
Fluid Dynamics Revista Mexicana de Fı́sica71020601 1–18 MARCH-APRIL 2025

Optimizing a Physics-Informed Neural Network to solve the Reynolds Equation

Z. Sánchez Ĺopez and G. Berenice Dı́az Cort́es

Instituto Mexicano del Petróleo,
Eje Central Ĺazaro Ćardenas Norte 152, Col. San Bartolo Atepehuacán, Gustavo A. Madero, 07730, Ciudad de México.

Received 16 February 2024; accepted 8 August 2024

This study focuses on the optimization of a Physics-Informed Neural Network (PINN) to address Partial Differential Equation (PDE) prob-
lems associated with fluid flow. Specifically, the stationary, one-dimensional classical Reynolds equation is solved using the PINN. Within the
conducted studies, a comparison is made between the solutions obtained using the PINN, the numerical Finite Difference Method (FD), and
the analytical solution. We study various scenarios with diverse hyper-parameters such as learning rate, epochs, number of training points,
etc., for constructing the neural network to identify the optimal setup. The PINN accurately approximated the solution to the Reynolds
equation (up toO(10−2). This suggests that PINNs can be used to address diverse problems in fluid dynamics. We proposed a PINN
configuration that outperformed the PINN presented in the literature. The finite differences method obtains a better approximation than the
PINNs, however, the full potential of the PINNs is yet to be determined, as it can include data from the problem, that finite difference method
(FD) can not. Further studies are planned to investigate the capabilities of PINNs.

Keywords: PINN; PDE solution; Reynolds equation; fluid dynamics; hyperparameters optimization.

DOI: https://doi.org/10.31349/RevMexFis.71.020601

1. Introduction

Physics-informed neural networks (PINNs) are a state-of-the-
art framework recently developed to solve partial differential
equations [1] for both, forward and inverse problems.

PINNs were introduced in 2017 as a new class of data-
driven solvers in a two-part paper [2,3] published in a merged
version later in 2019, Raissiet al. [4] developed the PINNs
that can accurately solve both forward problems that approx-
imate the solutions of the governing mathematical model, as
well as inverse problems, where the model parameters are in-
ferred from the observed data. The PINN algorithm inputs
the governing equation into the network and thus enriches
the loss function by adding a residual form of the equation,
which essentially acts as a penalizing term to constrain the
space of admissible solutions. In this setting, the problem of
inferring solutions of PDEs is transformed into an optimiza-
tion problem of the loss function that contains the physics of
the problem in the residual, boundary, and initial conditions
loss terms [5].

PINNs have now been applied to solve a variety of prob-
lems including fluid mechanics [4,6-12], solid mechanics
[13-16], heat transfer [17-19], geophysics [9,20-22], and flow
in porous media [23-29].

Applications in flow simulations include solving Navier-
Stokes equations [30], fluid flow through random hetero-
geneous media [31-33], Reynolds-Averaged Navier-Stokes
simulations [34-36], among others [37].

The performance of the PINNs is influenced by various
factors, including data quantity, quality, and features. A key
factor is the configuration of parameters based on the prob-
lem specification. Parameters in a PINN can be classified into
two types: model parameters, which are estimated from data
such as weights and biases, and hyperparameters, which are

external and cannot be estimated directly from data, such as
the learning rate, number of neurons and layers, etc.

Optimizing hyperparameters is essential for maximizing
model performance, as the best values are those that yield
the highest accuracy. Various methods, such as grid search,
randomized search, genetic and evolutionary algorithms, and
Bayesian optimization, can be employed to identify the best
hyperparameter values [38-41].

In this paper, we optimize a Physics-Informed Neural
Network (PINN) to solve the stationary one-dimensional
Reynolds equation, as previously presented in the literature
[38]. We complement this work by providing a detailed ex-
planation of the analytically computed derivatives required
for training the PINN, aiming for a clearer understanding of
the process (see Appendix A).

As we will see in the first experiment, the PINN does not
always converge to the solution, therefore, an statistical study
is performed. Due to the instability of the particular PINN we
are working on, automatized optimization methods that in-
clude large number of computations such as grid search, evo-
lutionary algorithms and Bayesian optimization are not the
best option due to the number of repetitions performed for
the statistics, and are out of the scope of this paper. Instead,
we selected a set of parameters to perform the study based on
the best observed performance, more details are presented in
the Sec. 3.

This paper is distributed as follows, in Sec. 2, we present
the methodology for applying PINNs to solve PDEs, fol-
lowed by its specific application in solving the Reynolds
Equation, discussed in Subsec. 2.1. We present the neural
network architecture used to solve the Reynolds equation in
Subsec. 2.2. Then, in Subsec. 2.3, we provide a brief de-
scription of the experiments conducted, where the network’s
hyperparameters were adjusted for optimization. Finally, in



2 Z. SÁNCHEZ LÓPEZ, AND G. BERENICE D́IAZ CORTÉS

Sec. 3, we present the results and discuss their implications,
finally, we include the conclusions of this work.

The experiments presented in this work were performed
in python in an Intel@ Core i7-7700HQ CPU @2.80 GHz x8,
with 32 GB of RAM. The PINN for the Reynolds Equation
theory and code is available athttps://github.com/
gbdiazc/Reynolds PINN Notebook.git .

2. Methodology of physics-informed neural
networks for solving PDEs

The methodology to approximate a PDE with physics-
informed neural networks (PINNs) is based on the minimiza-
tion of the cost function, taking into account the residual form
of the PDE, together with the boundary conditions, and ini-
tial conditions [4]. The residual form of the PDE is given in
Eq. (1),

R(t,x) =
∂u(x, t)

∂t
+N [u(x, t)] = 0,

x ∈ Ω, t ∈ [0, T ], (1)

subject to the initial Eq. (2) and boundary conditions Eq. (3):

u(x, t = 0) = g(x), x ∈ Ω (2)

B[u(x, t)] = 0, x ∈ ∂Ω, t ∈ [0, T ]. (3)

In Eq. (1), N [·] represents a differential operator (linear or
nonlinear), andB [·] is an operator representing the bound-
ary conditions (Dirichlet, Neumann, Robin, or periodic). The
vectorx = (x1, . . . , xd) ∈ Ω is the spatial coordinate, that
in general could be inRd, andt ∈ [0, T ] is the temporal co-
ordinate. The spatial domain and the boundary of the domain
where the PDE is defined are represented byΩ, ∂Ω ∈ Rd,
respectively.

A feed-forward neural network has an architecture such
that the information flows in a single direction. It consists
of the input layer, hidden layers, and an output layer (See
Fig. 1). The input layer corresponds to the data inputted to
the NN. If the PDE depends on the variablesx, t, a set of
pointsxi, ti in the domainΩ are selected to train the net-
work, the output of this layer is the original dataz0 = (x, t).

FIGURE 1. Architecture of a Feed Forward Neural Network, image
created in Ref. [39] and adapted.

Next, we have the hidden layers, where all the computa-
tion is done. Neurons in adjacent layers are connected but
neurons within a single layer share no connection, and each
neuron in layer (L) is connected to all neurons in the next
layer (L + 1). In each of these layers, the input data (zL−1)
of the previous layer (L− 1) is multiplied by the weights and
the bias is added, therefore the output of each layer is given
by zL = wLzL−1 + bL. The output of each layer passes
through an activation functionϕ, before moving to the next
layer i.e., zL = ϕ(wLzL−1 + bL).

In the last layer, the expected approximation is obtained.
For a neural network ofNn layers the output of the previous
layerNn − 1 is multiplied by the weights and biases and an
activation function is applied, leading to the expected solu-
tion u

θ
(x, t) = ϕ(wNnzNn−1 + bNn). The layers can be

summarized as:

Input: (Data) z0 = (x, t).

Hidden: zL = ϕ(wLzL−1 + bL), 1 ≤ L ≤ Nn− 1.

Output: u
θ
(x, t) = zNn = ϕ(wNnzNn−1 + bNn). (4)

The solutionu(t,x) of the PDE is approximated with the
output of a Neural Networkuθ(t,x), whereϕ(.) is an ac-
tivation function that can be linear or nonlinear,wL andbL

are the weights and biases of theLth layer, and together, they
form the parameter vector of the neural network approxima-
tion denoted byθ:

θ = {w1, w2, . . . , wL, b1, b2, . . . , bL}. (5)

The parameters of the neural network are randomly initial-
ized and updated iteratively by minimizing a loss function.

The architecture of the PINNs differs from the architec-
ture of a traditional NN in the last part of the network. The
PINN works in the first part as a NN, however, the PINN
takes the outputuθ and computes its derivatives using the
given equations (see Fig. 2). It calculates the loss functions
related to the PDE, initial and boundary conditions, and, if
available, due to the data. The final step involves the feed-

FIGURE 2. Building Blocks of Physics-Informed Neural Networks
(PINNs), modified Image of [40].

