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The impact of gamma radiation on Ultrahigh Molecular Weight Polyethylene (UHMWPE) using fractional differential transformations of
FTIR spectra has been probed during the current study. The gamma irradiated samples of UHMWPE for doses of 0, 25, and 50 kGy have been
tested with FTIR spectroscopy, and subsequent to testing each spectrum has been analyzed with fraction order differentiation ranging from
0.5 to 1. The exhibited significant shifts in absorbance due to radiation-induced physical and chemical changes, including C=C unsaturation,
C=O carbonyl absorption, and variations in CH2 bending and stretching frequencies are clearly evident even at the lowest order of applied
transformation. The weak bands in spectral regions800− 1100 cm−1 because of gamma radiation caused peak splitting in the800− 1100

cm−1 region, attributed to the conversion of vinyl groups into vinylidene and trans-vinylene groups, have also been observed at all orders of
applied transformations. It is, therefore, fractional differential transformations thus proved to be a potential methodology for in depth spectra
analysis of radiation responsive polymers like UHMWPE with a minimal information loss during the transformation. This is also confirmed
by sensitivity and specificity analysis that demonstrated that lower-order transformations are effective for accurate spectral characterization.
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1. Introduction

Due to their affordable manufacture, adaptability, and unique
physical and chemical properties, polymer materials, which
are made up of lengthy chains of repeating molecular units,
have significantly increased in popularity [1-4]. A par-
ticular variety of polymer known as ultra-high molecular
weight polyethylene (UHMWPE) stands out among the di-
verse range of polymers. UHMWPE has a molecular weight
that is exceptionally high, often between 3 and 6 million
grammes per mole. This extraordinary polymer has a wide
range of uses, including as an electrical insulator, in the de-
velopment of artificial implants like joint replacements, and
even in the microelectronics sector [5,6]. UHMWPE is ca-
pable of undergoing alterations through a technique called
crosslinking to improve its characteristics for these many pur-
poses. In crosslinking, the molecular structure of the poly-
mer is changed through the application of various chemi-
cal or physical techniques, such as radiation, organo-silane
treatments, and the use of peroxides [5-7]. The features
and behaviour of the material may be significantly altered
by this change, making it better suited for particular uses.
The properties and changes of UHMWPE are studied using
a variety of analytical techniques. These include differential
scanning calorimetry (DSC), X-ray diffraction (XRD), and
Fourier transform infrared (FTIR) spectroscopy [7]. Each
approach, though, has its limitations. They could have trou-

ble picking up little signals, including faint infrared bands
and minute levels of pollutants or toxins. As a result, con-
clusions drawn from these techniques may not be accurate,
which could. The sensitivity and precision of FTIR spec-
troscopy, which is particularly skilled at examining structural
changes in materials after modifications, must be increased
through preprocessing. However, there are certain difficulties
with FTIR spectroscopy. It might have trouble detecting ex-
tremely minute amounts of pollutants and dim infrared spec-
trum bands. Additionally, the results of FTIR spectroscopy
might occasionally be difficult to interpret and unreliable.
This results from the method’s reliance on measuring the
light that travels through or reflects from a sample and later
analysing the data gathered. However, this data could contain
unwanted noise, such as changes in the baseline of the spec-
trum and inconsistencies in the signal. These elements could
influence how accurately UHMWPE alterations, like those
brought on by irradiation, are assessed. Researchers use a
preprocessing procedure with the FTIR spectrum data to ad-
dress these problems and get reliable results. To increase the
sensitivity of their analysis and enhance the identification of
weak infrared bands, they investigate the use of differential
filters in this context, specifically fractional order differential
filters. For UHMWPE products to operate better and to be
safe in a variety of applications, it is crucial to identify these
minute bands and recognise the changes induced by radiation
in the material.
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The primary purpose of this work is to provide a more ac-
curate and sensitive technique for characterising UHMWPE.
The researchers intend to go beyond the limitations of stan-
dard approaches by closely examining Attenuated Total Re-
flection Fourier Transform Infrared (ATR-FTIR) spectra. In
FTIR spectroscopy, a sampling method called ATR is em-
ployed. The investigation involves comparing the spectra
obtained from pristine (unaltered) UHMWPE samples and
those that were exposed to gamma radiation. To improve
the precision of the analysis, researchers employ fractional
order differential filters with varying orders ranging from 0
to 1. These filters aid in the processing of the spectra, the
extraction of significant data, and the improvement of the
assessment’s correctness. The study paper explains how to
create simulated spectra using the real experimental data ob-
tained using ATR-FTIR as well as the notion of fractional
order derivatives. Researchers use the strength of Principal
Component Analysis (PCA) and correlation index analysis
to determine the most sensitive and effective transformation.
These sophisticated statistical methods make it easier to un-
derstand the links and patterns found in intricate datasets.
The analysis in this paper also makes use of Caputo fractional
derivatives, a mathematical technique for studying compli-
cated systems with fractional order behaviour, which the re-
searchers say is powerful. Researchers can examine the com-
plex spectrum variations in the experimental data by using
Caputo fractional derivatives. This method makes it possi-
ble to comprehend radiation-induced changes in UHMWPE
polymer samples better. A thorough investigation of the ma-
terial’s response gamma radiation is possible because to the
use of both experimental spectra and spectra produced using
fractional order differentiation, which increases the analysis’s
robustness. This dual-spectrum study sheds important light
on the minute changes in UHMWPE samples.

