: the TB approach and a topolectrical circuit
analogy.

Using the TB approach, for the Case I, we obtain no mod-
ification of the topological boundaries of the different phases
of the model as compared to the original SSH model, indi-
cating that this kind of impurities do not impact the topolog-
ical condition for finding the topological phase of the model.
Moreover, the position of the impurity within the supercell
plays an important role in strengthening the localization of
the edge-states, specially as the impurity location is more to
the right edge of the supercell. For Cases II and III, non-
intuitive, interesting boundaries of the topologically differ-
ent phases were obtained: a linear boundary that separates
topologically non-trivial and trivial phases, although the or-
dinary conditionv < w or v > w is no longer required,
and a non-linear-boundary between these phases. Effects are
more notorious for smallN , recovering the usual SSH model
behavior for largeN , as the impurity effects get diluted. In
these cases, the position of the impurity within the supercell
is important in the localization of the edge-states just as in the
first case, but now reinforcing localization as the impurity is
placed more to the left.

Using the topolectrical circuit analogue of the system, the
expected resonances in the impedance of the circuit with a
sinusoidal signal probe where found in each case, deviating
from the resonant frequencyωr of the original SSH model
because of the presence of the impurity. The free parame-
ters in each case are relevant in the position of the resonance
peaks, while the same behavior in the voltage localization
was realized as in the TB approach calculation. In all cases,
the effect of the system length,n, is irrelevant for sufficiently
long systems, withn ≤ 10, while the supercell length,N ,
reduces the effect of the impurities in the systems asN gets
larger, because of the impuritydilution in the system. The
topolectrical circuit analogue of these models confirmed the
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results obtained in the TB approach. Additionally, within the
numerical simulation of the circuit, the existence of other res-
onances was shown, related to Fano resonance in the sys-
tem, and perhaps these are responsible of small differences
between models. Even though, we conclude that topologi-
cal circuits are as useful for studying electric and topological
features of materials as TB calculations.

A general remark is that the results of this investigation
provide evidence for the possibility of relaxing the conditions
for the hopping amplitudes to distinguish between topologi-
cally trivial and non-trivial phases in the model and to provide
a more tight localization of the edge-states by means of em-
bedded impurity superlattices. Impurities in non-topological
materials could be an important tool to provide them with
topological features. Furthermore, impurities could be of in-
terest for technological applications by tightening the local-
ization of the wave vectors, that is, improving the surface
conduction in these materials.

This model can be described by the Hamiltonian

HSSH = v

N∑
m=1

(|m,B〉〈m,A|+ h.c.)

+ w

N−1∑
m=1

(|m + 1, A〉〈m,B|+ h.c.), (6)

resulting in eigenenergies given by

E =
√

v2 + w2 + 2vw cos k. (7)

In Fig. 2a) are shown some energy-momentum dispersion
relations for different values ofv, w. From Eq. (1), it is clear
thatHSSH = d(k)σ̂. The path of thed(k) vector [Fig. 7b)]
is useful to calculate theBerry phaseof the system [Fig. 3e)].

Usually, a continuum model describes low-energy sys-
tems in the large wavelength limit. The topology of the bands
structure should reveal the properties of all the bands struc-
ture in the first Brillouin zone. In practice, people prefer to
adopt a lattice model instead of handling with the continuum
model to explore the topology of these systems. A contin-
uum model can be mapped into a lattice model within the
tight-binding approximation, in which the Brillouin zone is
considered finite and periodic. This approximation is known
as aMinimal Lattice Model.

Appendix

A. Topolectrical circuits

Electrical circuits are described by Kirchoff’s laws. Follow-
ing [49], we start from Kirchoff’s current law

Ia =
∑

i

cai(Va − Vi) + waVA, (A.1)

which establishes that the input current in a node,Ia, is equal
to the current flowing out this node to other nodei linked by

a conductancecai plus the the current flowing to ground with
impedancew−1

a . Equation (A.1) can be expressed in matrix
form as

~I = (N + W )~V = J ~V , (A.2)

whereN is the circuitLaplaciandepending on the conduc-
tances,W is a diagonal matrix depending on the circuit’s
grounding, andJ = N + W is the grounded Laplacian, also
called admittance matrix. Additionally, the Laplacian can be
decomposed asN = D − C, with C the adjacency or con-
ductances matrix andD a diagonal matrix representing the
list of total currents out of each node. For LC circuits, the
driving voltage frequencyω is the cornerstone. In this sense,
it is convenient to Fourier transform Eq. (A.2), obtaining [49]