Rev. Mex. Fis.71020601

https://github.com/gbdiazc/Reynolds_PINN_Notebook.git�
https://github.com/gbdiazc/Reynolds_PINN_Notebook.git�


OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 3

back mechanism, which minimizes the loss using an opti-
mizer with a specified learning rate to obtain the neural net-
work parametersθ [40].

The loss function takes into account four error terms, see
Eq. (7). The first term is related to the PDE (LPDE), to com-
pute this term, we input the approximate solutionuθ(t,x)
into the residual Eq. (1) as [41]:

Rθ(t,x) =
∂uθ

∂t
(tr, x) +N [uθ] (tr, x). (6)

The second term, takes into account the initial conditions
(LIC), if the problem requires them. The third term is related
to the boundary conditions (LBC ), and the last term is related
to the observation data (LData) if they are available.

Then, a physics-informed model can be trained by mini-
mizing the following composite loss function:

L(θ) = ωfLPDE(θ) + ωBCLBC(θ)

+ ωICLIC(θ) + ωDLData(θ), (7)

whereωf ,ωBC , ωIC andωD are weights associated with the
loss terms. In this work,ωf = ωBC = ωIC = ωD = 1.

In this work, the mean square error (MSE) is employed
to compute the losses in Eq. (8). These terms are calculated
as follows [40-42]:

LPDE(θ) =
1

Nr

Nr∑

i=1

∥∥Rθ(tir,x
i
r)

∥∥2
,

LIC(θ) =
1

NIC

NIC∑

i=1

∥∥uθ(0,xi
IC)− g(xi

IC)
∥∥2

,

LBC(θ) =
1

NBC

NBC∑

i=1

∥∥B[uθ](tiBC ,xi
BC)

∥∥2
,

LData(θ) =
1

ND

ND∑

i=1

∥∥uθ(tiD,xi
D)− u∗iD

∥∥2
, (8)

where{tir, xi
r}Nr

i=1 are the selected points, sampled randomly
in Ω, also known as collocation points used to evaluate the
PDE residual equationRθ, {xi

IC}NIC
i=1 are the points where

the initial conditions are imposed,{tiBC , xi
BC}NBC

i=1 are the-
points in the boundary conditions, andLData(θ) isthe differ-
ence between the approximationuθ and the labels or solu-
tions to the equationu∗iD of the training data forND labeled
data points.

To update the parametersθ the gradient descent is used
in this work, given by:

θn+1 = θn − η∇θL(θn), (9)

whereη is the learning rate, a hyperparameter that depends
on each network, and∇θL(θn) are the derivatives of the loss
function. More details are presented below for the studied
case.

2.1. PINNs applied to solving the Reynolds Equation

In this work, the optimization of a Physics-Informed Neu-
ral Network (PINN) will be conducted to solve the classical
one-dimensional steady-state Reynolds equation in the inter-
val Ω = [0, 1].

The dimensionless form of the Reynolds equation for the
steady-state, one-dimensional case is expressed as follows
Eq. (10) [38,43]:

d

dx

(
c(x)

dy

dx

)
= c

′
(x)y

′
+ c(x)y

′′
= f(x);

0 < x < 1, (10)

where

c(x) = H3; H(x) = 1 + K −Kx,

c
′
(x) = −3K(1 + K −Kx)2,

f(x) =
dH

dx
= −K, (11)

with the following boundary conditions:

y(0) = 0, y(1) = 0. (12)

Equation (10) has an analytical solution given by:

yex(x) =
1
K

(
1

1 + K −Kx

− 1 + K

2 + K

1
(1 + K −Kx)2

− 1
2 + K

)
. (13)

If we define the operatorsM andN as:

My = c′(x)y′ + c(x)y′′, (14)

Ny =
[
y(0)
y(1)

]
=

[
0
0

]
. (15)

Equations (10) and (12) can be rewritten in terms of
the operatorsM andN for a given pointx in the domain
x ∈ [0, 1], as follows:

My − f = 0, 0 < x < 1, (16)

Ny − b = 0, (17)

whereb = 0.
In the PINNs approach, we approximate the solution with

the neural network, that is:

y(x) ≈ yθ(x; θ). (18)

In this particular case, the cost function consists of the
sum of two error terms, the term due to the residual equation

Rev. Mex. Fis.71020601



4 Z. SÁNCHEZ LÓPEZ, AND G. BERENICE D́IAZ CORTÉS

of the PDE, and the term due to the boundary conditions, and
it is expressed as follows:

L(θ) = LPDE + LBC =
〈
(My − f)2

〉

+ ((Ny − b) · e1)
2 + ((Ny − b) · e2)

2
, (19)

where

LPDE =
〈
(My − f)2

〉

=
〈
(c′(x)y′ + c(x)y′′ − f)2

〉
, (20)

and

LBC = (y(0))2 + (y(1))2. (21)

Substituting (20) and (21) into (19), the cost function
takes the form:

L(θ) =
〈
(c′(x)y′ + c(x)y′′ − f)2

〉

+ (y(0))2 + (y(1))2. (22)

This cost function is minimized with the gradient descent
algorithm to update the weights and biases iteratively as in-
dicated in Eq. (9).

2.2. Architecture of the PINN

The architecture of the PINN developed here has an input
nodex (the independent variable representing spatial coordi-
nate), a hidden layer consisting ofNn nodes, and an output
nodey(x) (the dependent variable representing pressure).

Figure 3 shows a graphical illustration of the PINN archi-
tecture used to solve the Reynolds problem.

The prediction of the PINN,y(x), is obtained as follows:
the inputx is multiplied by the initial weightsw(0)

i and the
initial biases,b(0)

i , are added to this result. Later, the activa-
tion function is applied and the outcome is then multiplied

FIGURE 3. PINN architecture used to solve the Reynolds problem,
image created in Ref. [39] and adapted.

by the second set of weightsw(1)
i and a second biasb(1) is

added to it:

y(x) =
Nn∑

i=1

w
(1)
i ϕ(w(0)

i x + b
(0)
i ) + b(1). (23)

We use as activation function the sigmoid function, defined
as:

ϕ(ε) =
1

1 + e−ε
, R→ [0, 1]. (24)

To update the weights and biases iteratively, we use the
gradient descent algorithm, which updates the weights and
biases as follows:

w
(0)
i+1 = w

(0)
i − η

∂L(θ)

∂w
(0)
i

, w
(1)
i+1 = w

(1)
i − η

∂L(θ)

∂w
(1)
i

,

b
(0)
i+1 = b

(0)
i − η

∂L(θ)

∂b
(0)
i

, b
(1)
i+1 = b

(1)
i − η

∂L(θ)

∂b
(1)
i

, (25)

whereη is a hyperparameter known as the learning rate.
To compute the gradients, the cost function, Eq. (22), the

output Eq. (23) of the PINN is evaluated at a set of points in
the domain to compute the residual equation, and the bound-
ary conditionsy(0), y(1), its first derivativey

′
(x) and sec-

ond derivativey
′′
(x) in terms of the weights and biases. The

derivatives are computed by deriving the equations analyti-
cally, see Appendix A for details.

2.3. Numerical experiments

To optimize the PINN, we performed five experiments desig-
nated as Experiment A, B, C, D, and E, with the first exper-
iment being Experiment A, and so forth. In Experiment A,
we replicate the results obtained by Andreas Almqvist (2021)
[38]. In the subsequent experiments, we optimize the PINN
by adjusting the following hyperparameters, Experiment B:
the learning rate(lr) and batch size(Tb), Experiment C:
the number of points in the domain(Ni), Experiment D: the
number of epochs(Ne), and Experiment E: the number of
neurons(Nn) in Experiment E.

Below, we provide a detailed description of each of the
aforementioned experiments, and we present the results and
subsequent discussion.

3. Results and discussion

In this section, we describe and analyze the five experiments
(Experiment A, Experiment B, Experiment C, Experiment
D, and Experiment E) conducted to optimize the PINN. In
all cases, a fully connected feedforward neural network was
used, with a sigmoid activation function and the loss function
defined by Eq. (22). The architecture of the PINN consists
of an input layer with one neuron, a hidden layer with 10
neurons (except in Experiment E, where the number of neu-
rons in the hidden layer was modified), and an output layer
with one neuron. The PINN was trained using the Gradient
Descent optimizer.

Rev. Mex. Fis.71020601



OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 5

3.1. Experiment A

In this section, we repeat the experiment performed by An-
dreas Almqvist (2021) [38], and compare it with the analyti-
cal solution, Eq. (13). The PINN was trained with the same
hyperparameters as in Ref. [38] presented in Table I, and the
architecture is described in Secs. 2.1 and 2.2. The PINN
with this set of hyperparameters and architecture is now on
referred to as PINN-2.

