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Fusion of coherent-solitonic states
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We report numerical results on the interaction between lowest order solutions of the Gross-Pitaevskii equation, the coherent-solitonic states.
It is shown that under specific conditions two zero-order states can almost fuse into a first-order state and nearly maintain the shape during
propagation. The conditions of fusion are analyzed. To a lesser extent, the same behavior is observed for three state fusion.

Keywords: Gross-Pitaevskii equation; Coherent-solitonic states; solitons; interaction; fusion.

DOI: https://doi.org/10.31349/RevMexFis.71.021302

1. Introduction

Solitons are solitary waves whose shape and velocity remain
unchanged even after collisions between them. There are sev-
eral nonlinear equations that admit solutions of solitonic type,
in particular the nonlinear Schrödinger equation (NLSE) and
the Korteweg-de Vries equation (KdV), which are known
to be exactly integrable [1]. Solitons are present in many
fields of science, including optics, plasmas, condensed mat-
ter physics, fluid mechanics, particle physics [2] and even
in biological sciences. Their study has continuously moti-
vated both theoretical and experimental research [3]. Optical
solitons are wavepackets self-trapped in space, time, or both,
which may arise when light propagates in nonlinear media.
The NLSE models media with Kerr nonlinearity.

Another nonlinear model is the Gross-Pitaevskii equation
(GPE),
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It is used to describe phenomena such as Bose-Einstein con-
densates (BEC) [4, 5] and propagation of light in nonlinear
waveguides. Hereψ(x, t) is a wavefunction that depends on
a transverse coordinatex and t, which can represent either
a propagation coordinate or time.β is the nonlinearity con-
stant, which is positive for a self-focusing medium, or nega-
tive for a self-defocusing medium.

It is currently unknown whether the GPE is integrable or
not. This is a subject of ongoing research [6]. Several au-
thors have proposed particular solutions, both analytical and
numerical, to the GPE [7,8].

A family of solutions called coherent-solitonic states
(CSS), which combine properties of both solitons and coher-
ent states of the quantum harmonic oscillator, was proposed
in Ref. [9]. The mathematical expression for these states
is [10]
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wherey = x − q cos (t) is the coordinate in the oscillating
frame, q is a real constant defining the initial wave packet
shift, ν is the phase velocity andφ(y) is a real function that
represents the profile ofψ(x, t).

Substituting Eq. (2) into Eq. (1) yields [9]

φ′′ − y2φ + 2βφ3 = −νφ, (3)

whereφ′′ is the second derivative with respect toy. A sym-
metric profile satisfiesφs(0) = h, φ′s(0) = 0, while an anti-
symmetric one satisfiesφa(0) = 0, φ′a(0) = h.

When β = 0, Eq. (3) becomes the Hermite equa-
tion which has solutions that decrease asx −→ ±∞ for
νn = 2n + 1, with n = 0, 1, 2, .... However, whenβ 6= 0,
the eigenvaluesν for which localized solutions exist depend
on bothβ and the eigenfunction amplitude.

The stability analysis of coherent-solitonic states was pre-
sented in Ref. [11]. It was shown there that CSS of zeroth
and first order are linearly stable. However, higher order so-
lutions can develop linear instabilities in a certain range of
CSS amplitude for a fixed nonlinearity value.

Various types of soliton interactions are known in the
literature. For the integrable nonlinear Schrödinger equa-
tion (cubic NLSE), solitons retain their amplitudes and ve-
locities after collisions, but their phases and positions can
change [12]. Studies of the interaction between two solitons
in waveguides have shown that they can undergo attractive
and repulsive forces, steering, as well as merging into an-
other soliton. These effects strongly depend on the relative
phase between solitons. Depending on whether they are in
phase or out of phase, attraction and fusion, or repulsion can
be achieved [13–15]. In addition to phase, these phenomena
also depend on the soliton’s separation [16].
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Some nonlinear equations that have single soliton so-
lutions may also allow for other kinds of stable solutions,
such as soliton molecules and hybrid solutions [17]. Soli-
ton molecules are formed by the interaction of individual
solitons. Bound states of two and three solitons in optical
fibers have been observed [18]. The NLSE also admits the
two-soliton solution and soliton molecules. For this case,
it has been found that solitons in molecules may coalesce
periodically resulting in a non-constant separation between
them [19]. For some variants of the Gross-Pitaevskii equa-
tion, the possibility of soliton molecule formation has been
suggested [20].

