Fluid Dynamics Revista Mexicana déski€a71 020601 1-18 MARCH-APRIL 2025

Optimizing a Physics-Informed Neural Network to solve the Reynolds Equation

Z. Sanchez lbpez and G. BereniceiBz Corés

Instituto Mexicano del Pedieo,
Eje Central lazaro Gardenas Norte 152, Col. San Bartolo AtepeharmaGustavo A. Madero, 07730, Ciudad déto.

Received 16 February 2024; accepted 8 August 2024

This study focuses on the optimization of a Physics-Informed Neural Network (PINN) to address Partial Differential Equation (PDE) prob-
lems associated with fluid flow. Specifically, the stationary, one-dimensional classical Reynolds equation is solved using the PINN. Within the
conducted studies, a comparison is made between the solutions obtained using the PINN, the numerical Finite Difference Method (FD), anc
the analytical solution. We study various scenarios with diverse hyper-parameters such as learning rate, epochs, number of training points
etc., for constructing the neural network to identify the optimal setup. The PINN accurately approximated the solution to the Reynolds
equation (up to®(10~2). This suggests that PINNs can be used to address diverse problems in fluid dynamics. We proposed a PINN
configuration that outperformed the PINN presented in the literature. The finite differences method obtains a better approximation than the
PINNs, however, the full potential of the PINNs is yet to be determined, as it can include data from the problem, that finite difference method
(FD) can not. Further studies are planned to investigate the capabilities of PINNSs.

Keywords: PINN; PDE solution; Reynolds equation; fluid dynamics; hyperparameters optimization.

DOI: https://doi.org/10.31349/RevMexFis.71.020601

1. Introduction external and cannot be estimated directly from data, such as
the learning rate, number of neurons and layers, etc.
Physics-informed neural networks (PINNs) are a state-of-the- Optimizing hyperparameters is essential for maximizing
art framework recently developed to solve partial differentialmodel performance, as the best values are those that yield
equations [1] for both, forward and inverse problems. the highest accuracy. Various methods, such as grid search,
PINNs were introduced in 2017 as a new class of datarandomized search, genetic and evolutionary algorithms, and
driven solvers in a two-part paper [2,3] published in a mergedBayesian optimization, can be employed to identify the best
version later in 2019, Raisst al [4] developed the PINNs hyperparameter values [38-41].
that can accurately solve both forward problems that approx- |n this paper, we optimize a Physics-Informed Neural
imate the solutions of the governing mathematical model, asjetwork (PINN) to solve the stationary one-dimensional
well as inverse problems, where the model parameters are ilReynolds equation, as previously presented in the literature
ferred from the observed data. The PINN algorithm input§38]. We complement this work by providing a detailed ex-
the governing equation into the network and thus enricheplanation of the analytically computed derivatives required
the loss function by adding a residual form of the equationfor training the PINN, aiming for a clearer understanding of
which essentially acts as a penalizing term to constrain thénhe process (see Appendix A).
space of admissible solutions. In this setting, the problem of A5 we will see in the first experiment, the PINN does not
inferring solutions of PDEs is transformed into an optimiza-ajways converge to the solution, therefore, an statistical study
tion problem of the loss function that contains the physics ofs performed. Due to the instability of the particular PINN we
the problem in the I’eSidual, boundary, and initial ConditionSare Working on, automatized Optimiza‘[ion methods that in-
loss terms [5]. clude large number of computations such as grid search, evo-
PINNs have now been applied to solve a variety of probjutionary algorithms and Bayesian optimization are not the
lems including fluid mechanics [4,6-12], solid mechanicsbest option due to the number of repetitions performed for
[13-16], heat transfer [17-19], geophysics [9,20-22], and flowthe statistics, and are out of the scope of this paper. Instead,
in porous media [23-29]. we selected a set of parameters to perform the study based on
Applications in flow simulations include solving Navier- the best observed performance, more details are presented in
Stokes equations [30], fluid flow through random hetero-the Sec. 3.
geneous media [31-33], Reynolds-Averaged Navier-Stokes This paper is distributed as follows, in Sec. 2, we present
simulations [34-36], among others [37]. the methodology for applying PINNs to solve PDEs, fol-
The performance of the PINNSs is influenced by variouslowed by its specific application in solving the Reynolds
factors, including data quantity, quality, and features. A keyEquation, discussed in Subsec. 2.1. We present the neural
factor is the configuration of parameters based on the prometwork architecture used to solve the Reynolds equation in
lem specification. Parameters in a PINN can be classified intS8ubsec. 2.2. Then, in Subsec. 2.3, we provide a brief de-
two types: model parameters, which are estimated from datscription of the experiments conducted, where the network’s
such as weights and biases, and hyperparameters, which drgperparameters were adjusted for optimization. Finally, in

2 Z. SANCHEZ LOPEZ, AND G. BERENICE DAZ CORTES

Sec. 3, we present the results and discuss their implications, Next, we have the hidden layers, where all the computa-
finally, we include the conclusions of this work. tion is done. Neurons in adjacent layers are connected but

The experiments presented in this work were performedieurons within a single layer share no connection, and each
in python in an Intel@ Core i7-7700HQ CPU @2.80 GHz x8,neuron in layer [) is connected to all neurons in the next
with 32 GB of RAM. The PINN for the Reynolds Equation layer (L + 1). In each of these layers, the input dat& (')
theory and code is available fattps://github.com/ of the previous layerl{ — 1) is multiplied by the weights and
gbdiazc/Reynolds ~ _PINN_Notebook.git . the bias is added, therefore the output of each layer is given
by 2z = wlzF~! 4+ b%. The output of each layer passes
through an activation functiop, before moving to the next
layeri.e, 2z = p(wlzt=1 + bl).

In the last layer, the expected approximation is obtained.
The methodology to approximate a PDE with physics-FOr @ neural network afn layers the output of the previous
informed neural networks (PINNs) is based on the minimizal@yer Nn — 1 is multiplied by the weights and biases and an
tion of the cost function, taking into account the residual formactivation function is applied, leading to the expected solu-
of the PDE, together with the boundary conditions, and ini-tion u, (z,t) = @(w""z""~1 + bY™). The layers can be
tial conditions [4]. The residual form of the PDE is given in SUmmarized as:

Eq. @),

2. Methodology of physics-informed neural
networks for solving PDEs

Input: (Data) 2° = (x,t).
R(tm)—M+N[u(mt)]—0 ; L L L-1_ pL
T T oy YT Hidden: z" = p(w"2z"""+b"), 1< L<Nn-1.

z e tel0,T] 1) output: u, (x,t) = 2" = p(w™" 2V~ + b7, (4)

subject to the initial Eq.2) and boundary conditions E@)(The solutionu(t, z) of the PDE is approximated with the

u(zx,t =0) = g(x), xecQ (2) output of a Neural Networku,(t,z), wherep(.) is an ac-
tivation function that can be linear or nonlinear: andb”
Blu(z,)] = 0, xcd tel0,T]. (3 arethe weights and biases of th& layer, and together, they

In Eq. (1), \ |-] represents a differential operator (linear Orform the parameter vector of the neural network approxima-

nonlinear), and3 [-] is an operator representing the bound-tlon denoted by:
ary conditions (Dirichlet, Neumann, Robin, or periodic). The
vectore = (x1,...,xq) € 2 is the spatial coordinate, that
in general could be iiR?, andt € [0, 7] is the temporal co- o
ordinate. The spatial domain and the boundary of the domai,h® Parameters of the neural network are randomly initial-
where the PDE is defined are represented by € R?, ized and updated iteratively by minimizing a loss function.
respectively. The architecture of the PINNs differs from the architec-
A feed-forward neural network has an architecture suchure of a traditional NN in the last part of the network. The
that the information flows in a single direction. It consists PINN works in the first part as a NN, however, the PINN
of the input layer, hidden layers, and an output layer (Sedakes the outputiy and computes its derivatives using the
Fig. 1). The input layer corresponds to the data inputted td@iven equations (see Fig. 2). It calculates the loss functions
the NN. If the PDE depends on the variableg, a set of related to the PDE, initial and boundary conditions, and, if
points z;, t; in the domain§2 are selected to train the net- available, due to the data. The final step involves the feed-

work, the output of this layer is the original datd= (x, t).