The comparison between the predictions of PINN-2 and
the analytical solution (13) within the domain [0,1] is de-
picted in Fig. 4 for two scenarios, identified as “Prediction
1” (represented by orange points) and “Prediction 2” (rep-
resented by green points), respectively. They are contrasted
with the analytical solution (illustrated by a blue solid curve).

We notice that PINN Prediction 1 fits with the analytical
solution, while PINN Prediction 2 does not fit. In Fig. 5, the
convergence of the cost function is presented for each pre-
diction, both in the case of PINN Prediction 1 (orange) and
the case of PINN Prediction 2 (green). We can observe that
for PINN Prediction 1, its cost function converges to a value
closer to zero than in the case of PINN Prediction 2. Note that
no changes were made for both scenarios in the architecture
or hyperparameters.

TABLE I. Hyperparameters of PINN-2 Experiment A.

Hyperparameters Description

Ne 2000 Epochs

Nn 10 Number of neurons

Ni 21 Number of points

in the domain [0,1].

lr 0.005 Learning rate

Tb 600 Training batches

FIGURE 4. PINN Prediction 1 (orange) and PINN Prediction 2
(green) are compared to the analytical solution (blue) using the pa-
rameters from Table I.

FIGURE 5. The convergence of the cost function for PINN Predic-
tion 1 (orange) and PINN Prediction 2 (green).

Every time we run the PINN, we obtain a different solu-
tion, for the next experiments, we perform a statistical anal-
ysis, in which, we repeat the experiment 100 times and we
compute the mean and standard deviations of the solutions
obtained with these repetitions. For those cases, the best so-
lution is the one with lower mean and smaller standard devi-
ation.

3.2. Experiment B

In this experiment, the hyperparameters learning ratelr and
training batchesTb were modified, as described in Table II.
Each value ofTb is paired with all proposed values oflr. For
example, whenTb = 300, it is combined withlr values of
0.005, 0.001, 0.05, and 0.01, and so on. This gives us a total

TABLE II. Mean of the minima of the Cost Function value (MMCF)
and Standard Deviation for differentlr andTb values.

lr Tb
MMCF

Value Standard Deviation

0.005

300 0.0502 0.1858

600 0.1153 0.3082

900 0.0609 0.2353

1200 0.0131 0.0950

0.001

300 0.0240 0.0031

600 0.0222 0.0079

900 0.0142 0.0073

1200 0.0268 0.0983

0.05

300 0.0000 0.0000

600 0.5488 0.4802

900 5243.2396 52166.0617

1200 502295852.0 4997780620.0

0.01

300 0.0925 0.2773

600 0.1634 0.3616

900 0.0872 0.2757

1200 0.0663 0.2354

Rev. Mex. Fis.71020601



6 Z. SÁNCHEZ LÓPEZ, AND G. BERENICE D́IAZ CORTÉS

FIGURE 6. Tb (Batch size) vs Mean of the minima of the Cost
Function for the 16 combinations.

FIGURE 7. Tb (Batch size) vs Mean of the minima of the Cost
Function, excludinglr = 0.05 data due to the lack of a discernible
minimum, given the large standard deviation as shown in Table II.

of 16 possible combinations. The primary objective was
to find optimal hyperparameters while minimizing the loss
function. Table II provides the values ofTb, lr, their corre-
sponding Mean of the Minima of the Cost Function (MMCF),
and their respective standard deviations.

As mentioned before, we repeat each experiment 100
times, for each repetition we get the cost function for the 16
possible combinations. From each cost function, we take the
minimum value (assuming that the last value of the function
is the minimum), and from these 100 values, we calculate the
mean (MMCF) and plot it for eachTb and lr, as shown in
Fig. 6.

Throughout the process, the hyperparametersNe =
2000, Nn = 10, andNi = 21 remained constant.

In Fig. 6, a very high standard deviation is observed for
Tb = 1200. For a better visualization, we present Fig. 7,
which provides a zoom into the area of interest.

From Figs. 6 and 7, it is observed that the best perfor-
mance of the PINN is achieved with the hyperparameter val-
ueslr = 0.001 andTb = 300 (green stars). Table II confirms
this minimum value, also highlighting its low standard devi-
ation. Furthermore, this observation is visually validated in

Fig. 7, where the green stars corresponding tolr = 0.001
are closer to zero compared to the other blue stars represent-
ing lr = 0.005, as well as the pink stars corresponding to
lr = 0.01, across values ofTb.

Therefore, in the subsequent experiments, we compare
the PINN with the hyperparameterslr = 0.001 andTb =
300, referred to as PINN-1, against the valueslr = 0.005
andTb = 600, reported in the article by Andreas Almqvist
(2021) [38], referred to as PINN-2.

3.3. Experiment C

In this experiment, we modified the hyperparameterNi that
represents the number of grid points for the solution domain
[0,1], randomly selected from the space. We selected the
valueNi = 21, as in the reference article, and included a
higher value,Ni = 30, as well as a lower value,Ni = 10.
Then, we compared PINN-1 (with the optimal hyperparame-
terslr = 0.001 andTb = 300 found in Experiment 2) with
PINN-2 (using the hyperparameters from the article by An-
dreas Almqvist (2021) [38], as shown in Table III), and with
the Finite Differences method (FD).

In this experiment, we calculated the RMSE (defined as
the square root of the MSE previously defined in Eq. (8)) be-
tween the analytical solution and the one predicted by PINN1
and PINN2 in each repetition (out of the 100 available). This
provides us with 100 RMSE values for each network. Subse-
quently, we computed the Mean of these 100 RMSE values
(MRMSE) along with their standard deviation, resulting in a
single value for eachNi.

Figure 8 shows a comparison between two networks
PINN-1 (green stars) and PINN-2 (blue stars), and the finite
difference method (red stars). In Fig. 8, a significantly high
standard deviation is observed forNi = 21 for PINN-2. For
a better visualization, we include Fig. 9, which is a zoom into
the area of interest.

For the FD method, we calculate the RMSE between
the analytical solution and the solution obtained by the
method. The Fig. 10 illustrates the results of the Finite Dif-
ferences method for different numbers of grid points (Ni =
10, 21, 30), compared to the analytical solution.

Once the value ofNi is set in the FD method, the calcu-
lation is performed deterministically and yields a unique and
consistent result. There is no need to repeat the calculation

TABLE III. Hyperparameters of PINNs in experiment C.

Modified Hyperparameters

Ni 10 21 30

Fixed Hyperparameters

PINN-1 PINN-2

Ne 2000 2000

Nn 10 10

lr 0.001 0.005

Tb 300 600

Rev. Mex. Fis.71020601



OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 7

FIGURE 8. Comparison between PINN-1, PINN-2, and the FD
method. On the x-axis, the number of pointsNi = 10, 21, 30; on
the y-axis, Mean RMSE (MRMSE) between the Analytical Solu-
tion and the PINN Prediction.

FIGURE 9. Zooming into the comparison between PINN-1, PINN-
2, and the FD method. On thex-axis, the number of points
Ni = 10, 21, 30; on the y-axis, Mean RMSE (MRMSE) between
the Analytical Solution and the PINN Prediction.

FIGURE 10. Analytical solution Vs finite difference method for
Ni = 10, 21, 30.

TABLE IV. Mean RMSE (MRMSE) between the Analytical Solu-
tion and the prediction and Standard Deviation for PINN1, PINN-2,
and FD.

Ni
MRMSE

Value Standard Deviation

PINN-1

10 0.0672 0.00717

21 0.0615 0.00625

30 4.307× 106 4.284× 107

PINN-2

10 0.005874 0.005433

21 3.206× 107 3.190× 108

30 0.008841 0.01128

FD

10 7.927× 10−6 0.0

21 1.656× 10−6 0.0

30 7.931× 10−7 0.0

multiple times, as the solution obtained is the same each time
the method is applied with the same parameters and initial
conditions.

This allows us to compare the accuracy of the finite dif-
ferences method for different values ofNi compared to the
PINNs, as shown in Table IV. The value of RMSE in the case
of FD decreases as the number of points increases and is very
small compared to the value of MRMSE for the PINNs in all
cases. The value of MRMSE for PINN-1 and PINN-2 both
exhibit a large standard deviation forNi = 30 andNi = 21
respectively. However, forNi = 10, PINN-2 has a lower
MRMSE than PINN-1.

Even if the FD method gives better results in this case,
the problem we are solving is a 1D problem, for more com-
plicated problems and inverse problems, the PINNs can be
useful, especially if the problems require large computations
times and they require to include data, such as in numerical
reservoir simulations [31-33]. More studies are required to
assess the full capacity of the PINNs.