The main goal of this investigation is to thoroughly eval-
uate the gamma radiation-induced changes to UHMWPE. Fi-
nally, the purpose of this research is to give a full and so-
phisticated understanding of UHMWPE and its variations.
The researchers hope to unearth priceless insights that can
greatly contribute to the innovation and safety of polymer-
based products across a wide spectrum of applications by
painstakingly analysing the spectral data using cutting-edge
mathematical methodologies.

2. Background literature

L’Hospital asked Leibniz for clarification in 1695 regarding
the meaning of the statementdny/dxn whenn is equal to
1/2. Leibniz responded on September 30, 1695, saying that
this hypothetical situation would initially result in uncertainty
but would ultimately produce favourable results. This dis-
cussion set the way for the creation of Fractional Calculus,
a completely new branch of mathematics. This field investi-
gates the integration and differentiation of non-integer orders.
Lacroix, who introduced the idea of fractional derivatives for
the first time in 1819, made a substantial contribution to this

field. He introduced a formula involving the gamma func-
tion and constants that became a key concept in comprehend-
ing how fractional derivatives behave. L’Hospital’s inquiry
and Leibniz’s response set off an investigation that led to the
development of fractional calculus. The focus of this area,
sometimes known as fractional calculus, is the application
of conventional calculus ideas to non-integer orders. With
values that fall between integer increments, it offers a novel
viewpoint on how functions evolve and integrate. The contri-
bution made in 1819 by Lacroix developed this concept. He
offered a method that could represent and calculate fractional
derivatives while accommodating non-integer orders of dif-
ferentiation [8,9]. This signified a substantial improvement
in our understanding of mathematics and created opportuni-
ties for applications in other fields. In essence, the historical
conversation between Leibniz and L’Hospital set the stage for
a new field of mathematics called fractional calculus. Since
then, this discipline has demonstrated its importance by pro-
viding:
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The expressiond1/2/dξ1/2 represents the fractional deriva-
tive operator of order1/2. The symbolΓ represents the
gamma function, and the letterc stands for a constant. This
concept was then extended to provide a detailed representa-
tion of f(ξ) using the Fourier method.
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With the variablesξ andρ, the above representation allows
us to define the concept of a fractional derivative of orderβ
for a functionf(ξ) in the following way:
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whereβ is a random constant. We employ this fractional cal-
culus definition to address a composite equation that emerges
from the tautochrone problem. In this problem, our objec-
tive is to ascertain an unidentified function, denoted asf(γ),
through the evaluation of the subsequent integral:

k =
∫ x

0

(ξ − γ)αf(γ) dγ. (4)

In the context whered1/2/dξ1/2 represents a fractional
derivative operator with an order of1/2, it is important to
note that, under specific conditions forf(ξ), fractional oper-
ators exhibit the following property:
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Liouville [10-12] offered the first explicit definition of partial
differentiation in 1832. Liouville turned the functionf(ξ)
into a series and proposed that for order numbersβ at which
the series transitions, the following statement stays true.

f(ξ) =
∞∑

n=0

pneqnξ, (6)

and assuming that

Dβf(ξ) =
∞∑

n=0

pnqβ
neqnξ. (7)

In this context, whereDβ represents the fractional deriva-
tive operator with orderβ and e represents the exponen-
tial function, it was later developed by two mathematicians,
Grünwald and Letnikov. This method provides a way to com-
pute fractional derivatives by approximating them as a limit
of a finite difference quotient.

Dβf(ξ) = lim
h→0

1
hβ

∞∑

k=0

(−1)k

(
β

k

)
f(ξ − kh). (8)

Although fractional calculus has been discussed in books for
almost three centuries, its actual applications have only lately
come to light. Many scientists are currently actively investi-
gating the use of fractional calculus in a variety of domains.

2.1. Fractional order derivatives definitions

Mathematical operators known as fractional derivatives ex-
tend the notion of differentiation to non-integer orders. Frac-
tional derivatives allow us to differentiate a function to a non-
integer order, while regular derivatives only work with whole
integers (e.g., first derivative, second derivative). They have
uses in physics, engineering, and signal processing, among
other disciplines. I’ll outline a few of the definitions and
methods used to define fractional derivatives below.

2.1.1. Riemann-Liouville fractional order derivatives

The Riemann-Liouville fractional integral operator extends
the concept of Cauchy’s formula to encompass multiple inte-
grations.