0 = {w',w?, ..., wl b6, ... bl (5)

Neural Network

Physics Informed Neural Network

Hidden layers

T
Loa(®) = N_.,Z""'("""‘“’) - ul® l
3

— u »
)= S o) @)= Sl st |

=
1
Los(®) = > [Ro(ch x4)| ‘

l

e ——

L£6) = wLppe (6) + wpcLyc(8)

+wicLic(8) + @pLpara(0)
|

e " o N
Minimize Cost Function
Y

END

Update 8 o

FIGURE 1. Architecture of a Feed Forward Neural Network, image FIGURE 2. Building Blocks of Physics-Informed Neural Networks
created in Ref. [39] and adapted. (PINNs), modified Image of [40].

Rev. Mex. Fis71020601

https://github.com/gbdiazc/Reynolds_PINN_Notebook.git�
https://github.com/gbdiazc/Reynolds_PINN_Notebook.git�

OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 3

back mechanism, which minimizes the loss using an opti2.1. PINNs applied to solving the Reynolds Equation
mizer with a specified learning rate to obtain the neural net-
work parameter8 [40]. In this work, the optimization of a Physics-Informed Neu-
The loss function takes into account four error terms, seéal Network (PINN) will be conducted to solve the classical
Eq. (7). The first term is related to the PDE ¢), to com- one-dimensional steady-state Reynolds equation in the inter-
pute this term, we input the approximate solutiop(t,) val Q = [0, 1].
into the residual Eqll)) as [41]: The dimensionless form of the Reynolds equation for the
steady-state, one-dimensional case is expressed as follows
St @) + N ugl (t,2). () Ea- 10 [3843]
H H +1 HH d dy ! ! 1"
The_ second term, take_s into account th_e initial c_ondltlons &4 (C(x)) =c(2)y +clx)y = flz);
(L1c), if the problem requires them. The third term is related dx
to the boundary condition€(g¢), and the last term is related
to the observation dat& () if they are available.
_ Then, a phys!cs-lnformeql model can _be trained by miniyypere
mizing the following composite loss function:

Ry (t, iL‘) =

0<z<l, (10)

=H% H(z)=1+K - Kz,
L(0) =wsLppe(0)+wpcLlpc(8) c(x) (2) x

+wrcLlic(0) + wpLpaia(0), (7)

’

c(r)=-3K(1+K — Kxr)?
dH
wherew ;, wpe, wre andwp are weights associated with the fl@) =~ =-K, (11)
loss terms. In this worky; = wpc = wrc =wp = 1.
In this work, the mean square error (MSE) is employedwith the following boundary conditions:
to compute the losses in E@)(These terms are calculated

as follows [40-42]: y(0) =0, y(1)=0. (12)
N Equation|lL0) has an analytical solution given by:
1 N
Lrpp(0) = > ||Re(t;,)|, 1 1
=1 e
Yo) = T\ T3 R — K

2

Nic
1 i
Lic(0) = N Z [ue (0, zc) — g(aic)|, 1+ K 1 1
i=1 T 24+K(Q+K-Kz)? 2+K (13)
1 Npo)) 9
Lpc(0) = Npo Zl HB[UB](tBCvaC)H ’ If we define the operatord/ and N as:
. My = ¢ (x)y + c(x)y" (14)
*7 2 ’
Lpata (0 =N, Z |wo(th, xp) — up|” (8) 0 0
wf-f e
y(1) 0

where{ti, z' } N, are the selected points, sampled randomly

in 2, also known as collocation points used to evaluate the Equations [10) and fl2) can be rewritten in terms of
PDE residual equatio®,, {x},}Y'¢ are the points where the operators\/ and N for a given pointz in the domain
the initial conditions are imposedty;, ¢’} 2¢ are the- € [0, 1], as follows:

points in the boundary conditions, afigh,:, () isthe differ-

ence between the approximatiap and the labels or solu- My—f=0, 0<z<l, (16)
tions to the equation’? of the training data forV, labeled
data points. Ny-b=0, (17)

To update the parametefisthe gradient descent is used

in this work, given by: whereb = 0. . . .
In the PINNs approach, we approximate the solution with
01 =06, —VeL(6,), (9) the neural network, that is:
wheren is the learning rate, a hyperparameter that depends y(x) =~ yo(x; 0). (18)

on each network, ant o £(0,,) are the derivatives of the loss
function. More details are presented below for the studied In this particular case, the cost function consists of the
case. sum of two error terms, the term due to the residual equation

Rev. Mex. Fis71020601

4 Z. SANCHEZ LOPEZ, AND G. BERENICE DAZ CORTES

of the PDE, and the term due to the boundary conditions, anBy the second set of weightsgl) and a second biag!) is

it is expressed as follows: added to it:
N,
2
L(0) = Lppr + Lpc = <(My - /) > y(x) = ngl)w(wgo)x + bgo)) + b, (23)
+((Ny—b)-e)’ + ((Ny—b)-&)*, (19) =
We use as activation function the sigmoid function, defined
where as:
1
EPDE - <(My_f)2> (10(8) = 1+€_57 Rﬁ) [07 1] (24)
= <(C'(x)y' +c(z)y” — f)2> , (20) To update the weights and biases iteratively, we use the
gradient descent algorithm, which updates the weights and
and biases as follows:
o _ © _ 0LO) o _ q _ 0L(6)
Lc = (y(0)* + (y(1))* (21) Wier =W T ey Wi = W Ty
Substituting [20) and 21) into (19), the cost function 5O _ 50 _ 0L(0) pD) 0L(0) (25)
takes the form: it1 = Y gpl0) 7 LT " oM’
L) = (< (z)y + c(z)y" — £)?) wheren is a hyperparameter known as the learning rate.
) 5 To compute the gradients, the cost function, [22) (the
+(©(0)” + (y(1))". (22) output Eq.23) of the PINN is evaluated at a set of points in

the domain to compute the residual equation, and the bound-
ary conditionsy(0), (1), its first derivativey (z) and sec-
ond derivativey” () in terms of the weights and biases. The
derivatives are computed by deriving the equations analyti-

cally, see Appendix A for detalils.

This cost function is minimized with the gradient descent
algorithm to update the weights and biases iteratively as in
dicated in Eq.19).

2.2. Architecture of the PINN) i
2.3. Numerical experiments

The architecture of the PINN developed here has an inpu{_0

.To optimize the PINN, we performed five experiments desig-
th t I t tial - . . .
nodex (the independent variable representing spatial coordlnated as Experiment A, B, C, D, and E, with the first exper-

iment being Experiment A, and so forth. In Experiment A,
we replicate the results obtained by Andreas Almqyvist (2021)
[38]. In the subsequent experiments, we optimize the PINN
. ; . . by adjusting the following hyperparameters, Experiment B:
The pre_dlctlon_ Of the PINI\IZ”_(J_:)_' IS ob_talneogoa)\s follows: the learning ratglr) and batch siz€T'b), Experiment C:
the inputz is multiplied by the initial weightaw; ™’ and the the number of points in the domaiiNi), Experiment D: the

initial biases,bgo), are added to this result. Later, the activa- nymper of epoch§Ne), and Experiment E: the number of
tion function is applied and the outcome is then multiplied neyrong Nn) in Experiment E.

nate), a hidden layer consisting &fn nodes, and an output
nodey(x) (the dependent variable representing pressure).

Figure 3 shows a graphical illustration of the PINN archi-
tecture used to solve the Reynolds problem.

Below, we provide a detailed description of each of the

O +(9) aforementioned experiments, and we present the results and
/’ \‘\\’\; - .
Wm)/b@:@\ N subsequent discussion.