3.4. Experiment D

In this experiment, we variedNe, the number of epochs, from
1500, 2000, 2500, and 5000 for both PINN-1 and PINN-2.

TABLE V. Hyperparameters of the PINNs in Experiment D.

Modified Hyperparameters

Ne 1500 2000 2500 5000

Fixed Hyperparameters

PINN-1 PINN-2

Ni 21 21

Nn 10 10

lr 0.001 0.005

Tb 300 600

Rev. Mex. Fis.71020601



8 Z. SÁNCHEZ LÓPEZ, AND G. BERENICE D́IAZ CORTÉS

FIGURE 11. The figure illustrates the relationship between the
number of epochsNe = 1500, 2000, 2500, and 5000 and the Mean
RMSE for PINN-1 (green) and PINN-2 (blue).

FIGURE 12. The figure provides a zoom of the relationship be-
tween the number of epochsNe = 1500, 2000, 2500, and 5000 and
the Mean RMSE for PINN-1 (green) and PINN-2 (blue).

TABLE VI. Mean RMSE (MRMSE) between the Analytical Solu-
tion and the prediction and Standard Deviation for PINN1, PINN-2.

Ne
MRMSE

Value Standard Deviation

PINN-1

1500 0.0663 0.0018

2000 0.0563 0.0057

2500 0.0516 0.0170

5000 0.0503 0.0178

PINN-2

1500 0.0119 0.0128

2000 0.0087 0.0149

2500 118.98 1183.8

5000 5.444 54.09

The description of the modified hyperparameters and the
fixed parameters are found in Table V.

In this experiment, we calculated the RMSE between
the analytical solution and the one predicted by PINN-1 and
PINN-2 in each repetition (out of the 100 available), as in
Experiment D. This provides us with 100 RMSE values for

each value ofNe. Subsequently, we computed the mean of
these 100 RMSE values (MRMSE) along with their standard
deviation, resulting in a single value for eachNe, as show in
Fig. 11. For a better visualization we include Fig. 12, which
is a zoom into the area of interest.

In Table VI, the mean RMSE (MRMSE) between the ana-
lytical solution and the prediction and the standard deviation
for PINN1, PINN-2 are presented. It can be seen that the
MRMSE values between PINN-1 and PINN-2 are compara-
ble atNe = 1500 andNe = 2000; for values ofNe = 2500
andNe = 5000, PINN-1 exhibits lower MRMSE values than
PINN-2.

3.5. Experiment E

In this experiment, we variedNn the number of neurons from
5, 10, 20, and 40 for both PINN-1 and PINN-2 networks.

We compared the behavior of the optimized PINN-1 net-
work with the reference PINN-2 network. The description
of the modified hyperparameters and the fixed parameters are
found in Table VII.

In this experiment, we calculated the RMSE between
the analytical solution and the one predicted by PINN-1 and
PINN-2 in each repetition (out of the 100 available). This
provides us with 100 RMSE values for each network. Subse-
quently, we computed the Mean of these 100 RMSE values

TABLE VII. Hyperparameters of the PINNs in Experiment E.

Modified Hyperparameters

Nn 5 10 20 40

Fixed Hyperparameters

PINN-1 PINN-2

Ne 2000 2000

Ni 21 21

lr 0.001 0.005

Tb 300 600

FIGURE 13. The figure illustrates the relationship between the
number of neuronsNn = 5, 10, 20, and40 and the Mean RMSE
for PINN-1 (green) and PINN-2 (blue).

Rev. Mex. Fis.71020601



OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 9

FIGURE 14. The figure provides a zoom of the relationship be-
tween the number of neuronsNn = 5, 10, 20, and40 and the Mean
RMSE for PINN-1 (green) and PINN-2 (blue).

TABLE VIII. Mean RMSE (MRMSE) between the Analytical
Solution and the prediction and Standard Deviation for PINN-1,
PINN-2.

Nn
MRMSE

Value Standard Deviation

PINN-1

5 0.0614 0.0054

10 0.0548 0.0117

20 23.65 181.2

40 0.0484 0.0113

PINN-2

5 0.0193 0.0223

10 0.0100 0.0177

20 1.149 1.143e+13

40 2.504e+11 2.488e+12

(MRMSE) along with their standard deviation, resulting in a
single value for eachNn, as shown in Fig. 13. For a better
visualization, we include Fig. 14, which is a zoom into the
area of interest.

In Table VIII, the values of MRMSE and their standard
deviation for each PINN are presented. It is observed that
for Nn = 5 and10, both PINNs show comparable values.
However, in the case ofNn = 20, both PINN-1 and PINN-2
exhibit high MRMSE values, as well as high standard de-
viation, which occurs in both cases. RegardingNn = 40,
PINN-1 shows considerably lower MRMSE and standard de-
viation than PINN-2.

4. Conclusion

In this paper, we present to optimize a Physics Informed Neu-
ran Network (PINNs) to solve the stationary one-dimensional
Reynolds equation.

Within the conducted studies, a comparison is made be-
tween the solutions obtained using the PINN and the ana-
lytical solution. We performed five experiments. In Exper-

iment A, where we replicated the experiment conducted by
Almqvist et al. [38], and compared it with the analytical
solution the PINN with this hyperparameters is referred to
as PINN-2. We observe that the PINN prediction does not
always correctly approximate the analytical solution of the
Reynolds equation. Therefore, we decided to perform a sta-
tistical analysis by varying hyperparameters to find the opti-
mal architecture for the PINN. Later, in Experiments B to E,
we study diverse scenarios to optimize the PINN, where we
vary the hyperparameters such as the learning rate (lr) and
batch size (Tb), number of points (Ni), number of epochs
(Ne), and number of neurons (Nn).

For Experiment B we modified the learning rate (lr) and
training batches (Tb) to 0.01, 0.01, 0.05, 0.005, and 300, 600,
900, and 1200 respectively. Each value ofTb was paired with
all proposed values oflr, resulting in a total of 16 possible
combinations. For the statistical analysis, we repeated each
experiment 100 times. In each repetition, we obtained the
cost function for the 16 possible combinations. From each
cost function, we selected the minimum value and calculated
the mean (MMCF) and corresponding standard deviations.
As a result, we have identified the optimal values for the
learning rate (lr = 0.001) and (Tb = 300). These opti-
mal values correspond to the points at which the cost func-
tion reaches its minimum and exhibit a small standard devia-
tion. The PINN with these hyperparameters is referred to as
PINN-1. From here onwards, we conduct a statistical analy-
sis comparing PINN-1 and PINN-2. In general, for the next
experiments, we observe a better performance for the PINN
that we proposed (PINN-1), we elaborate next.

In Experiment C, we modified the hyperparameterNi
that represents the number of grid points for the solution do-
main [0,1], randomly selected from the space. We selected
the valueNi = 21, as in the reference article, and included a
higher value,Ni = 30, and a lower value,Ni = 10, and we
compared PINN-1 with PINN-2 and with the Finite Differ-
ences method (FD). We calculated the RMSE between the an-
alytical solution and the one predicted by PINN-1 and PINN-
2 in each repetition (out of the 100 available), and computed
the mean of these 100 RMSE values (MRMSE) along with
their standard deviation. For the FD method, we calculate the
RMSE between the analytical solution and the solution ob-
tained by the method. We observe that the value of RMSE
in the case of FD decreases as the number of points increases
and is very small compared to the value of MRMSE for the
PINNs in all cases. The value of MRMSE for PINN-1 and
PINN-2 both exhibit a large standard deviation forNi = 30
andNi = 21 respectively. However, forNi = 10, PINN-2
has a lower MRMSE than PINN-1. Even if the FD method
shows better results, the PINNs are capable of approximating
the solution up toO(10−2), this could be helpful for prob-
lems where using a traditional discretization scheme is com-
plicated or when it is required to include data from the prob-
lem, that FD is not capable to do. As next steps, we plan to
solve one of these problems.

Rev. Mex. Fis.71020601



10 Z. SÁNCHEZ LÓPEZ, AND G. BERENICE D́IAZ CORTÉS

For Experiment D, we variedNe, the number of epochs,
from 1500, 2000, 2500, and 5000 for both PINN-1 and PINN-
2, and we calculated the RMSE between the analytical solu-
tion and the one predicted by PINN-1 and PINN-2 in each
repetition (out of the 100 available). The MRMSE values be-
tween PINN-1 and PINN-2 are comparable atNe = 1500
andNe = 2000; for values ofNe = 2500 andNe = 5000,
PINN-1 exhibits lower MRMSE values than PINN-2.