CSS’s for nonzero nonlinearity can be regarded as solu-
tions of solitonic type, and it is interesting to investigate how
they interact. Here we study numerically the interaction be-
tween two and three coherent-solitonic states of zero order. It
is shown, that two properly separated out-of-phase CSS’s can
form a single state, similar to the first-order CSS. It propa-
gates nearly retaining its form. However, fusion is only possi-
ble for positive nonlinearity and for separations smaller than
a certain critical value. We also show that three zero-order
CSS’s can form a state that closely resembles a second-order
CSS.

2. Interaction of zero-order CSS

Solving Eq. (3) numerically yields the initial profile
ψ(x, 0) = φ(x − q). We use the initial conditionφ(0) = h,
φ′(0) = 0, and chooseν corresponding to zero-order CSS
to ensure that the solution diminishes to zero for largex and
does not exhibit any zero crossings.

Evolution of the wavefunction is obtained using the
Galerkin method [6,9,11]. The functionψ(x, t) is expanded
as a sum of Hermite harmonics with time-dependent coeffi-
cients,

ψ(x, t) =
N∑

k=0

Ck(t)Hk(x), (4)

whereHk(x) is ak-th order Hermite function andN is the
number of harmonics considered to achieve sufficient preci-
sion (typicallyN = 40). The initial profile is used to calcu-

late the coefficients fort = 0 and the solutions fort > 0 are
obtained using the Runge-Kutta method.

Theq parameter indicates the initial shift of the zero time
profile, φ(x − q). Whenq = 0, rectilinear propagation is
observed; whenq 6= 0, the solution exhibits transversal os-
cillation. Figure 4 shows the typical profiles of two shifted
zero-order CSS (dashed lines) and that of a first-order CSS.
In Fig. 6 the initial profile of a second-order CSS (thick line)
is shown. An exact CSS maintains the same profile under
propagation, but generally profiles of superposition of some
CSSs will vary with time due to nonlinearity.

To simulate interactions between two zero-order CSS, we
calculateCk(0) for each of two initial profiles,φ(x−q1) and
φ(x−q2). If needed, coefficients corresponding to one of the
profiles can be multiplied by a complex exponential to intro-
duce a relative phase. Resulting coefficients after summation
are used as the initial condition.

The first case studied corresponds to the interaction be-
tween two CSS symmetrically displaced from the center,
q1 = −q2 = 1. The way in which this system evolves de-
pends mainly on the relative phase shift between them,θ.
Figure 1 shows the evolution forh = 0.5 and three relative
phases. Forθ = 0, waves tend to interfere constructively in
some regions at the center. Forθ = π, waves tend to repel
and maintain their separation along propagation. For inter-
mediate relative phases, the evolution becomes more com-
plex [Fig. 1b)].

Another case studied is the interaction between a non-
shifted zero-order CSS and a shifted one,q1 = 0 andq2 = 1.
This case is shown in Fig. 2.

For longer propagation times, the general behavior does
not change considerably, but slight variations are observed.

To investigate the periodicity, we fix a specific transver-
sal coordinate,x, and calculate|ψ(x, t)| as a function oft.
The separation between successive minima of this function
varies, the function is not perfectly periodic. The average of
these separations gives an estimate of the period. We have av-
eraged over ranges of20π and40π with similar results. Fig-
ure 3 shows the difference between half the average periodT
andπ as a function ofh for three different symmetrical shifts
q. The sign ofh indicates the sign of nonlinearity (β = 1 for
positive, andβ = −1 for negative). It is observed that the

FIGURE 1. Evolution of two CSS for different relative phases: a)θ = 0, b) θ = π/2, c) θ = π. Initial profiles have amplitudeh = 0.5 and
a symmetric shift ofq = ±1; the nonlinearity isβ = 1. All plots have the same time scale. Color bars indicate the magnitude|ψ(x, t)|.
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FIGURE 2. Evolution of two non-symmetrically shifted zero-order CSS for relative phases: a)θ = 0, b) θ = π/2, c) θ = π, with amplitudes
h = 0.5. One profile is initially centered,q1 = 0, and the other one is displaced byq2 = 1; the nonlinearity isβ = 1.