1% ONGINC: Y 3. Results and discussion
©) _~ @ S H®
P \ In this section, we describe and analyze the five experiments
« —(¥f o (D y) (Experiment A, Experiment B, Experiment C, Experiment
e () s ¥ D, and Experiment E) conducted to optimize the PINN. In

all cases, a fully connected feedforward neural network was

. % - % used, with a sigmoid activation function and the loss function
RN h ol defined by Eq.22). The architecture of the PINN consists
Wi ‘@ wd of an input layer with one neuron, a hidden layer with 10
b,(f;: @ neurons (except in Experiment E, where the number of neu-
" rons in the hidden layer was modified), and an output layer
FIGURE 3. PINN architecture used to solve the Reynolds problem, with one neuron. The PINN was trained using the Gradient
image created in Ref. [39] and adapted. Descent optimizer.

Rev. Mex. Fis71020601

OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 5

3.1. Experiment A Cos Funcon P preicton
In this section, we repeat the experiment performed by An- o041
dreas Almqvist (2021) [38], and compare it with the analyti-

cal solution, Eq.13). The PINN was trained with the same vos |
hyperparameters as in Ref. [38] presented in Table |, and the g
architecture is described in Secs. 2.1 and 2.2. The PINN
with this set of hyperparameters and architecture is now on
referred to as PINN-2.

The comparison between the predictions of PINN-2 and . |
the analytical solution2(3) within the domain [0,1] is de-
picted in Fig. 4 for two scenarios, identified as “Prediction
1” (represented by orange points) and “Prediction 2” (rep- °°1 | . | ‘ ‘ . ‘ ‘
resented by green points), respectively. They are contraste(0 S sl s
with the analytical solution (illustrated by a blue solid curve).

We notice that PINN Prediction 1 fits with the analytical
solution, while PINN Prediction 2 does not fit. In Fig. 5, the
convergence of the cost function is presented for each pre- Every time we run the PINN, we obtain a different solu-
diction, both in the case of PINN Prediction 1 (orange) andion, for the next experiments, we perform a statistical anal-
the case of PINN Prediction 2 (green). We can observe thatsis, in which, we repeat the experiment 100 times and we
for PINN Prediction 1, its cost function converges to a valuecompute the mean and standard deviations of the solutions
closer to zero than in the case of PINN Prediction 2. Note tha@btained with these repetitions. For those cases, the best so-
no changes were made for both scenarios in the architectutgtion is the one with lower mean and smaller standard devi-
or hyperparameters. ation.

e
=]
)

Cost Func

FIGURE 5. The convergence of the cost function for PINN Predic-
tion 1 (orange) and PINN Prediction 2 (green).

. .2. Experiment B
TABLE |. Hyperparameters of PINN-2 Experiment A. 3 periment

In this experiment, the hyperparameters learning hatnd

Hyperparameters Description training batche§d’d were modified, as described in Table II.
Ne 2000 Epochs Each value ofl'b is paired with all proposed values bf For
Nn 10 Number of neurons example, whel'b = 300, it is combined withir values of
Ni 21 Number of points 0.005, 0.001, 0.05, and 0.01, and so on. This gives us a total

in the domain [0,1].

TABLE Il. Mean of the minima of the Cost Function value (MMCF)

l 0.005 L i t
" ?a.rnlng rate and Standard Deviation for differeht and7'b values.
Tb 600 Training batches
MMCF
Ir Th —
Value Standard Deviation
Analytical Solution vs. PINN Prediction 300 0.0502 0.1858
o1 1 pdcom? ooos o0 093 o0
— Exact solution 900 00609 02353
803 1200 0.0131 0.0950
002 . ? 300 0.0240 0.0031
600 0.0222 0.0079
0.01 + 0001
- 900 0.0142 0.0073
0.00 1200 0.0268 0.0983
. 3 300 0.0000 0.0000
M 5 0.05 600 0.5488 0.4802
~0.02 s ' 900 5243.2396 52166.0617
¢ 1200 502295852.0 4997780620.0
-0.03 1%
%0 oz 04 05 0s 1o 300 0.0925 0.2773
* 0.01 600 0.1634 0.3616
900 0.0872 0.2757

FIGURE 4. PINN Prediction 1 (orange) and PINN Prediction 2
(green) are compared to the analytical solution (blue) using the pa- 1200 0.0663 0.2354
rameters from Table I.

Rev. Mex. Fis71020601

6 Z. SANCHEZ LOPEZ, AND G. BERENICE DAZ CORTES

1e9 Fig. 7, where the green stars correspondingrte= 0.001
* Ir0.005 are closer to zero compared to the other blue stars represent-
2l r :;gggl ing Ir = 0.005, as well as the pink stars corresponding to
% Ir0.01 lr = 0.01, across values d¢f'b.

Therefore, in the subsequent experiments, we compare
the PINN with the hyperparametets = 0.001 and7b =
300, referred to as PINN-1, against the values= 0.005
andTb = 600, reported in the article by Andreas Almqvist
(2021) [38], referred to as PINN-2.

L

S 3.3. Experiment C

Mean of the minima of the Cost Function

200 300 400 500 600 700 800 900 1000 1100 1200 In this experiment, we modified the hyperparameYerthat
Tb (Batch Size) represents the number of grid points for the solution domain
FIGURE 6. Tb (Batch size) vs Mean of the minima of the Cost [0,1], randomly selected from the space. We selected the
Function for the 16 combinations. value N; = 21, as in the reference article, and included a
higher value,N; = 30, as well as a lower valugy; = 10.

o g Then, we compared PINN-1 (with the optimal hyperparame-
* D00l terslr = 0.001 andTb = 300 found in Experiment 2) with
0.4 | * 001 PINN-2 (using the hyperparameters from the article by An-
dreas Almqvist (2021) [38], as shown in Table Ill), and with
[the Finite Differences method (FD).
L i In this experiment, we calculated the RMSE (defined as
) * . r the square root of the MSE previously defined in Eq. (8)) be-

0.3

—

=t

tween the analytical solution and the one predicted by PINN1
and PINN2 in each repetition (out of the 100 available). This
-01 _ provides us with 100 RMSE values for each network. Subse-
, quently, we computed the Mean of these 100 RMSE values
200 300 400 500 600 700 800 900 1000 1100 1200 (MRMSE) along with their standard deviation, resulting in a
To{Bateh: Sec) single value for eactvi.

FIGURE 7. Tb (Batch size) vs Mean of the minima of the Cost Figure 8 shows a comparison between two networks
Function, excludingr = 0.05 data due to the lack of a discernible PINN-1 (green stars) and PINN-2 (blue stars), and the finite
minimum, given the large standard deviation as shown in Table II.difference method (red stars). In Fig. 8, a significantly high
standard deviation is observed f§i = 21 for PINN-2. For

of 16 possible combinations. The primary objective was® better visualization, we include Fig. 9, which is a zoom into

to find optimal hyperparameters while minimizing the lossthe aréa of interest.
function. Table Il provides the values @b, Ir, their corre- For the FD method, we calculate the RMSE between

sponding Mean of the Minima of the Cost Function (MMCF), the analytical s_:olutio_n and the solution obtaineql _by the

and their respective standard deviations. method. The Fig. 10 illustrates the results of the Finite Dif-
As mentioned before, we repeat each experiment 10ffrences method for different numbers of grid point& (=

times, for each repetition we get the cost function for the 160 21, 30), compared to the analytical solution.

possible combinations. From each cost function, we take the ©Once the value oNi is set in the FD method, the calcu-

minimum value (assuming that the last value of the functiorfation is performed deterministically and yields a unique and

is the minimum), and from these 100 values, we calculate theonsistent result. There is no need to repeatthe calculation

mean (MMCF) and plot it for eacti’b andir, as shown in

0.0

Mean of the minima of the Cost Function

-0.2

Fig. 6. TABLE Ill. Hyperparameters of PINNs in experiment C.
Throughout the process, the hyperparamet®is = Modified Hyperparameters

2000, Nn = 10, and N7 = 21 remained constant. Ni 10 21 30
In Fig. 6, a very high standard deviation is observed for

Tbh = 1200. For a better visualization, we present Fig. 7, Fixed Hyperparameters

which provides a zoom into the area of interest. PINN-1 PINN-2
From Figs. 6 an_d 7, |'F is obs_erved that the best perfor- Ne 2000 2000

mance of the PINN is achieved with the hyperparameter val-

ueslr = 0.001 andT'b = 300 (green stars). Table Il confirms Nn 10 10

this minimum value, also highlighting its low standard devi- Ir 0.001 0.005

ation. Furthermore, this observation is visually validated in Tb 300 600

Rev. Mex. Fis71020601

OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 7

1eg

* PINN-2, Irn0.005_Th 600
3 * PINN-L, Ir:0.001 Th_300
+ FDM
2
W1
2
k3
5 0w * *
LT}
=
-1
-2
_3 T T T
10 21 30

Ni {Number of grid points)

FIGURE 8. Comparison between PINN-1, PINN-2, and the FD
method. On the x-axis, the number of poids = 10, 21, 30; on
the y-axis, Mean RMSE (MRMSE) between the Analytical Solu-
tion and the PINN Prediction.