For Experiment E, we variedNn the number of neurons
from 5, 10, 20, and 40 for both PINN-1 and PINN-2. It is
observed that forNn = 5 and10, both PINNs show compa-
rable values. However, in the case ofNn = 20, both PINN-1
and PINN-2 exhibit high MRMSE values, as well as high
standard deviation, which occurs in both cases. Regarding
Nn = 40, PINN-1 shows considerably lower MRMSE and
standard deviation than PINN-2.

Appendix

A. Detailed description of the Neural Network
elements and derivatives required for Training.

This appendix provides a detailed description of the theory
presented in Subsec. 2.1 regarding the construction and com-
putation of the PINN cost function applied to solving the
Reynolds equation.

As described in Subsec. 2.1, the work involves the
Reynolds equation in its dimensionless form Eq. (10), along
with its boundary conditions Eq. (12) and its analytical so-
lution Eq. (13). Subsection 2.1 also defines the problem
in terms of operators Eqs. (16) and (17) and describes the
cost function in its general form Eq. (19) and a specific case
Eq. (22). For training the PINN, this cost function is min-
imized using the gradient descent algorithm, where weights
and biases are iteratively updated as indicated in Eq. (25).

This appendix also expands on the theory presented in
Subcec. 2.2, which discusses the neural network architecture
and the operations required to compute the network output
y(x). Below is a detailed description of the neural network
elements used in this study. We begin by introducing the
nomenclature used in this appendix and throughout the ar-
ticle, followed by a description of the network components,
including its architecture and activation function. We also
provide the activation function’s derivatives, which are essen-
tial for the subsequent calculation of the cost function. The
cost function is then described in detail using algebraic ex-
pressions.

Nomenclature

• The superscript(j) indicates the layer number.

• The subscripti refers to the neuron number. For exam-
ple,w(0)

i represents the weight associated with neuron
i in the first layer (0).

FIGURE 15. Domain divided intoN points.

• Vectors (lowercase letters in boldface): such as
x, represent a vector with componentsx =
[x1, . . . , xn . . . , xN ] ∈ RN , wherexn ∈ R for n =
1, . . . , N .

• RN represents theN -dimensional space.

The elements of the network

To predict the outputy(x) of the PINN, the solution domain
[0,1] is divided intoN points, as illustrated in Fig. 15, creat-
ing N − 1 equal subintervals of lengthh (uniformly spaced
mesh points). A valuexn is randomly selected from the
vector x = [x1, . . . , xn . . . , xN ], wherexn ∈ [0, 1] and
n = 1..N . This value is used to train the network.

The network consists of an input layer where a random
elementxn from the vectorx = [x1, . . . , xn . . . , xN ] ∈
RN is taken as the input value. This value is then mul-
tiplied by all the weights of the first layer, where each
w

(0)
i=1,...,Nn

∈ R, is an element of the weights vectorw(0) =
[w(0)

1 , . . . , w
(0)
i , . . . w

(0)
Nn

] ∈ RNn whereNn is the number

of neurons, thereafter, the corresponding biasb
(0)
i=1,...,Nn

∈
R, is added,bi is an element of the bias vectorb(0) =
[b(0)

1 , b
(0)
2 , . . . , b

(0)
Nn

] ∈ RNn .
The result of these operations is then passed through the

sigmoid activation functionϕ, which gives us the output
data for each neuron in layer (0):z(0)

i (xn) = ϕ(w(0)
i xn +

b
(0)
i ) ∈ R, i = 1, ..., Nn, which are elements of the vector

z(0)(xn) = [z1
(0)(xn), ..., zi

(0)(xn), ..., z(0)
Nn

] ∈ RNn [see
Fig. 16a)].

Subsequently, this result is multiplied by the second set
of weights, where eachw(1)

i=1,...,Nn
∈ R is an element of

the weights vectorw(1) = [w(1)
1 , . . . , w

(1)
i , . . . w

(1)
Nn

] ∈ RNn .
The dot product between the vectorsw(1) andz(0) results in
a sum, performed fromi = 1 to Nn, of the products of their
corresponding components. A second bias term,b(1) ∈ R, is
finallyadded, yielding the network outputy(xn) for the point
xn [see Fig. 16b)]. The output is then obtained as follows:

y(xn) =
Nn∑

i=1

w
(1)
i ϕ(w(0)

i xn + b
(0)
i ) + b(1) ∈ R.

Below, we list the elements of the network:

• Input data set

x = [x1, . . . , xn . . . , xN ] ∈ RN ,

whereN is the number of points into which the [0,1]
domain was divided.

Rev. Mex. Fis.71020601



OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 11

FIGURE 16. Output data for each neuron in layer (0), a)z(0)(xn). b) Output of the neural network,y(xn).

• Vector of real-valued weights for layer (0):

w(0) = [w(0)
1 , . . . , w

(0)
i , . . . , w

(0)
Nn

)] ∈ RNn ,

whereNn is the number of neurons.

• Vector of real-valued biases for layer (0):

b(0) = [b(0)
1 , . . . , b

(0)
i , . . . , b

(0)
Nn

] ∈ RNn .

• Sigmoid activation function

ϕ(ε) =
1

1 + e−ε
, ϕ : R→ [0, 1].

• Output data for each neuron in layer (0):zi
(0)(xn) =

ϕ(wi
(0)xn + bi

(0)) ∈ R.

• The vector output containing all the neurons is:

z(0)(xn) = [z1
(0), ..., zi

(0), ..., z
(0)
Nn

] ∈ RNn .

• Second weights vector:

w
(1)
i = [w(1)

1 , . . . , w
(1)
i , . . . w

(1)
Nn

] ∈ RNn .

• Second bias termb(1)
i = b(1) ∈ R.

• Output data for a single valuexn:

y(xn) =
Nn∑

i=1

w
(1)
i ϕ(w(0)

i xn + b
(0)
i ) + b(1) ∈ R.

Activation function

We use as activation function the sigmoid function, defined as:

ϕ(ε) =
1

1 + e−ε
, ϕ : R→ [0, 1]. (A.1)

For future calculations, we need its first, second, and third derivatives. Therefore, we compute them as follows:

1st Derivative of the Activation Function:

ϕ′(ε) =
dϕ(ε)

dε
=

d

dε

(
1

1 + e−ε

)
=

d

dε

(
1 + e−ε

)−1 = − 1
(1 + e−ε)2

· (−e−ε
)

=
e−ε

(1 + e−ε)2

=
1

1 + e−ε
· e−ε

1 + e−ε
=

1
1 + e−ε

· 1 + e−ε − 1
1 + e−ε

=
1

1 + e−ε
· 1 + e−ε

1 + e−ε
− 1

1 + e−ε
= ϕ(ε)(1− ϕ(ε)),

that is:

ϕ′(ε) = ϕ(ε)(1− ϕ(ε)). (A.2)

Rev. Mex. Fis.71020601



12 Z. SÁNCHEZ LÓPEZ, AND G. BERENICE D́IAZ CORTÉS

2nd Derivative of the Activation Function:

ϕ′′(ε) =
d2ϕ(ε)

dε2
=

d

dε
[ϕ(ε)(1− ϕ(ε))] =

dϕ(ε)
dε

(1− ϕ(ε)) + ϕ(ε)
d

dε
(1− ϕ(ε)) =

dϕ(ε)
dε

(1− ϕ(ε))− ϕ(ε)
dϕ(ε)

dε

=
dϕ(ε)

dε
− dϕ(ε)

dε
ϕ(ε)− ϕ(ε)

dϕ(ε)
dε

=
dϕ(ε)

dε
− 2ϕ(ε)

dϕ(ε)
dε

= ϕ(ε)(1− ϕ(ε))− 2ϕ(ε) [ϕ(ε)(1− ϕ(ε))]

= ϕ(ε)(1− ϕ(ε))(1− 2ϕ(ε)) = ϕ′(ε)(1− 2ϕ(ε)),

that is:

ϕ′′(ε) = ϕ(ε)(1− ϕ(ε))(1− 2ϕ(ε)) = ϕ′(ε)(1− 2ϕ(ε)). (A.3)

3rd Derivative of the Activation Function:

d

dξ
(ϕ′′(ξ)) =

d

dξ
(ϕ′(ξ)(1− 2ϕ(ξ))) =

dϕ′(ξ)
dξ

(1− 2ϕ(ξ)) + ϕ′(ξ)
d

dξ
(1− 2ϕ(ξ)) = ϕ′′(ξ)(1− 2ϕ(ξ)) + ϕ′(ξ) · (−2ϕ′(ξ))

= ϕ′′(ξ)(1− 2ϕ(ξ))− 2 (ϕ′(ξ))2 = ϕ(ξ)(1− ϕ(ξ))(1− 2ϕ(ξ))(1− 2ϕ(ξ))− 2 (ϕ(ξ)(1− ϕ(ξ)))2