FIGURE 3. Difference between half the characteristic periodT
andπ in function ofh for three values ofq. For zero nonlinearity
(h −→ 0), the half period is exactlyπ. Estimates of the period
have been carried out atx = 1.5. Standard deviationσ is larger for
negative nonlinearity.

nonlinear interaction modifies the period; it is larger for nega-
tive nonlinearity and smaller for positive one. From the set of
such separations, we have computed the standard deviation,
σ, as an indication of the variation in period. In Fig. 3, the
values ofσ are represented by error bars.

3. Fusion of two and three zero-order CSS

It is well known that solitons can attract and fuse together for
θ = 0, while they repel (or steer) each other forθ = π.
Simulations show that CSS can exhibit a similar behavior
under certain conditions. However, the repulsion between
zero-order CSS can be harnessed to fuse them into CSS of
higher orders. Indeed, some zero-order CSS, symmetrically
displaced from the origin, may form a profile which resem-
bles that of a CSS of higher order and the bound state propa-
gates very similar to the latter. We investigate this effect for
interactions of two and three zero-order CSS.

In the first case, two zero-order CSS, with a relative phase
of θ = π between them and symmetrical shifts from the
origin (−q andq), may form a profile very close to that of a

FIGURE 4. Fusion of two zero-order CSS withq = 0.6 and h0 = 0.633. a) Profiles of the sum of two zero-order CSS’s (red) and
corresponding first-order CSS (black),h1 = 0.73341. The dashed lines represent initial profiles of zero-order CSS, symmetrically shifted
from the origin by±q, the sum of which yields the profile in red. b) Propagation of the sum of two zero-order CSS.
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FIGURE 5. a) Optimal values forh andq to get best approximations to a first-order CSS lay on this curve, critical value ofq is around0.89.
b) Intensity vsh curves for different shiftsq. The dashed lines correspond to fusion profiles, the solid line corresponds to a pure CSS of the
first order.

FIGURE 6. a) Comparison of profiles:ψ2 is the exact second-order CSS forh = 0.5; ψsum is the sum of three zero-order CSS (fusion)
for parametershc = 1.130688, hs = 0.789475 andq = 1.219687, computed by an optimization algorithm. b) Propagation pattern of the
fusion profile.

first-order CSS. Figure 4 shows the two profiles together and
the propagation pattern of the system. Its resemblance to that
of a pure first-order CSS depends on parametersh andq.

For each value ofq, the closest profile is attained at a par-
ticular value ofh. This allows to find pairs(q, h) of maximal
resemblance. To find these pairs, we calculate the squared
width of ψ(x, t) as a function of time:

∆x(t) =
∫

x2|ψ(x, t)|2dx∫ |ψ(x, t)|2dx
. (5)

For a pure CSS,∆x(t) is constant. The propagation of
a combined state results in an oscillating function. So,
within an interval of some periods we searched for the ex-
trema of ∆x in function of t and calculated the quantity
δ = |∆xmax − ∆xmin|. Then, for a fixed value ofq, the
value ofh which minimizesδ corresponds to the maximal
resemblance. The plot of these best choices(q, h) [Fig. 5a)]

suggests that there exists a critical value ofq, i.e., q does not
surpass a certain limit. The best resemblance is obtained for
small values ofq andh, which corresponds to the fact that
the first derivative of the zero-order Hermite function is pro-
portional to the first-order Hermite function.

To understand the origin of the critical value ofq we as-
sume that the derivative of the zero-order CSS superposition
at x = 0 should give the value of an analogoush param-
eter for first-order CSS,hfusion. We also can calculate the
total intensity of the wavefunction by integrating|ψ(x, 0)|2
along thex- axis. We characterize a fusion profile by plot-
ting the intensityIfusion againsthfusion for differentq val-
ues [Fig. 5b)]. The dependence crosses the corresponding
curve for first-order CSS at a point that approximately cor-
responds to the correct parameterh for first-order CSS. The
fusion curves do not cross the corresponding CSS curve at
all for q values greater than the critical value0.915, which
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is reasonably close to the critical value of0.89 suggested by
Fig. 5a).