0.100

0075
0050
0025

poooq{ ¥ * i'

—0.025

Mean RMSE

—0.050
* PINM-2, Ir:0.005_Tk_600

FIMN-1, Ir:0.001_Th_300
FDM

#*

—0.075

1 *

—-0.100

10 n 30
Ni (Mumber of grid points)

FIGURE 9. Zooming into the comparison between PINN-1, PINN-
2, and the FD method. On the-axis, the number of points
Ni = 10,21, 30; on the y-axis, Mean RMSE (MRMSE) between
the Analytical Solution and the PINN Prediction.

Exact Solution Vs Finite Difference Method

o4

0.03

001

0.0 02 0.4 0.6 0.8 10
X

FIGURE 10. Analytical solution Vs finite difference method for
Ni = 10,21, 30.

TABLE IV. Mean RMSE (MRMSE) between the Analytical Solu-
tion and the prediction and Standard Deviation for PINN1, PINN-2,
and FD.

N MRMSE
Value Standard Deviation
10 0.0672 0.00717
PINN-1 21 0.0615 0.00625
30 4.307 x 10° 4.284 x 107
10 0.005874 0.005433
PINN-2 21 3.206 x 107 3.190 x 108
30 0.008841 0.01128
10 7.927 x 107 0.0
FD 21 1.656 x 10~¢ 0.0
30 7.931 x 1077 0.0

multiple times, as the solution obtained is the same each time
the method is applied with the same parameters and initial
conditions.

This allows us to compare the accuracy of the finite dif-
ferences method for different values & compared to the
PINNSs, as shown in Table IV. The value of RMSE in the case
of FD decreases as the number of points increases and is very
small compared to the value of MRMSE for the PINNSs in all
cases. The value of MRMSE for PINN-1 and PINN-2 both
exhibit a large standard deviation fof; = 30 and Ni = 21
respectively. However, foN: = 10, PINN-2 has a lower
MRMSE than PINN-1.

Even if the FD method gives better results in this case,
the problem we are solving is a 1D problem, for more com-
plicated problems and inverse problems, the PINNs can be
useful, especially if the problems require large computations
times and they require to include data, such as in humerical
reservoir simulations [31-33]. More studies are required to
assess the full capacity of the PINNSs.

3.4. Experiment D

In this experiment, we varielf e, the number of epochs, from
1500, 2000, 2500, and 5000 for both PINN-1 and PINN-2.

TABLE V. Hyperparameters of the PINNs in Experiment D.

Modified Hyperparameters

Ne 1500 2000 2500 5000
Fixed Hyperparameters
PINN-1 PINN-2
Ni 21 21
Nn 10 10
Ir 0.001 0.005
Tb 300 600

Rev. Mex. Fis71020601

Z. SANCHEZ LOPEZ, AND G. BERENICE DAZ CORTES

1000

500

Mean RMSE

=500

=1000

L

* PINMN-2, Ir:0.005_Th 600
* PINN-I, Ir:0.001_Th 300

1500

FIGURE 11. The figure illustrates the relationship between the
number of epochd’e = 1500, 2000, 2500, and 5000 and the Mean

T
2000

2500 3000
Ne (number of epochs)

: T T T
3500 4000 4500 5000

RMSE for PINN-1 (green) and PINN-2 (blue).

0.10

0.08

0.06

004

Mean RMSE

* PINN-Z, Ir0.005_Th 600
* PINN-1, Ir0.001_Th_300

1500

2000

2500

3000

3500 4000 4500 5000

Ne {number of epochs)

FIGURE 12. The figure provides a zoom of the relationship be-
tween the number of epociée = 1500, 2000, 2500, and 5000 and
the Mean RMSE for PINN-1 (green) and PINN-2 (blue).

TABLE VI. Mean RMSE (MRMSE) between the Analytical Solu-

tion and the prediction and Standard Deviation for PINN1, PINN-2.

Ne MRMSE
Value Standard Deviation

1500 0.0663 0.0018
PINN-1 2000 0.0563 0.0057

2500 0.0516 0.0170

5000 0.0503 0.0178

1500 0.0119 0.0128
PINN-2 2000 0.0087 0.0149

2500 118.98 1183.8

5000 5.444 54.09

The description of the modified hyperparameters and the -1.0

fixed parameters are found in Table V.

In this experiment, we calculated the RMSE between

each value ofVe. Subsequently, we computed the mean of
these 100 RMSE values (MRMSE) along with their standard
deviation, resulting in a single value for eadfe, as show in
Fig. 11. For a better visualization we include Fig. 12, which
is a zoom into the area of interest.

In Table VI, the mean RMSE (MRMSE) between the ana-
Iytical solution and the prediction and the standard deviation
for PINN1, PINN-2 are presented. It can be seen that the
MRMSE values between PINN-1 and PINN-2 are compara-
ble atNe = 1500 and Ne = 2000; for values ofNe = 2500
andNe = 5000, PINN-1 exhibits lower MRMSE values than
PINN-2.

3.5. Experiment E

In this experiment, we variel¥ n the number of neurons from
5, 10, 20, and 40 for both PINN-1and PINN-2 networks.

We compared the behavior of the optimized PINN-1 net-
work with the reference PINN-2 network. The description
of the modified hyperparameters and the fixed parameters are
found in Table VII.

In this experiment, we calculated the RMSE between
the analytical solution and the one predicted by PINN-1 and
PINN-2 in each repetition (out of the 100 available). This
provides us with 100 RMSE values for each network. Subse-
quently, we computed the Mean of these 100 RMSE values

TABLE VII. Hyperparameters of the PINNs in Experiment E.

Modified Hyperparameters

Nn 5 10 20 40
Fixed Hyperparameters
PINN-1 PINN-2
Ne 2000 2000
Ni 21 21
Ir 0.001 0.005
Th 300 600

1el3

* PINN-2, In0.005_Th 600
10 * PINN-1, Ir:0.001_Tb 300
05
wl
[l
=
o *
= 00 * * *
i
=
=0.5

5 10 15 20 25 30 L] 40
Nn (Mumber of neurons)

the analytical solution and the one predicted by PINN-1 andrigure 13. The figure illustrates the relationship between the
PINN-2 in each repetition (out of the 100 available), as innumber of neuron&Vn = 5, 10, 20, and40 and the Mean RMSE
Experiment D. This provides us with 100 RMSE values forfor PINN-1 (green) and PINN-2 (blue).