= ϕ(ξ)(1− ϕ(ξ))
[
(1− 2ϕ(ξ))2 − 2ϕ(ξ)(1− ϕ(ξ))

]
= ϕ(ξ)(1− ϕ(ξ))

[
1− 4ϕ(ξ) + 4(ϕ(ξ))2 − 2ϕ(ξ) + 2(ϕ(ξ))2

]

= ϕ(ξ)(1− ϕ(ξ))
[
1− 6ϕ(ξ) + 6(ϕ(ξ))2

]
= ϕ(ξ)(1− ϕ(ξ))[(1− ϕ(ξ))(1− 3ϕ(ξ))]

= ϕ(ξ)(1− ϕ(ξ))2(1− 3ϕ(ξ)),

that is:
ϕ′′′(ε) = ϕ(ε)(1− ϕ(ε))2(1− 3ϕ(ε)). (A.4)

Cost function

The cost function for the PINN, in terms of operators, in our case includes only the loss associated with the PDE and the loss
due to the boundary conditions, as given by Eq. (19). It is expressed as:

L(θ) =
〈
(My − f)2

〉
+ ((Ny − b) · e1)

2 + ((Ny − b) · e2)
2
, (A.5)

where〈Q〉 is the average value of variableQ.
The cost function, substituting the residual Reynolds Eq. (20) and its boundary conditions (21), is given by:

L(θ) =
〈
(c′(xn)y′(xn) + c(xn)y′′(xn)− f)2

〉
+ (y(0))2 + (y(1))2. (A.6)

To optimize the PINN, we need to express the cost functionL(θ) in terms of the weights and biases. Since the network
outputy(x) depends on these weights and biases, we can expressL(θ) in terms ofy(x) and its derivatives as follows:

y(xn) =
Nn∑
n=1

w
(1)
i ϕ(w(0)

i xn + b
(0)
i ) + b(1), (A.7)

y(0) =
Nn∑

i=1

wi
(1)ϕ(bi

(0)) + b(1), (A.8)

y(1) =
Nn∑

i=1

wi
(1)ϕ(wi

(0) + bi
(0)) + b(1), (A.9)

y′(xn) =
dy

dx
=

Nn∑

i=1

w
(1)
i w

(0)
i ϕ′(w(0)

i xn + b
(0)
i ), (A.10)

y′′(xn) =
d2y

dx2
=

Nn∑

i=1

w
(1)
i (w(0)

i )2ϕ′′(w(0)
i xn + b

(0)
i ). (A.11)

Rev. Mex. Fis.71020601



OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 13

Substituting the Eqs. (A.8), (A.9), (A.10), and (A.11) into Eq. (A.6), we obtain:

L =

〈(
c′(xn)

Nn∑

i=1

w
(1)
i w

(0)
i ϕ′(w(0)

i xn + b
(0)
i ) + c(xn)

Nn∑

i=1

w
(1)
i (w(0)

i )2ϕ′′(w(0)
i xn + b

(0)
i )− f

)2〉

+

(
Nn∑

i=1

w
(1)
i ϕ(b(0)

i ) + b(1)

)2

+

(
Nn∑

i=1

w
(1)
i ϕ(w(0)

i + b
(0)
i ) + b(1)

)2

, (A.12)

where

c(x) = (1 + K −Kx)3, c′(x) =
dc(x)
dx

= −3K(1 + K −Kx)2.

Once we have the cost function expressed in terms of the neural network parameters, and since we want to minimize this
function, the next step is to use an algorithm to optimize it. The algorithm we use here is Gradient Descent.

Gradient descent algorithm

The gradient descent algorithm iteratively adjusts the param-
etersθ, whereθ represents the set of all weights and bi-
ases across all layers of the network as previously defined
in Eq. (9). In our case:θ = {w(0), w(1), b(0), b(1)} and we
want to find the set of parametersθ that minimize the cost
functionL(θ) as defined in Eq. (A.12).

The gradient∇θL(θn) is computed, indicating the direc-
tion of the steepest increase in the cost function. The parame-
ters are then adjusted in the opposite direction of the gradient
using:

θn+1 = θn − η∇θL(θn),

whereη is the learning rate, and the parameters of the neural
network are initialized randomly.

This process continues until the error is less than a user-
defined tolerance value or until a maximum number of itera-
tions is reached. When either of these conditions is met,

FIGURE 17. Gradient descent algorithm.

the obtained weights and biases are those that minimize the
cost function within the established tolerance. The goal is to
minimize the cost function value to optimize the model.

To illustrate the process of conjugate gradient, see
Fig. 17, where we have an initial parameterwi

(0). We com-
pute the gradient of the function in this point∂L(θ)/∂wi

(0).
The next positionwi+1

(0) of the parameter is found taking
the initial position and giving a stepη in the opposite direc-
tion of the gradient (which is the direction of bigger growth
of the function),i.e.:

w
(0)
i+1 = w

(0)
i − η

∂L (θ)

∂w
(0)
i

.

In our case, the cost function depends on the weights and
biases of each layer. Therefore, the parameters are adjusted
using the following formulas:

2w
(0)
i+1 = w

(0)
i − η

∂L(θ)

∂w
(0)
i

,

w
(1)
i+1 = w

(1)
i − η

∂L(θ)

∂w
(1)
i

,

b
(0)
i+1 = b

(0)
i − η

∂L(θ)

∂b
(0)
i

,

b
(1)
i+1 = b

(1)
i − η

∂L(θ)

∂b
(1)
i

, (A.13)

where the stepη is an hyperparameter known as the learning
rate.

The derivatives of the Eqs. (A.13) are computed analyti-
cally by differentiating the equations, which requires the par-
tial derivatives of the general cost function with respect to
each weight and bias. These derivatives are presented next:

Rev. Mex. Fis.71020601



14 Z. SÁNCHEZ LÓPEZ, AND G. BERENICE D́IAZ CORTÉS

∂L
∂w

(0)
i

=
∂〈(My − f)2〉

∂w
(0)
i

+
∂((Ny − b) · e1)2

∂w
(0)
i

+
∂((Ny − b) · e2)2

∂w
(0)
i

=
∂〈(c′(x)y′ + c(x)y′′ − f)2〉

∂w
(0)
i

+
∂((y(0)− 0))2

∂w
(0)
i

+
∂((y(1)− 0))2

∂w
(0)
i

=

〈
2 (c(x)y′′ + c′(x)y′ − f)

(
c(x)

∂y′′

∂w
(0)
i

+ c′(x)
∂y′

∂w
(0)
i

− ∂f

∂w
(0)
i

)〉

+ 2(y(0)− 0)
∂y(0)

∂w
(0)
i

+ 2(y(1)− 0)
∂y(1)

∂w
(0)
i

, (A.14)

∂L
∂w

(1)
i

=
∂〈(My − f)2〉

∂w
(1)
i

+
∂((Ny − b) · e1)2

∂w
(1)
i

+
∂((Ny − b) · e2)2

∂w
(1)
i

=
∂〈(c′(x)y′ + c(x)y′′ − f)2〉

∂w
(1)
i

+
∂((y(0)− 0))2

∂w
(1)
i

+
∂((y(1)− 0))2

∂w
(1)
i

=

〈
2 (c(x)y′′ + c′(x)y′ − f)

(
c(x)

∂y′′

∂w
(1)
i

+ c′(x)
∂y′

∂w
(1)
i

− ∂f

∂w
(1)
i

)〉

+ 2(y(0)− 0)
∂y(0)

∂w
(1)
i

+ 2(y(1)− 0)
∂y(1)

∂w
(1)
i

, (A.15)

∂L
∂b

(0)
i

=
∂〈(My − f)2〉

∂b
(0)
i

+
∂((Ny − b) · e1)2

∂b
(0)
i

+
∂((Ny − b) · e2)2

∂b
(0)
i

=
∂〈(c′(x)y′ + c(x)y′′ − f)2〉

∂b
(0)
i

+
∂((y(0)− 0))2

∂b
(0)
i

+
∂((y(1)− 0))2

∂b
(0)
i

=

〈
2 (c(x)y′′ + c′(x)y′ − f)

(
c(x)

∂y′′

∂b
(0)
i

+ c′(x)
∂y′

∂b
(0)
i

− ∂f

∂b
(0)
i

)〉

+ 2(y(0)− 0)
∂y(0)

∂b
(0)
i

+ 2(y(1)− 0)
∂y(1)

∂b
(0)
i

, (A.16)

∂L
∂b(1)

=
∂〈(My − f)2〉

∂b(1)
+

∂((Ny − b) · e1)2

∂b(1)
+

∂((Ny − b) · e2)2

∂b(1)
=

∂〈(c′(x)y′ + c(x)y′′ − f)2〉
∂b(1)

+
∂((y(0)− 0))2

∂b(1)
+

∂((y(1)− 0))2

∂b(1)
=

〈
2 (c(x)y′′ + c′(x)y′ − f)

(
c(x)

∂y′′

∂b(1)
+ c′(x)

∂y′

∂b(1)
− ∂f

∂b(1)

)〉

+ 2(y(0)− 0)
∂y(0)
∂b(1)

+ 2(y(1)− 0)
∂y(1)
∂b(1)

. (A.16)

The expressions (A.14), (A.15), (A.16), and (A.16), require a set of derivatives, which we calculate below.
For Eq. (A.14), we need,

∂y′

∂w
(0)
i

,
∂y′′

∂w
(0)
i

,
∂y(0)

∂w
(0)
i

,
∂y(1)

∂w
(0)
i

.