It is not possible to obtain fusion of this type for negative
nonlinearity.

Similarly, three zero-order CSS may fuse into a second-
order CSS. In this case, one zero-order CSS must be centered,
while the other two are symmetrically shifted from the origin
(by−q andq). Additionally, there must be a relative phase of
θ = π between the central CSS and the side ones.

In this case the resemblance between the resultant profile
and that of a pure second-order CSS is less pronounced than
for two CSS fusion. Moreover, the approach now depends
on three parameters: the amplitudes of zero-order CSS at the
center,hc, and sides,hs, as well as the absolute value of the
shift, q.

For this case, an optimization process is suggested, where
the integral

∫
[φ(x;hc, hs, q)− Φ2(x)]2 dx, (6)

is minimized. Here,Φ2(x) represents the profile of a second-

order CSS, andφ(x; hc, hs, q) is the initial profile obtained
from the sum of three zero-order CSS. Note that this function
has parametershc, hs andq, and the final values should be
found using the optimization procedure from an already close
profile. Figure 6 shows the resemblance between profiles and
the propagation pattern for this case.

4. Discussion and conclusions

Using computer simulations we have uncovered an interest-
ing effect: two (or three) CSSs of zero order can form a stable
state, similar to a CSS of higher order (first or second). We
interpret this effect in terms of a stable balance between re-
pulsion of two out-of phase solitons and compression due to
a parabolic potential. For the case of two CSS, the numer-
ical experiment allows to establish the range of parameters
(amplitudes and initial shifts) where this balance is possible.

We have demonstrated in principle the possibility of
forming the second-order CSS from three CSS of the order
zero. The detailed investigation of this case is beyond the
scope of this paper.

1. M. J. Ablowitz and H. Segur, Solitons and the Inverse
Scattering Transform (Society for Industrial and Applied
Mathematics, 1981),https://doi.org/10.1137/1.
9781611970883 .

2. Z. Chen, M. Segev, and D. N. Christodoulides, Optical spatial
solitons: historical overview and recent advances,Reports on
Progress in Physics75 (2012) 086401,https://doi.org/
10.1088/0034-4885/75/8/086401 .

3. B. A. Malomed, Two-Dimensional Solitons in Nonlocal Me-
dia: A Brief Review, Symmetry14 (2022) 1565,https:
//doi.org/10.3390/sym14081565 .

4. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation,
in: International Series of Monographs on Physics (Claren-
don Press, 2003),https://books.google.com.mx/
books?id=rIobbOxC4j4C .

5. C. Barenghi and N. Parker, A Primer On Quantum Fluids, in:
SpringerBriefs in Physics (Springer International Publishing,
2016),https://books.google.com.mx/books?id=
kGLJjwEACAAJ.

6. T. Bland et al., Probing quasi-integrability of the Gross-
Pitaevskii equation in a harmonic-oscillator potential,J. Phys.
B: At. Mol. Opt. Phys.51 (2018) 205303,https://doi.
org/10.1088/1361-6455/aae0ba .

7. C. Trallero-Gineret al., Formal analytical solutions for the
Gross-Pitaevskii equation,Physica D: Nonlinear Phenom-
ena 237 (2008) 2342,https://doi.org/10.1016/j.
physd.2008.02.017 .

8. W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of
the Gross-Pitaevskii equation for Bose-Einstein condensation,
Journal of Computational Physics187 (2003) 318,https:
//doi.org/10.1016/S0021-9991(03)00102-5 .

9. N. Korneev and V. Vysloukh, Coherent-solitonic states for
Gross-Pitaevskii equation with parabolic potential,Optik
255 (2022) 168628, https://doi.org/10.1016/j.
ijleo.2022.168628 .

10. J. Gazeau, Coherent States in Quantum Physics (Wiley,
2009),https://books.google.com.mx/books?id=
tJhevgAACAAJ .

11. N. Korneev, E. Francisco, and V. Vysloukh, Stabil-
ity of coherent-solitonic states for Gross-Pitaevskii equa-
tion with parabolic potential, Physics Letters A 490
(2023) 129201,https://doi.org/10.org/10.1016/
j.physleta.2023.129201 .