∫ x

a

dη

∫ x1

a

dη . . .

∫ xn−1

a

f(η)dη

=
1

(n− 1)!

∫ x

a

f(η)
(x− η)1−n

dη. (9)

If f(η) ∈ C[a, b] andα > 0, then

Iα
(a+)f(x) =

1
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∫ x

a

f(η)
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dη, x > a, (10)

Iα
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1
Γ(α)

∫ b

x

f(η)
(η − x)1−α

dη, x < b, (11)

are known as the left-sided and right-sided Riemann-
Liouville fractional integrals of orderα.
Definition 1. Let α ∈ (0, 1). The fractional derivative of
Riemann-Liouville of orderα is given by:

Dα
a f(x) =

1
Γ(1− α)

d

dx

×
∫ x

a

f(η)
(x− η)α

dη = DI1−α
a f(x). (12)

This expression represents the left-sided fractional
derivative. When considering the right-sided fractional
derivative, the fractional derivative of Riemann-Liouville of
orderα is used.
Definition 2. Let n − 1 < α ≤ n then for order, the left
and right-sided Riemann-Liouville fractional derivatives are
defined as:

Dα
a+f(x) =

1
Γ(1− α)

dn

dxn

∫ x

a

f(η)
(x− η)α+1−n

dη

= DnIn−α
a+ f(x); x > a, (13)

Dα
b−f(x) =

1
Γ(1− α)

dn

dxn

∫ b

x

f(η)
(x− η)α+1−n

dη

= DnIn−α
b− f(x); x < b. (14)

Constant’s fractional order Riemann-Liouville derivative
is not zero.

DαC =
Cη−α

Γ(1− α)
6= 0. (15)

An initial value problem (IVP) with a Riemann-Liouville
fractional derivative must have the following initial condi-
tions:D(α−j)f(0), i.e.,

Iα (Dαf(η)) = f(η)−
n∑

j=1

D(α−j)f(0) η(α−j)

Γ(α− j + 1)
, (16)

wheren− 1 ≤ α < n.
M. Caputo presented a fresh derivative concept to solve

these restrictions that make it impracticable to describe real-
world events. This method can be used to create the starting
conditions for fractional initial value problems (IVPs) by em-
ploying only the boundary values of full-order derivatives at
the lower terminal.

2.1.2. Gr̈unwald-Letnikov fractional order derivative

The Gr̈unwald-Letnikov fractional derivative, which is a
powerful tool for numerically approximating fractional
derivatives of functions, is used in many disciplines [13]. The
modelling of systems with non-integer order dynamics, like
viscoelastic materials and anomalous diffusion processes, is
made possible by its widespread use in numerical computa-
tion. This method is advantageous for the study of fractals
and fractal geometry, fractional control systems, fractional
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differential equations in physics and engineering, and frac-
tals. The Gr̈unwald-Letnikov fractional derivative offers a
flexible method for capturing non-integer order phenomena
and memory effects in mathematical models and simulations,
whether describing complex behaviours in heat conduction,
operating robotic systems, studying the spread of pollutants,
or looking into fractal patterns in nature. The limit of the
Grünwald-Letnikov fractional derivative involves a finite dif-
ference quotient. The succeeding differentiation of the func-
tion f(t) are expressed as follows

f (1)(η) = lim
h→0

f(η + h)− f(η)
h

, (17)

f (2)(η) = lim
h→0

f (1)(η + h)− f (1)(η)
h

= lim
h→0

f(η + 2h)− 2f(η + h) + f(η)
h2

, (18)

etc.
In general

f (n)(η) = Dnf(η)

= lim
h→0

1
hn

n∑

k=0

(−1)k

(
n

k

)
f(η − kh), (19)

where,
(

n

k

)
=

n!
k!(n− k)!

, (20)

is a coefficient of a binomial. We can write a non-integer
α > 0 as (

α

k

)
=

Γ(α + 1)
k! Γ(α− k + 1)

. (21)

The Gr̈unwald-Letnikov definition is the extension of the
concept to a non-integerα > 0

Dα
a f(η) = lim

h→0

1
hα

×
η−a

h∑

k=0

(−1)k Γ(α + 1)
k!Γ(α− k + 1)

f(η − kh). (22)

The fractional integral of orderα > 0 is given by

D−α
a f(η) = lim

h→0

1
hα

η−a
h∑

k=0

Γ(α + 1)
k! Γ(α)

f(η − kh). (23)

2.1.3. Caputo fractional order derivatives

An illustration of a Caputo fractional order derivative is: Let
f ∈ Cn[a, b] andn− 1 < α < n then

Dα
a f(x) = DIn−αDnf(x) =

1
Γ(α− n + 1)

×
∫ x

a

f (n)(η)
(x− η)α−n+1

dη; a < x < b. (24)

Properties

Dα
a C = 0, (25)

lim
α→n

Dα
a f(x) = f (n)(x). (26)