Rev. Mex. Fis71020601

OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 9

0.10 iment A, where we replicated the experiment conducted by

. g:::i e ties Almqvist et al. [38], and compared it with the analytical

0.08 = solution the PINN with this hyperparameters is referred to

as PINN-2. We observe that the PINN prediction does not

006 ¥ always correctly approximate the analytical solution of the
* Reynolds equation. Therefore, we decided to perform a sta-

tistical analysis by varying hyperparameters to find the opti-

mal architecture for the PINN. Later, in Experiments B to E,

L b we study diverse scenarios to optimize the PINN, where we

vary the hyperparameters such as the learning fajead

L batch size T'b), number of points /i), number of epochs

T W G W w m = (Ne), and number of neuronsv(n).
Nn (Mumnber of neurons)

0.04

Mean RMSE

For Experiment B we modified the learning rate)@nd
FIGURE 14. The figure provides a zoom of the relationship be- training batchesi(b) to 0.01, 0.01, 0.05, 0.005, and 300, 600,
tween the number of neurodén = 5, 10, 20, and40 and the Mean 900, and 1200 respectively. Each valudbfwas paired with
RMSE for PINN-1 (green) and PINN-2 (blue). all proposed values df, resulting in a total of 16 possible
combinations. For the statistical analysis, we repeated each
experiment 100 times. In each repetition, we obtained the
TaBLE VIII. Mean RMSE (MRMSE) between the Analytical cost function for the 16 possible combinations. From each
Solution and the prediction and Standard Deviation for PINN-1, cost function, we selected the minimum value and calculated

PINN-2. the mean (MMCF) and corresponding standard deviations.
MRMSE As a result, we have identified the optimal values for the
Nn value Standard Deviation learning rate i = 0.001) and (I'db = 300). These opti-
mal values correspond to the points at which the cost func-
5 0.0614 0.0054 . . . L .
tion reaches its minimum and exhibit a small standard devia-
PINN-1 10 0.0548 0.0117 tion. The PINN with these hyperparameters is referred to as
20 23.65 181.2 PINN-1. From here onwards, we conduct a statistical analy-
40 0.0484 0.0113 sis comparing PINN-1 and PINN-2. In general, for the next
5 0.0193 0.0223 experiments, we observe a better performance for the PINN
PINN-2 10 0.0100 0.0177 that we proposed (PINN-1), we elaborate next.
20 1.149 1.143e+13 In Experiment C, we modified the hyperparameléi
40 2 504e+11 2 488e+12 that represents the number of grid points for the solution do-

main [0,1], randomly selected from the space. We selected
the valueN; = 21, as in the reference article, and included a

(MRMSE) along with their standard deviation, resulting ina .
higher value NV, = 30, and a lower valuelV; = 10, and we

single value for eaclVn, as shown in Fig. 13. For a better ') S .
visualization, we include Fig. 14, which is a zoom into the compared PINN-1 with PINN-2 and with the Finite Differ-

area of interest ences method (FD). We calculated the RMSE between the an

In Table VIII, the values of MRMSE and their standard alytical solution_ ‘f.’md the one predicted py PINN-1 and PINN-
deviation for each PINN are presented. It is observed tha in each repetition (out of the 100 available), and comput_ed
for Nn = 5 and 10, both PINNs show comparable values. t € mean of thesg 1.00 RMSE values (MRMSE) along with
However, in the case d¥n = 20, both PINN-1 and PINN-2 their standard deviation. For the FD method, we calculate the

exhibit high MRMSE values, as well as high standard de_?MS(IjE tt))ettvr;/een ttr;]e gn%B/tlc?)l SOlu“?r? ??r? thelsolu???nMoSbé
viation, which occurs in both cases. RegardiNg = 40, ained by the method. e observe that the value o

PINN-1 shows considerably lower MRMSE and standard deln thg case of FD decreases as the number of points increases
viation than PINN-2. and is very small compared to the value of MRMSE for the
PINNSs in all cases. The value of MRMSE for PINN-1 and
PINN-2 both exhibit a large standard deviation fé¢ = 30
4. Conclusion and N: = 21 respectively. However, foN: = 10, PINN-2
has a lower MRMSE than PINN-1. Even if the FD method
In this paper, we present to optimize a Physics Informed Neushows better results, the PINNs are capable of approximating
ran Network (PINNSs) to solve the stationary one-dimensionathe solution up ta®(10~2), this could be helpful for prob-
Reynolds equation. lems where using a traditional discretization scheme is com-
Within the conducted studies, a comparison is made beplicated or when it is required to include data from the prob-
tween the solutions obtained using the PINN and the andem, that FD is not capable to do. As next steps, we plan to
lytical solution. We performed five experiments. In Exper- solve one of these problems.

Rev. Mex. Fis71020601

10 Z. SANCHEZ LOPEZ, AND G. BERENICE DAZ CORTES

For Experiment D, we variede, the number of epochs, *1 Xz X3 Xy-1 XN
from 1500, 2000, 2500, and 5000 for both PINN-1 and PINN-
2, and we calculated the RMSE between the analytical solu- h 1

tion and the one predicted by PINN-1 and PINN-2 in each

repetition (out of the 100 available). The MRMSE values be-FIGURE 15. Domain divided intaV points.

tween PINN-1 and PINN-2 are comparableMt = 1500

andNe = 2000; for values of Ne = 2500 and Ne = 5000, .

PINN-1 exhibits lower MRMSE values than PINN-2 e Vectors (lowercase letters in boldface): such as
For Experiment E, we varie@yn the number of neurons z, represent a vector with components =

N J—
from 5, 10, 20, and 40 for both PINN-1 and PINN-2. It is [1“""]\’[1“ ...,zy] € RY, wherez,, € R forn =
observed that fovn = 5 and10, both PINNs show compa- ARRREAN
rable values. However, in the casedh = 20, both PINN-1 o RY represents th&/-dimensional space.

and PINN-2 exhibit high MRMSE values, as well as high

standard deviation, which occurs in both cases. Regardinghe elements of the network

Nn = 40, PINN-1 shows considerably lower MRMSE and

standard deviation than PINN-2. To predict the outpug(x) of the PINN, the solution domain
[0,1] is divided intoV points, as illustrated in Fig. 15, creat-
ing N — 1 equal subintervals of length (uniformly spaced

Appendix mesh points). A valuer,, is randomly selected from the
) o vectorez = [z1,...,Zn...,2N], Wherex, € [0,1] and
A. Detailed description of the Neural Network » = 1..N. This value is used to train the network.
elements and derivatives required for Training. The network consists of an input layer where a random
elementz,, from the vectorz = [z1,...,2,...,2N] €

This appendix provides a detailed description of the theoryR”Y is taken as the input value. This value is then mul-

presented in Subsec. 2.1 regarding the construction and complled by all the weights of the first layer, where each

putation of the PINN cost function applied to solving thew ...n, € R, is an element of the weights vectar®) =

Reynolds equation. [w §0)7 ..,w(o) ~w(] € RN whereN, is the number
As described in Subsec. 2.1, the work involves the of neurons, thereafter the corresponding ﬁ‘(&l c

Reynolds equation in its dimensionless form EXf)(along R. is added; is an element of the bias vectoh@

with its boundary conditions EqlP) and its analytical so- o) ©) * (0) N,

lution Eqg. [13). Subsection 2.1 also defines the problem[b 037, by | ER

in terms of operators Eqs16) and (.7) and describes the The result of these operatlons is then passed through the

cost function in its general form Edl9) and a specific case sigmoid activation function, Wh'(%? gives us tr(na) output

Eq. 22). For training the PINN, this cost function is min- data for each neuron in layer (0%, () = p(uw; "z +

imized using the gradient descent algorithm, where we|ght§ € R,i = 1,..., Ny, which are elements of the vector
and biases are iteratively updated as indicated inE. (20(x,) = 1O (@), ey 2O (20), .., 2%] € RN [se0
This appendix also expands on the theory presented ifig. 16a)].
Subcec. 2.2, which discusses the neural network architecture Subsequently, this result is multiplied by the second set
and the operations required to compute the network outpu®f weights, where each”; ~, € Ris an element of
y(z). Below is a detailed description of the neural networkthe weights vectow® = [w{", ... v, .. wi)] € RN,
elements used in this study. We begin by introducing theThe dot product between the vectmxé1 andz(o) results in
nomenclature used in this appendix and throughout the a&a sum, performed from = 1 to NN,,, of the products of their
ticle, followed by a description of the network components,corresponding components. A second bias téff,c R, is
including its architecture and activation function. We alsofinallyadded, yielding the network outpytz,,) for the point
provide the activation function’s derivatives, which are essenz:,, [see Fig. 16b)]. The output is then obtained as follows:
tial for the subsequent calculation of the cost function. The
cost function is then described in detail using algebraic ex-

0) 0
pressions. Zw p(wz, +5") + 5 € R.
Nomenclature Below, we list the elements of the network:

e The superscriptj) indicates the layer number. * Input data set

pr— r N
e The subscript refers to the neuron number. For exam- ©=lon. o @ an] €RT,
pl_e,wEO).represents the weight associated with neuron whereN is the number of points into which the [0,1]
1 in the first layer (0). domain was divided.