Ia(ω) =
∑

b

Jab(ω)Vb(ω). (A.3)

The admittance matrix now reads

Jab(ω) = iω[Nab(ω) + δabWa(ω)], (A.4)

where

Nab(ω) = −Cab +
1

ω2Lab
, (A.5)

and

Wa(ω) = Ca − 1
ω2La

−
∑

c

Nac, (A.6)

whereCab andLab are the capacitance and inductance be-
tween nodesa and b, respectively, andCa and La are the
capacitance and inductance between nodesa and the ground.
Most commonly, circuits are often studied by its voltage re-
sponse to an applied current. This can be done through the
corresponding impedance,Z. The two-point impedance is
calculated as [59]

Zab =
(Va − Vb)

I
, (A.7)

whereI = |Iab|. Expression in Eq. (A.7) is used to calcu-
late the impedance of different circuits throughout this paper.
Expressing the potentials in terms of the input current, that
is inverting Eq. (A.2), we use the regularized circuit Green’s
function,

G =
∑

jn 6=0

1
jn

ψnψ†n, (A.8)

wherejn denotes the admittance eigenvalues of~J andψn is
the correspondingn−dimensional eigenvector matrix. No-
tice that the admittance is defines asY = Z−1. Thus, it is
possible to express the impedance as

Zab =
∑

jn 6=0

|ψna − ψnb|2
jn

, (A.9)
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that is, the sum of the squared modulus of the difference
between of then−th admittance eigenmode divided by the
admittance eigenvalue. As can be seen from Eq. (A.9), the
impedance becomes larger, namely, exhibits a resonance, if
the admittance eigenmodes are well-localized at one region
with small admittance eigenvaluejn. This is the case of topo-
logical boundary resonances in topolectrical circuits, where
there exists a large density of protected boundary modes with
jn ≈ 0.

To make the correspondence between topolectrical cir-
cuits and Tight-Binding approaches, we should note that we
are dealing with two eigenvalue equations:

Circuits: J ~V ≡ j~V = ~I, (A.10)

QM: H ~ψ = E ~ψ. (A.11)

If we relate the nodes in the topolectrical circuit to lat-
tice sites, it is possible to establish the relationJab(ω) =
iωHab(ω), with H(ω) the Hamiltonian of the TB ap-
proach [49].

A.1. Topolectrical circuit of the (N, i)-super-SSH model

The topolectrical analogue of the(AB)N−1−AC−SSH TB
model in accomplished by considering the lattice sites as the
nodes1, 2, ... of the circuit in Fig. 11. The hopping amlitudes
between sitesA andB and vice versa are set as capacitance
valuesC1 andC2, respectively. An impurity is represented
by a change in the capacitance linking its site with its nearest
neighbours sites by the values ofC3 andC4 (Fig. 11).

The two-point impedance is calculated using Eq. (A.7)
by measuring the voltage in node 1. Additionally, the voltage

localization is computed by measuring the voltage in each
node.

For comparative reasons, it is useful to establish some
characteristics of the original topolectrical SSH circuit (C3 =
C1 andC4 = C2) [49]. First, when the conditionC1 < C2

fulfills, a topological boundary mode exists, leading to a dras-
tic increase in impedance (resonance) which presents in the
resonant frequency (5). Also, applying an alternate current
probe generates potential differences between the plates of
each capacitor,V1 andV2 for capacitorsC1 andC2, respec-
tively, which indeed oscillate in anti-phase. WhenC1 < C2,
the potential configuration on the nodes (mid-gap mode) is
given byψ0(n)α(1, 0,−t, 0, t2, 0−t3, 0, ..., ((−t]n, 0)), with
t = C1/C2. In the opposite case in whichC1 > C2 (t > 1),
there exists no topological boundary mode and no mid-gap
node is found. Finally, In terms of the grounded Laplacian,
the system with periodic boundary conditions is described by

JSSH(kx) = iω

(
C1 + C2 − 1

ω2L

)
I

− iω
[
(C1 + C2 cos kx)σx

+ C2 sin kxσy

]
. (A.12)
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Topological Insulators, volume 919. (2016).https://doi.
org/10.1007/978-3-319-25607-8 .