In this section, we present an algorithm for the estimation of
Caputo fractional derivatives of any positive orderα > 0 for
a given function. Our approach involves a weighted sum of
the function and its ordinary derivative values at specified lo-
cations [14]. The foundation of our algorithm rests on the
definition

∫ b

a

f(ξ) dξ ≈ T (f, h), (27)

where,

T (f, h) =
h

2
(f(a) + f(b)) + h

M−1∑

k=1

f(ξk). (28)

This is an approximation to the integral off(ξ) over[a, b]. It
is also based on a modified trapezoidal rule such that

T (f, h) =
h

2

M∑

k=1

(f(ξk−1) + f(ξk)) . (29)

In order to estimate the fractional integralJαf(x) of order
α > 0, we present an adaptation of the trapezoidal rule (29).
Theorem 1. Assume that the interval[0, a] is partitioned
into k equal-width sub-intervals[xj , xj+1] of equal width
h = a/k using the nodesxj = jh for j = 0, 1, . . . , k. The
revised trapezoidal rule is given by

T (f, h, α) =
(k−1)α+1−(k−α−1)kα

Γ(α+2)
hαf(0)+

hαf(a)
Γ(α+2)

+
k−1∑

j=1

(k−j+1)α+1−2(k−j)α+1+(k−j−1)α+1

Γ(α+2)

× hαf(xj). (30)

This approximation is close to the fractional integral operator

(Jαf(x))(a) = T (f, h, α)− ET (f, h, α),

a > 0, α > 0. (31)

Additionally, whenf(x) ∈ C2[0, a], a constantC ′a exists that
depends only ona, causing the error termET (f, h, α) to take
the following form:

|ET (f, h, α)| ≤ C ′a‖f ′′‖∞aαh2 = o(h2). (32)

Proof. As according to the fractional integral operator

Jαf(x) =
1

Γ(α)

∫ x

0

(x− τ)α−1f(τ) dτ, x > 0, (33)
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we have

(Jαf(x))(a) =
1

Γ(α)

∫ a

0

(a− τ)α−1f(τ) dτ. (34)

If f̃k is the piecewise linear interpolant forf with nodes picked atxj , j = 0, 1, 2, . . . , k, then by using the following equations:

∫ tk

0

(tk − t)α−1f̃k(t) dt =
k∑

j=0

aj,kf(ti), (35)

where

aj,k =
hα

α(α + 1)





(k − 1)α+1 − (k − 1− α)kα, j = 0,

(k − j + 1)α+1 + (k − j − 1)α+1 − 2(k − j)α+1, 1 ≤ j ≤ k − 1,

1, j = k,

(36)

and
∣∣∣∣∣∣

∫ tk

0

(tk − t)α−1f(t)dt−
k∑

j=0

aj,kf(ti)

∣∣∣∣∣∣
≤ Cα‖f ′′‖∞tαk h2, (37)

for some constantCα depending only onα. We obtain
∫ a

0

(a− τ)α−1f̃k(τ)dτ =
hα

α(α + 1)
[(

(k − 1)α+1 − (k − α− 1)kα
)
f(0)

+f(a) + v

k−1∑

j=1

(
(k − j + 1)α+1 − 2(k − j)α+1 + (k − j − 1)α+1

)
f(xj)


 , (38)

and
∣∣∣∣
∫ a

0

(a− τ)α−1f(τ)dτ −
∫ a

0

(a− τ)α−1f̃k(τ)dτ

∣∣∣∣ ≤ Cα‖f ′′‖∞aαh2. (39)

In this case,C ′a = Cα/Γ(α). It is clear that the method’s performance is unaffected by the parameter because it behaves
quite similarly to the conventional trapezoidal rule. In particular, the modified trapezoidal rule (30) becomes the traditional
trapezoidal rule (28) whenα = 1.

3. Material and methods

The materials, processes, and analytical techniques used in
our inquiry of the radiation-induced changes in laboratory-
grade ultra-high molecular weight polyethylene (UHMWPE)
are covered in detail in this section. Our research started
with the purchase of UHMWPE resin powder from Sigma-
Aldrich, with an average molecular weight of between 3 and
6 million g/mol. A Gibitre laboratory press tool was used
to further process the resin into sheets. Sheets were kept at
temperatures of 150◦C, 160◦C, and 190◦C for periods of 12-
15 minutes at each of these temperatures while being formed
under constant 200 bar pressures. After pressing, sheets were
painstakingly cleaned using acetone to remove any potential
impurities before being progressively cooled to ambient tem-
perature (25◦C) under sustained pressure. Each sheet was
properly measured to have a thickness of about 1 mm using
an internal reference point of the infrared (IR) vibration

band at 2020 cm−1. We described the UHMWPE material’s
physical and chemical characteristics, as shown in Table I,
to give a thorough grasp of it. Its physical characteristics,
empirical formula, densityρ, melting temperature, molecular
weight, melt flow rate (MFI), and physical condition were all
included in this list of characteristics.