Rev. Mex. Fis71020601

OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 11

(0)
Z B>
(0) \
— Z P4 N
2 o A5)'; R
Z(O) W} A P \\\ \\\Wl(l)
3 ~0) _3© N 1)
RO
oo ~_ &

‘ w \\@/
o\ O -
Wnn (6).) b(g)
L N, >
a) 0 — 2w, b)

FIGURE 16. Output data for each neuron in layer (0),4)’ (zn). b) Output of the neural network(z,,).

e \ector of real-valued weights for layer (0):

w® = [w§°), . .,wz(o)

The vector output containing all the neurons is:

0
oo wi)] € RN 20(@,) = [2®, ., %®, . 0] e RN,

whereN,, is the number of neurons.

Second weights vector:

Vector of real-valued biases for layer (0):

b @ =", 0, 6] e RN w® = [, w®,)] e RN

ey

Sigmoid activation function
_ 1
T l4ee’

Second bias terr") = b)) € R.

¢(e) ¢ :R—10,1].

Output data for a single value,:

Output data for each neuron in layer (@) (z,) =

(0) (0) Nn

| i=1

Activation function

We use as activation function the sigmoid function, defined as:

= 'R 0, 1]. A.l
o(e) T ¢ — [0, 1] (A1)
For future calculations, we need its first, second, and third derivatives. Therefore, we compute them as follows:

1st Derivative of the Activation Function:

de(e) d 1 d o1 1 _ e ¢
! = = — = — 1 € = - . [— &y — -~
e = = i) == e (1+ec)2 (=) (1+e)2
1 e 1 ltec-1 S 1

=) -) — . _ - 1—
1+e€ 14+e€ 1+4e€ 1+ee l1+e€ 14+ec 14ec (&)1 = (),

that is:
¢'(e) = p(e)(1 — p(e)). (A.2)

Rev. Mex. Fis71020601

12 Z. SANCHEZ LOPEZ, AND G. BERENICE DAZ CORTES

2nd Derivative of the Activation Function:

()= T2 _ L o)1 o)) = P21)+ 010) L1~ ole)) = P 1) - i) 22

= 20 B o) p(0) P = O 9p) T2 — o)1 - i) — 20(6) [0()(1 9]
=)1~ pO)(1 ~ 20(£) = ¢(£)(1 ~ 20(6)),
that is:
#1(6) = ple)(1 — P~ 20(6)) = ¢()(1 ~ 20(2)). (a3
3rd Derivative of the Activation Function:
2 (#16) = 2 (P(©1 - 20(6) = ZE1 - 26(0) + (€)1~ 20(6)) = (€)1 - 20() + (O) (~26/(6)
= ()1~ 20(8)) ~ 2(H(€))" = PlE)1 — L)1 ~ 20(E))(1 — 20(8)) ~ 2 (£(E)(1 — $(E)))”
A1~ S(E(1 - 20(6))° ~ 20(E)(1 — #(E)] = ()1 PlE)[1 — 4(6) +4(p(E))” — 20(8) + 2(0(6)))
PE)(1 — () [1 ~ 60(6) + 6(5(6)?] = P()(1 ~ (EN[(1 ~ (€)1~ 3p(6))]
PE)(1 — £(©)(1 — 30(6)),
that is:

¢ (e) = p(e)(1 — p(e))*(1 = 3(e))- (A.4)
Cost function

The cost function for the PINN, in terms of operators, in our case includes only the loss associated with the PDE and the loss
due to the boundary conditions, as given by @) (It is expressed as:

L) = ((My—f)*) + ((Ny —b)-&)” + (Ny - b) - &), (A.5)

where(Q) is the average value of variallg
The cost function, substituting the residual Reynolds E6). &nd its boundary condition&1), is given by:

L£(8) = (' (@n)y (xn) + c(zn)y" (xn) —)?) + (1(0))* + (y(1))>. (A.6)

To optimize the PINN, we need to express the cost funcfih) in terms of the weights and biases. Since the network
outputy(z) depends on these weights and biases, we can exf(@33n terms ofy(x) and its derivatives as follows:

Ny,
y(z,) = Z wgl)go(wl(o)xn + bEO)) + oM, (A7)
n=1
Ny,
0) = Zwi(l)(P(bi(o)) + M) (A.8)
i=1
Z w; M p(w; +5,) + b, (A.9)
Zw W@ (w0, +), (A.10)
" Py N, (10, 020 0) (0)
y' () = dr? Zwi (w;) " (w; "y + b;7). (A.11)
i=1

Rev. Mex. Fis71020601

OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 13

Substituting the Eqs/A8), (A.9), (A.10), and A.11) into Eq. (A.6), we obtain:

2
:<< Tn Zw ¢ (w2, + Zw(l w2 (W, + b f) >

N, 2 N, 2
n (ngl)@(bgo))+b(l)> n <ngl)¢(w§0)+b£0))+b(l)> 7 (A12)
=1 =1
where
3 / de() 2
c(z) = (14+ K - Kz)°, d(w) = == = =3K(1+ K — Ku)”.
X

Once we have the cost function expressed in terms of the neural network parameters, and since we want to minimize this
function, the next step is to use an algorithm to optimize it. The algorithm we use here is Gradient Descent.

Gradient descent algorithm
Ithe obtained weights and biases are those that minimize the
The gradient descent algorithm iteratively adjusts the parameost function within the established tolerance. The goal is to
eters@, where @ represents the set of all weights and bi- minimize the cost function value to optimize the model.
ases across all layers of the network as previously defined To illustrate the process of conjugate gradient, see
in Eq. 9). In our case®d = {w®, w® b® v} and we Fig. 17, where we have an initial parametef®). We com-
want to find the set of parametwsthat minimize the cost pute the gradient of the function in this poit (@) /dw;)
function£(0) as defined in Eq/A.12). The next positiony; ,(?) of the parameter is found taking
The gradienV ¢ L(6,,) is computed, indicating the direc- the initial position and giving a stepin the opposite direc-
tion of the steepest increase in the cost function. The parameion of the gradient (which is the direction of bigger growth
ters are then adjusted in the opposite direction of the gradiendf the function),.e.:

using:
w®, = @ _ ;2L

Ons1 = 0, — Ve L(0,), R duw”

wheren is the learning rate, and the parameters of the neural N 0ur case, the cost function depends on the weights and
network are initialized randomly. biases of each layer. Therefore, the parameters are adjusted

This process continues until the error is less than a user@Slng the following formulas:

defined tolerance value or until a maximum number of itera- ©) o 0L(6)
tions is reached. When either of these conditions is met, 2w =w; " = PROR
w;
, IRCONCONN 4 ()
A 8. ! (0) Gradient Wiy =Wy " — Ny
Initial weight w; ,",__; 2£(6) +) 2(1)
/ ©
; dw, b('O)l _ 0 0L(0)
1+ [6[)50)
e oL(0
z+1 ab(l)
Globtal C
COs
a~ minimum where the step is an hyperparameter known as the learning
/ me(ﬂ) rate.
o) > The derivatives of the EqsA(13) are computed analyti-
w; cally by differentiating the equations, which requires the par-
_ _ tial derivatives of the general cost function with respect to
FIGURE 17. Gradient descent algorithm. each weight and bias. These derivatives are presented next:

Rev. Mex. Fis71020601

14 Z. SANCHEZ LOPEZ, AND G. BERENICE DAZ CORTES

0L _ H(My—f)*) Oo((Ny=b)-e)* O((Ny=b)-e)? ((a)y +clz)y” =)