7. P. Kotetes, Topological Insulators. 2053-2571. Morgan Clay-
pool Publishers, (2019).

8. A. Kitaev, Periodic table for topological insulators and su-
perconductors.AIP Conference Proceedings,1134 (2009) 22,
https://doi.org/10.1063/1.3149495 .

9. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in poly-
acetylene.Phys. Rev. Lett., 42 (1979) 1698,https://doi.
org/10.1073/pnas.77.10.5626 .

10. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton excita-
tions in polyacetylene.Phys. Rev. B, 22 (1980) 2099.https:
//doi.org/10.1103/PhysRevB.22.2099 .

11. M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors.Rev. Mod. Phys., 82 (2010) 3045,https://doi.org/
10.1103/RevModPhys.82.3045 .

12. X.-L. Qi and S.-C. Zhan, Topological insulators and supercon-
ductors.Rev. Mod. Phys., 83 (2011) 1057,https://doi.
org/10.1103/RevModPhys.83.1057 .

13. R. Shankar, Topological insulators - a review, (2018).https:
//doi.org/10.48550/arXiv.1804.06471 .

Rev. Mex. Fis.70040501

https://doi.org/10.1103/RevModPhys.58.519�
https://doi.org/10.1103/RevModPhys.58.519�
https://doi.org/10.1103/PhysRevLett.45.494�
https://doi.org/10.1103/PhysRevLett.45.494�
https://doi.org/10.1103/RevModPhys.71.S298�
https://doi.org/10.1103/RevModPhys.71.S298�
https://doi.org/10.1103/PhysRevLett.95.146802�
https://doi.org/10.1103/PhysRevLett.95.146802�
https://doi.org/10.1007/s12045-020-0995-x�
https://doi.org/10.1007/s12045-020-0995-x�
https://doi.org/10.1007/978-3-319-25607-8�
https://doi.org/10.1007/978-3-319-25607-8�
https://doi.org/10.1063/1.3149495�
https://doi.org/10.1073/pnas.77.10.5626�
https://doi.org/10.1073/pnas.77.10.5626�
https://doi.org/10.1103/PhysRevB.22.2099�
https://doi.org/10.1103/PhysRevB.22.2099�
https://doi.org/10.1103/RevModPhys.82.3045�
https://doi.org/10.1103/RevModPhys.82.3045�
https://doi.org/10.1103/RevModPhys.83.1057�
https://doi.org/10.1103/RevModPhys.83.1057�
https://doi.org/10.48550/arXiv.1804.06471�
https://doi.org/10.48550/arXiv.1804.06471�


12 J. C. PEREZ-PEDRAZA, J. E. BARRIOS-VARGAS, AND A. RAYA

14. L. Wang, M. Troyer, and X. Dai, Topological charge pump-
ing in a one-dimensional optical lattice.Physical review let-
ters, 111 (2013) 026802,https://doi.org/10.1103/
PhysRevLett.111.026802 .

15. A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W-P Su, Solitons
in conducting polymers.Reviews of Modern Physics, 60 (1988)
781, https://doi.org/10.1103/RevModPhys.60.
781 .

16. L. Yu, Solitons and polarons in conducting polymers. (World
Scientific, 1988).

17. S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W.
Ludwi, Topological insulators and superconductors: ten-
fold way and dimensional hierarchy.New Journal of
Physics, 12 (2010) 065010. https://doi.org/10.
1088/1367-2630/12/6/065010 .

18. Y.-G. Peng et al., Experimental demonstration of anoma-
lous floquet topological insulator for sound.Nature commu-
nications,7 (2016) 13368.https://doi.org/10.1038/
ncomms13368.

19. A. Gomez-Leon and G. Platero, Floquet-bloch theory and
topology in periodically driven lattices.Physical review let-
ters, 110 (2013) 200403.https://doi.org/10.1103/
PhysRevLett.110.200403 .

20. V. Dal Lago, M. Atala, and L. Foa Torres, Floquet topologi-
cal transitions in a driven one-dimensional topological insula-
tor. Physical Review A, 92 (2015) 023624,https://doi.
org/10.1103/PhysRevA.92.023624 .

21. F. Alex An, E. J. Meier, and B. Gadway, Engineering a flux-
dependent mobility edge in disordered zigzag chains.Physi-
cal Review X, 8 (2018) 031045,https://doi.org/10.
1103/PhysRevX.8.031045 .
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