The UHMWPE sheets were then exposed to gamma ra-
diation in order to investigate any structural alterations. Two
radiation doses of 50 kGy and 25 kGy (chosen due to their
importance in the radiation sterilization of medical devices
made of UHMWPE) were administered in an open-air set-
ting with a regulated temperature of 25◦C. Pakistan Radiation
Services Lahore supplied the Co-60 gamma source, which
had a constant dosage rate of 1.02 kGy/h. Each sheet was
given a designation for easy identification, consisting of the
letter “P” followed by the absorbed dose values (P-50, P-25,
and P-0). Analytical methodologies focused on certain
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TABLE I. Caputo fractional order derivative rule 800-1100 (50 kGy).

Differential Order k h C(f, h, order) Ec(f, h, order)

0th 31.0000 10.0000 10.8159 9.9699

0.5th 31.0000 10.0000 3.3898 2.5437

0.7th 31.0000 10.0000 2.0653 1.2192

0.8th 31.0000 10.0000 1.5879 0.7418

0.9th 31.0000 10.0000 1.2062 0.3601

1st 31.0000 10.0000 0.9037 0.0576

FIGURE 1. Characteristics of ultra-high molecular weight PE.

portions of the IR spectra associated with structural alter-
ations were employed to assess radiation-induced changes in
UHMWPE. These regions included the absorption of vinyl
and trans-vinyldene at 800-1100 cm−1, compounds with -
C=O functional groups at 1600-1800 cm−1, and changes
within the UHMWPE structure at 3300-3600 cm−1. The re-
gions of interest in the IR spectra were carefully analysed
after the experimental observations, where the regions of in-
terest were plotted against the wavenumber, and the % trans-
mittance data was calculated. Our inquiry into the effects
of gamma radiation on UHMWPE was built on the founda-
tion of these techniques and studies. To remove unwanted
background noise and quasi-static signals from the data, the
experimental spectra were carefully examined, and a variety
of differential filters with fractional orders ranging from 0 to
1 were selectively applied. The dataset includes extra spectra
produced using fractional order differential transformations
(including 1st, 0.9th, 0.8th, 0.7th, and 0.5th orders) in addi-
tion to the original experimental spectra (treated as order 0).
The primary objective of the study is to retain as much mean-
ingful information as possible from the original experimental
data, thus preferring lower fractional order differential trans-
formations. Subsequently, to simulate fractional derivatives
ranging from 0 to 1, a custom MATLAB function was devel-
oped employing the classical Grünwald-Letnikov definition,
which incorporates the Lagrange-operator-based law to de-
scribe the rate of change at a given fractional order. Notably,
these calculations are confined to the range of0 < α < 1
(the fractional order) with an initial condition ofa = 0, fa-
cilitating a comprehensive exploration of complex physical
processes through the analysis of fractional derivatives. The
Grünwald-Letnikov definition is the extension of the concept
to a non-integerα > 0.

Dα
a f(η) = lim

h→0

(
1
hα

η−a
h∑

k=0

(−1)k

× Γ(α + 1)
k!Γ(α− k + 1)

f(η − kh)

)
. (40)

Additionally, we used the Caputo fractional derivative defi-
nition with the trapezoidal rule to examine the precision and
inaccuracy related to several fractional orders, namely 0.5th,
0.7th, 0.9th, 0.8th, and 1st-order, thereby adapting the ap-
proach to the unique properties of FTIR data. In practice, this
involved creating unique MATLAB scripts capable of com-
puting the Caputo fractional derivatives for various orders,
offering a broad range of fractional order analysis. Through
these calculations, we were able to quantify the errors as-
sociated with each fractional order, which provided insight
into the validity of fractional order derivatives for interpret-
ing FTIR data.

∫ b

a

f(ξ) dξ ≈ T (f, h). (41)

The simulation of fractional derivatives (FD) using Fourier
Transform Infrared (FTIR) spectroscopic data served as the
foundation for our work. To do this, we made use of the math-
ematical technique known as the Caputo fractional derivative
definition, which is useful for describing complex behaviours
in scientific datasets. To be more precise, we used FD to eval-
uate how FTIR data behaved at various fractional orders, in-
cluding the 1st-order and the orders of 0.5, 0.7, 0.8, and 0.9.
The trapezoidal rule was utilized as a computation method
for precise FD calculations. This phase was crucial because
it allowed us to determine which modifications to the FTIR
spectra we could make while retaining the essential data. Ad-
ditionally, it enabled us to observe the minute patterns and
nuances that were concealed in the data. Following the sim-
ulation of the Fractional Derivative (FD), we computed cor-
relation coefficients (CCs) using the formula provided below.
This step aimed to identify the most suitable transformation
method that minimizes information loss [15].