Bwfo) ngo) 8w§0) 8w§0) a awgo)
D((y(0) —0)* . A((y(1) — 0))? N
+ ((yéu)p b ((‘”;L@ : <2<< W'+ @y~ f) (<x>aj()+<x>%y<)&u{)>>
+2(y(0) O)gi(gg +2(y(1) —0)22%2, (A.14)
oL _ o{(My—f)?) O((Ny—b)-e)? o(Ny—b)-&)* o (@)y +clz)y” - f)?)
8'LU,§1) o (1) awgl) 9 (1) 9 (1)
+ RN A <2(()" + 2 — 1) <c<)+) ai{)>>
+2(y(0) O)Zz;(g? +2(y(1) o)gi((llg, (A.15)
oL _o((My—f)?) O(Ny—b)-e)? Oo(Ny-b)-&)* @)y +c(x)y” - f)?)
o o o o b
A((y(0) —0))* . A((y(1) — 0))? N o |, dy D
+ ((y(ab)f.o)) + ((y(ab)l(.o)) <2(c(x)y +(x)y — f) <C<x)8by§0) +c (:c)ab?o) - %Efo)>>
+2(3(0) 0)‘232533 +2(y(1)_o)23£)), (A.16)
0L _ oMy —f)*) O((Ny—b)-e)* O((Ny—b)-&)* ((@)y +cl@)y”~[)?)
ob) o) b o) obM)
a((y(0) —0))* a((y(1) —0))? TR ' o Oy Of
yab(l) 4 yc’)b(l) =(2(c(x)y" +(x)y — f) (c(m) aby(l) +c (a:)wgé) — (’)b(1)>>
+2(y(0) 0)?‘25?)) +2(y(1) —0)%328)) (A.16)

The expressiond\.14), (A.15), (A.16), and (A.16), require a set of derivatives, which we calculate below.
For Eqg. A.14), we need,

oy’ ay" 0y(0) oy(1)
ow® ow® o ow®

From Egs./A.7), (A.8), (A.9), (A.10), and A.11), we have the values af(z), y(0), y(1), v', andy” respectively. Here,
we will need the activation function and its respective derivatives, which are given bylkds. (A.2), (A.3), and A.4).
Substituting the values af , y”, y(0), andy(1) and differentiating with respect m§0>, we obtain the following:

o' No, Ny,

y(o) :Z (1) ’(w(O)xn+b§°))+anw§1)20 (@, + b)), (A17)
dw; i=1 i=1
0™y (0O (1 (D) () ©. .0

o= 22w, " (w; a:n—|—b anw w; 2" (w, xn + b), (A.18)
8wi =1

since
N,
Zw(l p(w”(0) +5”) + b =3 wVp(b!”) + b0, (A.19)

i=1

Rev. Mex. Fis71020601

OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 15

then
6y(((())3 =0, (A.20)
ow,
since
N,
y(1) = > wPew® (1) +b”) + b0, (A.21)
=1
then
Ay(l)
Ty o = 2w e (w” (1) + Zw o' (w® +). (A21)
w; i=1
For Eqg. A.15), we need:
oy’ ay" oy(0) 9y(1)
)

ow™ gw dwM w
7 7 % K]

From Egs./A.7), (A.8), (A.9), (A.10), and A.11), we have the values af(x), y(0), y(1), v', andy” respectively. Here,
we will need the activation function and its respective derivatives, which are given by/).(A.2), (A.3), and A.4).
Substituting the values af , y”, y(0), andy(1) and differentiating with respect M)il , we obtain the following:

Nr

!
83;(1) =2 wi” o (wz, +), (A.22)
ow; i=1
" - (0)\2 11y, (0) (0)
) = (W) (W zn + b)), (A.23)
ow; i=1
since N
a n
y%)) = e, +), (A.24)
ow; i=1
then:
dy(0 all Nn
8w((12 = @ (0) +5”) = > (0", (A.25)
i i=1 i—1
6y(1) A (0) (0) O (0) (0)
= o (M) +b") =D ow” +b"), (A.26)
811)1(1) =1 i=1

For Eqg. (A.16), we need:

ay' 9y" 9y(0) dy(1)
N A A

From Egs./A.7), (A.8), (A.9), (A.10), and A.11), we have the values af(z), y(0), y(1), v', andy” respectively. Here,
we will need the activation function and its respective derivatives, which are given by/d).(A.2), (A.3), and A.4).
Substituting the values af , y”, y(0), andy(1) and differentiating with respect féo), we obtain the following:

oy

(%Z(JO) = Z 1) (O)go”(w(o Ty + b) (A.27)
7 =1

W' (1) ()))

8b(0) = Z (w;)290,”(“) Tp +b;), (A.28)
1 =1

Rev. Mex. Fis71020601

16 Z. SANCHEZ LOPEZ, AND G. BERENICE DAZ CORTES

have the values of(z),

5. X. Jin et al,

From Eqgs. A.7), (A.8), (A.9), (A.10), and A.11), we
y(0), y(1), ¥/, andy” respectively.

since Here, we will need the activation function and its respective
derivatives, which are given by Eq®#.4), (A.2), (A.3), and
(1) / (A4)
n b A.29 _ .
b(o) ;w w 2+ 5%, () Substituting the values af , v, y(0), andy(1) and dif-
ferentiating with respect to'), we obtain the following:
then Ny
Y
N —— =0 (A.32)
dy(0 (1) ’
W0 3wl w0+ ") o
i i=1 oy’
. D 0, (A.33)
=> w0, (A.30) since (o)
=1 yx —
N D 1, (A.34)
ay 1 n .
abg())) _ wgl)w/(wl@)(l) + b(o)) then: Ay(0)
) i=1 ab(l) = 1, (A35)
Ny
1
=S wM (W + () (A.31) Oy(1) _ . (A.36)
=1 ab(l)
Once the necessary derivatives for E¢5.16), (A.16),
For Eq. (A.16), we need: (A.17), and A.18) have been computed, we can iteratively
/ " 1 update the weights and biases according to/EdL). Then,
aabg(/l), aabgil)’ %@25(1))) 883251)). we calculate the cost function using these updated weights

and biases, as indicated in E&.12). The optimization is
performed ovefl}, batches, and the entire process is repeated
across the specified number of epochs.

. Y. Chenet al., Physics-informed neural networks for inverse
problems in nano-optics and metamateri@ptics expres28
(2020) 11618.

. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics
informed deep learning (part i): Data-driven solutions
of nonlinear partial differential equations, arXiv preprint
arXiv:1711.10561 (2017). 9

. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics
Informed Deep Learning (Part Il): Data-driven Discovery

of Nonlinear Partial Differential Equations, arXiv preprint 10.

arXiv:1711.10566 (2017).

. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-

informed neural networks: A deep learning framework for solv- 11.

ing forward and inverse problems involving nonlinear partial
differential equationsJournal of Computational physic378
(2019) 686.

. A.D.Jagtap, E. Kharazmi, and G. E. Karniadakis, Conservative

physics-informed neural networks on discrete domains for con- 5.

servation laws: Applications to forward and inverse problems,
Computer Methods in Applied Mechanics and Engineegitg
(2020) 113028.

NSFnets (Navier-Stokes flow nets):
informed neural networks for the incompressible Navier-Stokes
equations, Journal of Computational Physicg426 (2021)
109951.

15.

. T. T. Garipovet al,, Unified thermo-compositional-mechanical

8.

12.

Physics- 14.

framework for reservoir simulation,Computational Geo-
science®2 (2018) 1039.

J.-L. Wu, H. Xiao, and E. Paterson, Physics-informed ma-
chine learning approach for augmenting turbulence models: A
comprehensive frameworlhysical Review Fluid8 (2018)
074602.

. U. binWaheeckt al., PINNeik: Eikonal solution using physics-

informed neural networksComputers & Geoscience$55
(2021) 104833.

C. Rao, H. Sun, and Y. Liu, Physics-informed deep learning
for incompressible laminar flow3heoretical and Applied Me-
chanics Letterd 0 (2020) 207.