From Eqs. (A.7), (A.8), (A.9), (A.10), and (A.11), we have the values ofy(x), y(0), y(1), y′, andy′′ respectively. Here,
we will need the activation function and its respective derivatives, which are given by Eqs. (A.1), (A.2), (A.3), and (A.4).
Substituting the values ofy′, y′′, y(0), andy(1) and differentiating with respect tow(0)

i , we obtain the following:

∂y′

∂w
(0)
i

=
Nn∑

i=1

w
(1)
i ϕ′(w(0)

i xn + b
(0)
i ) +

Nn∑

i=1

xnw
(1)
i (w(0)

i )2ϕ′′(w(0)
i xn + b

(0)
i ), (A.17)

∂y′′

∂w
(0)
i

=
Nn∑

i=1

2w
(1)
i w

(0)
i ϕ′′(w(0)

i xn + b
(0)
i ) +

Nn∑

i=1

xnw
(1)
i (w(0)

i )2ϕ′′′(w(0)
i xn + b

(0)
i ), (A.18)

since

y(0) =
Nn∑

i=1

w
(1)
i ϕ(w(0)

i (0) + b
(0)
i ) + b(1) =

Nn∑

i=1

w
(1)
i ϕ(b(0)

i ) + b(1), (A.19)

Rev. Mex. Fis.71020601



OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 15

then

∂y(0)

∂w
(0)
i

= 0, (A.20)

since

y(1) =
Nn∑

i=1

w
(1)
i ϕ(w(0)

i (1) + b
(0)
i ) + b(1), (A.21)

then

∂y(1)

∂w
(0)
i

=
Nn∑

i=1

w
(1)
i ϕ′(w(0)

i (1) + b
(0)
i )(1) =

Nn∑

i=1

w
(1)
i ϕ′(w(0)

i + b
(0)
i ). (A.21)

For Eq. (A.15), we need:

∂y′

∂w
(1)
i

,
∂y′′

∂w
(1)
i

,
∂y(0)

∂w
(1)
i

,
∂y(1)

∂w
(1)
i

.

From Eqs. (A.7), (A.8), (A.9), (A.10), and (A.11), we have the values ofy(x), y(0), y(1), y′, andy′′ respectively. Here,
we will need the activation function and its respective derivatives, which are given by Eqs. (A.1), (A.2), (A.3), and (A.4).

Substituting the values ofy′, y′′, y(0), andy(1) and differentiating with respect tow(1)
i , we obtain the following:

∂y′

∂w
(1)
i

=
Nn∑

i=1

w
(0)
i ϕ′(w(0)

i xn + b
(0)
i ), (A.22)

∂y′′

∂w
(1)
i

=
Nn∑

i=1

(w(0)
i )2ϕ′′(w(0)

i xn + b
(0)
i ), (A.23)

since
∂y(x)

∂w
(1)
i

=
Nn∑

i=1

ϕ(w(0)
i xn + b

(0)
i ), (A.24)

then:

∂y(0)

∂w
(1)
i

=
Nn∑

i=1

ϕ(w(0)
i (0) + b

(0)
i ) =

Nn∑

i=1

ϕ(b(0)
i ), (A.25)

∂y(1)

∂w
(1)
i

=
Nn∑

i=1

ϕ(w(0)
i (1) + b

(0)
i ) =

Nn∑

i=1

ϕ(w(0)
i + b

(0)
i ), (A.26)

For Eq. (A.16), we need:

∂y′

∂b
(0)
i

,
∂y′′

∂b
(0)
i

,
∂y(0)

∂b
(0)
i

,
∂y(1)

∂b
(0)
i

.

From Eqs. (A.7), (A.8), (A.9), (A.10), and (A.11), we have the values ofy(x), y(0), y(1), y′, andy′′ respectively. Here,
we will need the activation function and its respective derivatives, which are given by Eqs. (A.1), (A.2), (A.3), and (A.4).

Substituting the values ofy′, y′′, y(0), andy(1) and differentiating with respect tob(0)
i , we obtain the following:

∂y′

∂b
(0)
i

=
Nn∑

i=1

w
(1)
i w

(0)
i ϕ′′(w(0)

i xn + b
(0)
i ), (A.27)

∂y′′

∂b
(0)
i

=
Nn∑

i=1

w
(1)
i (w(0)

i )2ϕ′′′(w(0)
i xn + b

(0)
i ), (A.28)

Rev. Mex. Fis.71020601



16 Z. SÁNCHEZ LÓPEZ, AND G. BERENICE D́IAZ CORTÉS

since

∂y(x)

∂b
(0)
i

=
Nn∑

i=1

w
(1)
i ϕ′(w(0)

i xn + b
(0)
i ), (A.29)

then

∂y(0)

∂b
(0)
i

=
Nn∑

i=1

w
(1)
i ϕ′(w(0)

i (0) + b
(0)
i )

=
Nn∑

i=1

w
(1)
i ϕ′(b(0)

i ), (A.30)

∂y(1)

∂b
(0)
i

=
Nn∑

i=1

w
(1)
i ϕ′(w(0)

i (1) + b
(0)
i )

=
Nn∑

i=1

w
(1)
i ϕ′(w(0)

i + b
(0)
i ). (A.31)

For Eq. (A.16), we need:

∂y′

∂b(1)
,

∂y′′

∂b(1)
,

∂y(0)
∂b(1)

,
∂y(1)
∂b(1)

.

From Eqs. (A.7), (A.8), (A.9), (A.10), and (A.11), we
have the values ofy(x), y(0), y(1), y′, andy′′ respectively.

Here, we will need the activation function and its respective
derivatives, which are given by Eqs. (A.1), (A.2), (A.3), and
(A.4).

Substituting the values ofy′, y′′, y(0), andy(1) and dif-
ferentiating with respect tob(1), we obtain the following:

∂y′

∂b(1)
= 0, (A.32)

∂y′′

∂b(1)
= 0, (A.33)

since
∂y(x)
∂b(1)

= 1, (A.34)

then:
∂y(0)
∂b(1)

= 1, (A.35)

∂y(1)
∂b(1)

= 1. (A.36)

Once the necessary derivatives for Eqs. (A.16), (A.16),
(A.17), and (A.18) have been computed, we can iteratively
update the weights and biases according to Eq. (A.15). Then,
we calculate the cost function using these updated weights
and biases, as indicated in Eq. (A.12). The optimization is
performed overTb batches, and the entire process is repeated
across the specified number of epochs.

1. Y. Chenet al., Physics-informed neural networks for inverse
problems in nano-optics and metamaterials,Optics express28
(2020) 11618.

2. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics
informed deep learning (part i): Data-driven solutions
of nonlinear partial differential equations, arXiv preprint
arXiv:1711.10561 (2017).

3. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics
Informed Deep Learning (Part II): Data-driven Discovery
of Nonlinear Partial Differential Equations, arXiv preprint
arXiv:1711.10566 (2017).

4. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-
informed neural networks: A deep learning framework for solv-
ing forward and inverse problems involving nonlinear partial
differential equations,Journal of Computational physics378
(2019) 686.

5. A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis, Conservative
physics-informed neural networks on discrete domains for con-
servation laws: Applications to forward and inverse problems,
Computer Methods in Applied Mechanics and Engineering365
(2020) 113028.

6. X. Jin et al., NSFnets (Navier-Stokes flow nets): Physics-
informed neural networks for the incompressible Navier-Stokes
equations, Journal of Computational Physics426 (2021)
109951.

7. T. T. Garipovet al., Unified thermo-compositional-mechanical

framework for reservoir simulation,Computational Geo-
sciences22 (2018) 1039.

8. J.-L. Wu, H. Xiao, and E. Paterson, Physics-informed ma-
chine learning approach for augmenting turbulence models: A
comprehensive framework,Physical Review Fluids3 (2018)
074602.