CC(XY ) =
∑n

i=1(Xi − X̄)(Yi − Ȳ )√∑n
i=1(Xi − X̄)2

∑n
i=1(Yi − Ȳ )2

. (42)
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Here,X̄ and Ȳ are the mean values of the two parameters.
TheCC(XY ) range is from+1 to−1.

In addition to the aforementioned point-to-point corre-
lation study of simulated data, we used Principal Compo-
nent Analysis (PCA) to investigate how data dispersion varies
when different orders of differential filters are applied. PCA
is a dimension reduction technique that converts original
data into new, uncorrelated variables called Principal Com-
ponents. These components capture the most variance in the
data, providing insights into hidden patterns, dynamics, and
correlations. It also standardizes variables for comparing data
dispersion. The original variables are divided into new com-
ponents in this sort of analysis by axis rotation in PCA, which
aids in identifying influential aspects in the composition of a
sample. PCA produces a compact representation of the statis-
tical relationships in the data with minimal information loss
in terms of the order of differential transformation. The PCA
equation is as follows:

Zij = ai1x1j + ai2x2j + · · ·+ aimxmj , (43)

where,

• Zij denotes the component score.

• aik denotes the component loading.

• xkj is the variable’s measured value.

• i denotes the component number.

• j denotes the sample number.

• m represents the total number of variables.

For the analysis of the simulated FD data, we showed the
score values (for each sample in all regions of interest) per-
taining to the first two principal components. The primary
goal of this work was to discover the similarities and differ-
ences between each UHMWPE sample across all three zones
of interest, as well as to calculate the linkages between indi-
vidual clusters.

4. Results and discussion

4.1. Experimental results

Shown in Fig. 2 is the IR spectra of UHMWPE. The absorp-
tion behaviour of UHMWPE has been studied for gamma-
irradiation with dose values of 25 and 50 kGy. Due to physi-
cal and chemical changes brought on by radiation, there was
a noticeable shift in the sample’s absorbance. Significant
changes are observed in the FTIR spectra due to the irradi-
ation of the sample and thermal annealing. These changes
are mainly due to C=C unsaturation absorption, C=O car-
bonyl absorption, and increased CH2 bending and stretching
frequencies, respectively. The results show the polyethylene
IR band characteristics, which include -CH2 stretching vibra-
tions at 2849 and 2924 cm−1, -CH2 bending vibrations at

FIGURE 2. FTIR spectra of 0, 25, and 50 kGy irradiate with la-
belled functional groups of interest.

1490 and 1500 cm−1, and -CH2 rocking deformation at 717
and 730 cm−1. A more detailed analysis of this spectrum
revealed transitions in the regions 1450-1480 cm−1, 1650-
1850 cm−1, 2800-2950 cm−1, and 3000-3750 cm−1. These
regions correspond to -CH2 bending, vibration, and absorp-
tion due to the unit -CH2 in the amorphous region, and -C=O
absorption, and -CH2 stretching vibrations in the peroxide
region. The surface alterations in peroxide-related products,
i.e., 3000-3750 cm−1, and the absorption owing to -C=O
in the range 1650-1850 cm−1 are essentially minimal for a
gamma dose of 0 kGy; here, zero means that there was no
oxidation in this sample.

The situation is substantially different for samples that
have been exposed to radiation, since the radiation-caused
free radicals lead the samples to undergo several chemical
and physical changes. These free radicals have a variety of ef-
fects, such as forming crosslinks, breaking more P-E chains,
and reacting with dispersed oxygen in the PE matrix after the
well-known oxidation chain reactions of PE. Additionally,
the amount of free radicals changes throughout all regions
in a linear relationship with the concentrated gamma dosage,
i.e., -CH2 bending vibration. The major affected areas that
are strongly altered by irradiation treatment are the infrared
regions between 800 cm−1 and 1100 cm−1, and 1650 cm−1

and 1850 cm−1 in irradiated materials. The conversion of
C=C unsaturated bonds into vinylidene (R1R2C=CH2) and
trans-vinylene (-CH=CH-) is responsible, and the presence
of carbonyl C=O species, resulting from radiation-induced
oxidation reactions, are responsible for the aforementioned
alterations [16-20].

4.2. Simulated fractional order derivatives

Subsequent to the step-by-step procedure detailed in Sec. 3,
MATLAB was employed to preprocess experimental spec-
tral data and to apply fractional order differential transforma-
tions. The major ranges of interest (800-1100 cm−1, 1700-
1750 cm−1, and 3300-3600 cm−1) were analysed and are
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FIGURE 3. Simulated Fractional order and 1st-order derivative plots from 940-960 cm−1 a) for P-25, and b) P-50.