Z.Mao, A. D. Jagtap, and G. E. Karniadakis, Physics-informed
neural networks for high-speed flon§omputer Methods in
Applied Mechanics and Engineeri$0(2020) 112789.

B. Reyeset al, Learning unknown physics of non-Newtonian
fluids, Physical Review Fluidé (2021) 073301.

E. Haghighatt al, A physics-informed deep learning frame-
work for inversion and surrogate modeling in solid mechanics,
Computer Methods in Applied Mechanics and EngineeBing
(2021) 113741.

C. Rao, H. Sun, and Y. Liu, Physics-informed deep learning for
computational elastodynamics without labeled datarnal of
Engineering Mechanic$47(2021) 04021043.

E. Haghighagt al., A nonlocal physics-informed deep learning
framework using the peridynamic differential operatGom-

Rev. Mex. Fis71020601

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION

puter Methods in Applied Mechanics and EngineerB8b
(2021) 114012.

M. Guo and E. Haghighat, Energy-based error bound of
physics-informed neural network solutions in elasticligur-
nal of Engineering Mechanick48(2022) 04022038.

S. Caiet al., Physics-informed neural networks for heat transfer
problemsJournal of Heat Transfet43(2021) 060801.

32.

33.

17

R. K. Tripathy and I. Bilionis, Deep UQ: Learning deep neu-
ral network surrogate models for high dimensional uncertainty
quantification,Journal of computational physic375 (2018)
565.

S. Moet al.,, Deep convolutional encoder-decoder networks for
uncertainty quantification of dynamic multiphase flow in het-
erogeneous medislyater Resources Researsh(2019) 703.

34. J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged

S. A. Niaki et al., Physics-informed neural network for mod-
elling the thermochemical curing process of composite-tool
systems during manufactur€omputer Methods in Applied
Mechanics and Engineerirgg4(2021) 113959.

N. Zobeiry and K. D. Humfeld, A physics-informed machine
learning approach for solving heat transfer equation in ad-
vanced manufacturing and engineering applicati@mgineer-

ing Applications of Atrtificial Intelligenc&01(2021) 104232.

C. Song, T. Alkhalifah, and U. B. Waheed, Solving the
frequency-domain acoustic VTI wave equation using physic-5-
sinformed neural network§eophysical Journal International
225(2021) 846.

C. Song and T. A. Alkhalifah, Wavefield reconstruction inver-
sion via physics-informed neural networkE EE Transactions
on Geoscience and Remote Sen§0¢2021) 1.

U. B. Waheedet al, A holistic approach to computing
first-arrival traveltimes using neural networks, arXiv preprint
arXiv:2101.11840 (2021).

O. Fuks and H. A. Tchelepi, Limitations of physics informed
machine learning for nonlinear two-phase transport in porous
media,Journal of Machine Learning for Modeling and Com-
puting1 (2020).

M. M. Almajid and M. O. Abu-Al-Saud, Prediction of porous
media fluid flow using physics informed neural networksr-
nal of Petroleum Science and Engineer2@g(2022) 109205.

Y. W. Bekele, Physics-informed deep learning for one-
dimensional consolidationJournal of Rock Mechanics and
Geotechnical Engineeringj3 (2021) 420.

40.

P. Shokouhet al, Physics-informed deep learning for predic- 4o

tion of CO2 storage site respongeurnal of Contaminant Hy-
drology241(2021) 103835.

T. Kadeethum, T. M. Jgrgensen, and H. M. Nick, Physics-43.

informed neural networks for solving nonlinear diffusivity and
Biot's equationsPloS onel5 (2020) e0232683.

Y. W. Bekele, Physics-informed deep learning for flow
and deformation in poroelastic media, arXiv preprint
arXiv:2010.15426 (2020). 45

E. Haghighat, D. Amini, and R. Juanes, Physics-informed
neural network simulation of multiphase poroelasticity using

stress-split sequential traininG.omputer Methods in Applied 44

Mechanics and Engineerirgd7(2022) 115141.

C. Yang, X. Yang, and X. Xiao, Data-driven projection method 47,

in fluid simulation,Computer Animation and Virtual Worl&¥
(2016) 415.

Y. Zhu and N. Zabaras, Bayesian deep convolutional encoder4s.

decoder networks for surrogate modeling and uncertainty quan-
tification, Journal of Computational Physi&66(2018) 415.

36.

38.

39.

41.

44.

J.

turbulence modelling using deep neural networks with embed-
ded invarianceJournal of Fluid Mechanic807(2016) 155.

5. N. Thuerey et al, Deep learning methods for Reynold-

saveraged Navier-Stokes simulations of airfoil flowsdAA
Journal58 (2020) 25.

N. Geneva and N. Zabaras, Quantifying model form uncertainty
in Reynolds-averaged turbulence models with Bayesian deep
neural networksjournal of Computational Physi&83(2019)

125.

. Y. Zhu et al, Physics-constrained deep learning for high-

dimensional surrogate modeling and uncertainty quantification
without labeled dataJournal of Computational Physic394
(2019) 56.

G. B. Diaz-Cortes and R. Luna-Garcia, A Novel Evolutionary
Algorithm: One-Dimensional Subspaces Optimization Algo-
rithm (1D-SOA),Symmetni5 (2023) 1873https://dol.
0rg/10.3390/sym151018/3

H. Alibrahim and S. A. Ludwig,Hyperparameter Optimiza-
tion: Comparing Genetic Algorithm against Grid Search and
Bayesian Optimizatignin 2021 IEEE Congress on Evolu-
tionary Computation (CEC) (2021) pp. 1551-15%#tps:
//doi.org/10.1109/CEC45853.2021.9504761

D. Simon, Evolutionary Optimization Algorithms (John Wiley
& Sons, 2013).

C. Coello, D. Van Veldhuizen, and G. Lamont, Evolution-
ary Algorithms for Solving Multi-Objective ProblemsGe-
netic Algorithms and Evolutionary Computati@@pringer US,
2013), https://books.google.com.mx/books?id=

Vmn TBWAAQBAJ

S. Caiet al, Physics-informed neural networks (PINNSs) for
fluid mechanics: A reviewActa Mechanica Sinic87 (2021)
1727.

A. Almqgvist and F. P. Rfols, Scientific computing with appli-
cations in tribology: A course compendium (2022).

D. C. Psichogios and L. H. Ungar, A hybrid neural network-
first principles approach to process modeliddChE Journal
38(1992) 1499.

I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural net-
works for solving ordinary and partial differential equations,
IEEE transactions on neural networRg1998) 987.

G. Cybenko, Mathematics of control, Signals and Syst@ms
(1989) 303.

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedfor-
ward networks are universal approximatd¥gural network®
(1989) 359.

G. Pilaniaet al., Physics-informed machine learning for inor-
ganic scintillator discoveryThe Journal of chemical physics
148(2018).

Rev. Mex. Fis71020601

https://doi.org/10.3390/sym15101873�
https://doi.org/10.3390/sym15101873�
https://doi.org/10.1109/CEC45853.2021.9504761�
https://doi.org/10.1109/CEC45853.2021.9504761�
https://books.google.com.mx/books?id=VmnTBwAAQBAJ�
https://books.google.com.mx/books?id=VmnTBwAAQBAJ�

18 Z. SANCHEZ LOPEZ, AND G. BERENICE DAZ CORTES

49. S. Liu et al, Physics-informed machine learning for for metamaterial desigieee Acces8 (2019) 24506.

composition-process-property design: Shape memory alloy, o Noakoasteeret al, Physics-informed deep neural networks
demonstrationApplied Materials Todag2 (2021) 100898. for transient electromagnetic analysiEEE Open Journal of

50. W. Ji et al,, Stiff-pinn: Physics-informed neural network for Antennas and Propagatidh(2020) 404.
stiff chemical kinetics,The Journal of Physical Chemistry A 53 o Barry and G. Mercer, Exact solutions for two-dimensional

125(2021) 8098. time-dependent flow and deformation within a poroelastic
51. Z. Fang and J. Zhan, Deep physical informed neural networks medium,Journal of applied mechani@6 (1999) 536.

Rev. Mex. Fis71020601