9. U. binWaheedet al., PINNeik: Eikonal solution using physics-
informed neural networks,Computers & Geosciences155
(2021) 104833.

10. C. Rao, H. Sun, and Y. Liu, Physics-informed deep learning
for incompressible laminar flows,Theoretical and Applied Me-
chanics Letters10 (2020) 207.

11. Z. Mao, A. D. Jagtap, and G. E. Karniadakis, Physics-informed
neural networks for high-speed flows,Computer Methods in
Applied Mechanics and Engineering360(2020) 112789.

12. B. Reyeset al., Learning unknown physics of non-Newtonian
fluids,Physical Review Fluids6 (2021) 073301.

13. E. Haghighatet al., A physics-informed deep learning frame-
work for inversion and surrogate modeling in solid mechanics,
Computer Methods in Applied Mechanics and Engineering379
(2021) 113741.

14. C. Rao, H. Sun, and Y. Liu, Physics-informed deep learning for
computational elastodynamics without labeled data,Journal of
Engineering Mechanics147(2021) 04021043.

15. E. Haghighatet al., A nonlocal physics-informed deep learning
framework using the peridynamic differential operator,Com-

Rev. Mex. Fis.71020601



OPTIMIZING A PHYSICS-INFORMED NEURAL NETWORK TO SOLVE THE REYNOLDS EQUATION 17

puter Methods in Applied Mechanics and Engineering385
(2021) 114012.

16. M. Guo and E. Haghighat, Energy-based error bound of
physics-informed neural network solutions in elasticity,Jour-
nal of Engineering Mechanics148(2022) 04022038.

17. S. Caiet al., Physics-informed neural networks for heat transfer
problems,Journal of Heat Transfer143(2021) 060801.

18. S. A. Niaki et al., Physics-informed neural network for mod-
elling the thermochemical curing process of composite-tool
systems during manufacture,Computer Methods in Applied
Mechanics and Engineering384(2021) 113959.

19. N. Zobeiry and K. D. Humfeld, A physics-informed machine
learning approach for solving heat transfer equation in ad-
vanced manufacturing and engineering applications,Engineer-
ing Applications of Artificial Intelligence101(2021) 104232.

20. C. Song, T. Alkhalifah, and U. B. Waheed, Solving the
frequency-domain acoustic VTI wave equation using physic-
sinformed neural networks,Geophysical Journal International
225(2021) 846.

21. C. Song and T. A. Alkhalifah, Wavefield reconstruction inver-
sion via physics-informed neural networks,IEEE Transactions
on Geoscience and Remote Sensing60 (2021) 1.

22. U. B. Waheedet al., A holistic approach to computing
first-arrival traveltimes using neural networks, arXiv preprint
arXiv:2101.11840 (2021).

23. O. Fuks and H. A. Tchelepi, Limitations of physics informed
machine learning for nonlinear two-phase transport in porous
media,Journal of Machine Learning for Modeling and Com-
puting1 (2020).

24. M. M. Almajid and M. O. Abu-Al-Saud, Prediction of porous
media fluid flow using physics informed neural networks,Jour-
nal of Petroleum Science and Engineering208(2022) 109205.

25. Y. W. Bekele, Physics-informed deep learning for one-
dimensional consolidation,Journal of Rock Mechanics and
Geotechnical Engineering13 (2021) 420.

26. P. Shokouhiet al., Physics-informed deep learning for predic-
tion of CO2 storage site response,Journal of Contaminant Hy-
drology241(2021) 103835.

27. T. Kadeethum, T. M. Jørgensen, and H. M. Nick, Physics-
informed neural networks for solving nonlinear diffusivity and
Biot’s equations,PloS one15 (2020) e0232683.

28. Y. W. Bekele, Physics-informed deep learning for flow
and deformation in poroelastic media, arXiv preprint
arXiv:2010.15426 (2020).

29. E. Haghighat, D. Amini, and R. Juanes, Physics-informed
neural network simulation of multiphase poroelasticity using
stress-split sequential training,Computer Methods in Applied
Mechanics and Engineering397(2022) 115141.

30. C. Yang, X. Yang, and X. Xiao, Data-driven projection method
in fluid simulation,Computer Animation and Virtual Worlds27
(2016) 415.

31. Y. Zhu and N. Zabaras, Bayesian deep convolutional encoder-
decoder networks for surrogate modeling and uncertainty quan-
tification,Journal of Computational Physics366(2018) 415.

32. R. K. Tripathy and I. Bilionis, Deep UQ: Learning deep neu-
ral network surrogate models for high dimensional uncertainty
quantification,Journal of computational physics375 (2018)
565.

33. S. Moet al., Deep convolutional encoder-decoder networks for
uncertainty quantification of dynamic multiphase flow in het-
erogeneous media,Water Resources Research55 (2019) 703.

34. J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged
turbulence modelling using deep neural networks with embed-
ded invariance,Journal of Fluid Mechanics807(2016) 155.

35. N. Thuerey et al., Deep learning methods for Reynold-
saveraged Navier-Stokes simulations of airfoil flows,AIAA
Journal58 (2020) 25.

36. N. Geneva and N. Zabaras, Quantifying model form uncertainty
in Reynolds-averaged turbulence models with Bayesian deep
neural networks,Journal of Computational Physics383(2019)
125.

37. Y. Zhu et al., Physics-constrained deep learning for high-
dimensional surrogate modeling and uncertainty quantification
without labeled data,Journal of Computational Physics394
(2019) 56.

38. G. B. Diaz-Cortes and R. Luna-Garcia, A Novel Evolutionary
Algorithm: One-Dimensional Subspaces Optimization Algo-
rithm (1D-SOA),Symmetry15 (2023) 1873,https://doi.
org/10.3390/sym15101873 .

39. H. Alibrahim and S. A. Ludwig,Hyperparameter Optimiza-
tion: Comparing Genetic Algorithm against Grid Search and
Bayesian Optimization, In 2021 IEEE Congress on Evolu-
tionary Computation (CEC) (2021) pp. 1551-1559,https:
//doi.org/10.1109/CEC45853.2021.9504761 .

40. D. Simon, Evolutionary Optimization Algorithms (John Wiley
& Sons, 2013).

41. C. Coello, D. Van Veldhuizen, and G. Lamont, Evolution-
ary Algorithms for Solving Multi-Objective Problems,Ge-
netic Algorithms and Evolutionary Computation(Springer US,
2013),https://books.google.com.mx/books?id=
VmnTBwAAQBAJ.

42. S. Cai et al., Physics-informed neural networks (PINNs) for
fluid mechanics: A review,Acta Mechanica Sinica37 (2021)
1727.

43. A. Almqvist and F. P. R̀afols, Scientific computing with appli-
cations in tribology: A course compendium (2022).

44. D. C. Psichogios and L. H. Ungar, A hybrid neural network-
first principles approach to process modeling,AIChE Journal
38 (1992) 1499.

45. I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural net-
works for solving ordinary and partial differential equations,
IEEE transactions on neural networks9 (1998) 987.

46. G. Cybenko, Mathematics of control, Signals and Systems2
(1989) 303.

47. K. Hornik, M. Stinchcombe, and H. White, Multilayer feedfor-
ward networks are universal approximators,Neural networks2
(1989) 359.

48. G. Pilaniaet al., Physics-informed machine learning for inor-
ganic scintillator discovery,The Journal of chemical physics
148(2018).

Rev. Mex. Fis.71020601

https://doi.org/10.3390/sym15101873�
https://doi.org/10.3390/sym15101873�
https://doi.org/10.1109/CEC45853.2021.9504761�
https://doi.org/10.1109/CEC45853.2021.9504761�
https://books.google.com.mx/books?id=VmnTBwAAQBAJ�
https://books.google.com.mx/books?id=VmnTBwAAQBAJ�


18 Z. SÁNCHEZ LÓPEZ, AND G. BERENICE D́IAZ CORTÉS

49. S. Liu et al., Physics-informed machine learning for
composition-process-property design: Shape memory alloy
demonstration,Applied Materials Today22 (2021) 100898.

50. W. Ji et al., Stiff-pinn: Physics-informed neural network for
stiff chemical kinetics,The Journal of Physical Chemistry A
125(2021) 8098.

51. Z. Fang and J. Zhan, Deep physical informed neural networks

for metamaterial design,Ieee Access8 (2019) 24506.

52. O. Noakoasteen,et al., Physics-informed deep neural networks
for transient electromagnetic analysis,IEEE Open Journal of
Antennas and Propagation1 (2020) 404.

53. S. Barry and G. Mercer, Exact solutions for two-dimensional
time-dependent flow and deformation within a poroelastic
medium,Journal of applied mechanics66 (1999) 536.

Rev. Mex. Fis.71020601