presented in Fig. 3. The data subsequent to transformation
showed significant increases in differential maxima and min-
ima corresponding to higher transformation orders and ab-
sorbed doses, indicating notable spectral changes. Specific
spectral regions exhibited well-defined singular peaks that
are crucial for identifying molecular vibrations and chemical
bonds. The 800-1100 cm−1 range revealed peaks related to
vibrational modes of chemical groups, the 1700-1750 cm−1

range to functional groups, and the 3300-3600 cm−1 range to
hydrogen bonding and molecular interactions. The trend of
increasing differential values with radiation dose highlighted
the impact of gamma radiation on UHMWPE; leading to the
formation of oxidation products and hydro-peroxides, which
is evident in all corresponding figures. From the results, a
peak splitting was observed in the 800-1100 cm−1 region for
samples irradiated with 50 kGy. This split peak is attributed
to the conversion of vinyl groups into vinylidene and trans-
vinylene groups, thus confirming the effectiveness of apply-
ing fractional order differential transformation on the FTIR
spectroscopy. This summarizes the fact that differential fil-
tering improved the detection of trans-vinylene even at lower
transformation orders, though the validity of each transfor-
mation order remains under investigation. However, a com-
prehensive assessment of the sensitivity and specificity of
transformation orders using point-to-point linear correlations
and principal component analysis (PCA) is given in subse-
quent sections for confidence on the accuracy of transforma-
tions [16,19-23].

4.3. Sensitivity and specificity analysis of fractional or-
ders

4.3.1. Correlation index based sensitivity analysis

In our study, it’s noteworthy that the correlation coefficients
(CCs) for the experimental data, particularly the 0th-order

spectrum, exhibit higher strength. However, our primary ob-
jective is to delve into the behaviour of CCs after the appli-
cation of differential filters, as this is central to our investi-
gation. To ensure a robust quantitative analysis of the alter-
ations in spectra induced by radiation within the UHMWPE
matrix, pinpointing the most responsive order of differential
transformation is crucial for refining our analytical model.
To address this, we performed a detailed analysis of point-
to-point linear correlations between wavenumbers and dif-
ferential values for each transformation order for all three
regions of interest (800-1100 cm−1, 1700-1750 cm−1 and
3300-3600 cm−1 respectively) as shown in Fig. 4 (D-F). The
CCs were calculated using the method described in Sec. 3 of
our study. Figure 4 depicts the strength of these CCs in a
parallel plot format for each wavenumber, allowing for a vi-
sual assessment of point-to-point correlations between exper-
imental and simulated fractional data. The convergence and
strength of the CC distribution provide useful insights in such
graphical representations. A more coherent and robust CC
distribution implies less effect from quasi-static and back-
ground noise, with little loss of critical information during
experimental spectral data translation, and vice versa. Our
analysis of Fig. 4 reveals a compelling trend: the CCs are no-
tably stronger for the differential transformation of the 0.5th-
order and this trend holds across all three regions of inter-
est. Furthermore, as we venture into higher orders of differ-
entiation this heightened strength remains consistent. These
findings underscore the suitability of lower-order differential
filters, specifically the 0.5th-order utilized in our study. This
choice is substantiated by the robust and coherent distribution
of CCs across the spectral regions of interest. It reinforces
the notion that employing lower-order differential filters en-
hances the precision and reliability of our model, allowing us
to capture crucial information while mitigating the influence
of undesirable noise. This in turn contributes to a more
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FIGURE 4. Point-to-point correlation coefficients for experimental and simulated FD spectral data for D) 800-1100 cm−1, E) 1680-
1800 cm−1, and F) 3300-3600 cm−1.

comprehensive and meaningful analysis of our data, a critical
aspect of our study in evaluating radiation-induced modifica-
tions in UHMWPE.

4.3.2. Principal component analysis

Principal Component Analysis (PCA) of spectral data (exper-
imental and simulated FD) was performed to confirm the sen-
sitivity of the order of differentiation. The data dispersion for
an unirradiated UHMWPE sample is presented as score plots
on the first two principal components for all spectral regions
of interest (see Fig. 5G)-I)). The PCA analysis provided the
following significant insights. In our comprehensive analy-
sis, we harnessed the power of Principal Component Analy-
sis (PCA) to delve into the sensitivity of various fractional
orders (1st-order and 0.5th, 0.7th, 0.8th, 0.9th) within the
spectral confines of 800-1100 cm−1, 1680-1800 cm−1, and
3300-3600 cm−1 with a focus on the 800-1100 cm−1 (P-0
sample). The calculated ratios along both the x and y axes of
these PCA results have shed light on the nuanced behaviours
of these orders. What emerges as particularly intriguing is the

0.5th-order, which exhibits a remarkable equilibrium in sen-
sitivity. This equilibrium is eloquently captured by its x-axis
ratio of 1.29 andy-axis ratio of−0.79. Essentially, the 0.5th-
order adeptly captures and balances the variance along both
principal components, effectively preserving the entirety of
the spectral characteristics. This characteristic sets it apart
from the others, which demonstrate varied degrees of sen-
sitivity and often accentuate a single principal component
disproportionately. For instance, take the 1st-order, which,
while displaying substantial sensitivity along the y-axis (ra-
tio: 5.02), paradoxically exhibits an almost negligible influ-
ence along thex-axis (ratio: -0.02), potentially leading to a
skewed representation of the data. Our findings highlight the
practical utility of the 0.5th-order, mirroring the original un-
processed data (0th-order, x-axis value: 16.05,y-axis value:
−4.84) with remarkable fidelity. This underscores the 0.5th-
order’s role as the preferred choice for meticulous scrutiny
of radiation-induced modifications in UHMWPE, within the
spectral ranges of 800-1100 cm−1, 1700-1750 cm−1, and
3300-3600 cm−1, offering a harmonious blend of data refine-
ment and unwavering fidelity to experimental observations.
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FIGURE 5. Principal Component Analysis of experimental and simulated FD spectral data for G) 800-1100 cm−1, H) 1680-1800 cm−1 and
I) 3300-3600 cm−1.

4.3.3. Absolute value error analysis

In order to determine the spectral changes caused by
50 kGy radiation in Ultrahigh Molecular Weight Polyethy-
lene (UHMWPE), we performed a careful analysis of Caputo
fractional derivatives in three critical spectral regions: (800-
1100 cm−1, 1700-1750 cm−1 and 3300-3600 cm−1 respec-

tively). These locations were chosen for their unique insights
into the irradiation response of UHMWPE. Our primary fo-
cus was to assess the sensitivities of various fractional orders
(1st-order and 0.5th, 0.7th, 0.8th, 0.9th) in capturing the es-
sential spectral characteristics. Examining Table I, represent-
ing the 800-1100 cm−1 region, we observed how each frac-
tional order deviated from the unirradiated 0th-order. No-

TABLE II. Caputo fractional order derivative rule 1700-1750 (50 kGy).

Differential Order k h C(f, h, order) Ec(f, h, order)

0th 6.0000 10.0000 -7.4539 8.3000

0.5th 6.0000 10.0000 -2.2632 3.1093

0.7th 6.0000 10.0000 -1.2669 2.1129

0.8th 6.0000 10.0000 -0.9137 1.7598

0.9th 6.0000 10.0000 -0.6370 1.4831

1st 6.0000 10.0000 -0.4240 1.2701
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TABLE III. Caputo fractional order derivative rule 3300-3600 (50 kGy).

Differential Order k h C(f, h, order) Ec(f, h, order)

0th 30.0000 10.0000 1.8232 0.9772

0.5th 30.0000 10.0000 1.3191 0.4730

0.7th 30.0000 10.0000 1.2278 0.3817

0.8th 30.0000 10.0000 1.1527 0.3066

0.9th 30.0000 10.0000 1.0634 0.2173

1st 30.0000 10.0000 0.9650 0.1190

tably, the 0.5th-order displayed remarkable proximity to the
0th-order, marked by a Caputo fractional derivative (C) value
of 3.3898, indicating a minimal shift due to radiation. The
low absolute error (Ec) value of 2.5437 further underscored
its accuracy in spectral preservation. A similar trend was ob-
served in Table II, encompassing the 1700-1750 cm−1 re-
gion where the 0.5th-order again excelled with a C value
of -2.2632 and an Ec value of 3.1093 signifying its preci-
sion in minimizing radiation-induced spectral shifts. This
trend extended to Table III, representing the 3300-3600 cm−1

region where the 0.5th-order closely approximated the 0th-
order with a C value of−0.6370 and an Ec value of 1.4831.
Collectively, these results consistently showcased the 0.5th-
order as the optimal choice for meticulous analysis providing
an unrivalled balance between data refinement and faithful-
ness to experimental observations.

5. Conclusion

We used fractional differential transformation techniques
ranging from 0.5th to certain infrared (IR) spectral bands of
UHMWPE ranging from (800-1100 cm−1, 1680-1800 cm−1,
and 3300-3600 cm−1) and able to detect and distinguish the
absorption signals of relatively weak bands associated with
vinylidene (R1R2C=CH2) and trans-vinylene (-CH=CH-)
groups in the 50 kGy irradiated UHMWPE. This demon-
strates the utility of using differential transformation for fig-
uring out the spectral information with minimal transforma-
tional loss as point-to-point correlation analysis and PCA
confirmed that lower-order transformation is sufficient for
spectral analysis with confidence. The fact stated above is

also confirmed by the absolute error values, underscoring the
0.5th order’s precision in preserving spectral integrity. In
summary, our research demonstrates that fractional differen-
tial transformation, even at lowest order (0.5th in this par-
ticular study), is a valuable tool for accurately characteriz-
ing and quantifying radiation-induced changes in UHMWPE
samples, enhancing our understanding of how this material
responds to radiation exposure. The insights gained from
this study hold promise for a wide range of applications, in-
cluding materials science and medical device development,
where the effects of radiation exposure on UHMWPE are of
paramount importance. This research serves as a valuable
foundation for future investigations and applications of irra-
diated UHMWPE materials.
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