12. Y. S. Kivshar and G. P. Agrawal, Chapter 2 - Spatial Soli-
tons, Optical Solitons (Academic Press, Burlington, 2003),
https://doi.org/10.1016/B978-012410590-4/
50002-4 .

13. S. R. Friberg, Soliton fusion and steering by the simultane-
ous launch of two different-color solitons,Opt. Lett.16 (1991)
1484,https://doi.org/10.1364/OL.16.001484 .

14. F. M. Mitschke and L. F. Mollenauer, Experimental observa-
tion of interaction forces between solitons in optical fibers,Opt.
Lett. 12 (1987) 355,https://doi.org/10.1364/OL.
12.000355 .

15. Y. Kodama and K. Nozaki, Soliton interaction in optical fibers,
Opt. Lett. 12 (1987) 1038,https://doi.org/10.1364/
OL.12.001038 .

16. Z. Fengwu and Y. Jiaren, Interaction Between Two Nonlinear
Schr̈odinger Solitons,Chinese Physics Letters11 (1994) 265,
https://doi.org/10.1088/0256-307X/11/5/
003 .

Rev. Mex. Fis.71021302

https://doi.org/10.1137/1.9781611970883�
https://doi.org/10.1137/1.9781611970883�
https://doi.org/10.1088/ 0034-4885/75/8/086401�
https://doi.org/10.1088/ 0034-4885/75/8/086401�
https://doi.org/10.3390/sym14081565�
https://doi.org/10.3390/sym14081565�
https://books.google.com.mx/ books?id=rIobbOxC4j4C�
https://books.google.com.mx/ books?id=rIobbOxC4j4C�
https://books.google.com.mx/ books?id=kGLJjwEACAAJ�
https://books.google.com.mx/ books?id=kGLJjwEACAAJ�
https://doi.org/10.1088/ 1361-6455/aae0ba�
https://doi.org/10.1088/ 1361-6455/aae0ba�
https://doi.org/10.1016/j. physd.2008.02.017�
https://doi.org/10.1016/j. physd.2008.02.017�
https://doi.org/10.1016/S0021-9991(03)00102-5�
https://doi.org/10.1016/S0021-9991(03)00102-5�
https://doi.org/10.1016/j. ijleo.2022.168628�
https://doi.org/10.1016/j. ijleo.2022.168628�
https://books.google.com.mx/ books?id=tJhevgAACAAJ�
https://books.google.com.mx/ books?id=tJhevgAACAAJ�
https://doi.org/10.org/10.1016/j.physleta. 2023.129201�
https://doi.org/10.org/10.1016/j.physleta. 2023.129201�
https://doi.org/10.1016/B978-012410590-4/50002-4�
https://doi.org/10.1016/B978-012410590-4/50002-4�
https://doi.org/10.1364/OL.16.001484�
https://doi.org/10.1364/OL.12.000355�
https://doi.org/10.1364/OL.12.000355�
https://doi.org/10.1364/OL.12.001038�
https://doi.org/10.1364/OL.12.001038�
https://doi.org/10.1088/0256-307X/11/5/003�
https://doi.org/10.1088/0256-307X/11/5/003�


6 N. KORNEEV, E. FRANCISCO, AND V. VYSLOUKH

17. H. Ma, H. Huang, and A. Deng, Soliton molecules, asym-
metric solitons and hybrid solutions for KdV-CDG equa-
tion, Partial Differential Equations in Applied Mathemat-
ics 5 (2022) 100214,https://doi.org/10.1016/j.
padiff.2021.100214 .

18. P. Rohrmann, A. Hause, and F. Mitschke, Two-soliton and
three-soliton molecules in optical fibers,Phys. Rev. A87 (2013)
043834,https://doi.org/10.1103/PhysRevA.87.

043834 .

19. K. Mohammed Elhadjet al., Singular soliton molecules of
the nonlinear Schrödinger equation,Phys. Rev. E101 (2020)
042221, https://doi.org/10.1103/PhysRevE.
101.042221 .

20. U. Al Khawaja, Stability and dynamics of two-soliton
molecules,Phys. Rev. E81 (2010) 056603,https://doi.
org/10.1103/PhysRevE.81.056603 .

Rev. Mex. Fis.71021302

https://doi.org/10.1016/j. padiff.2021.100214�
https://doi.org/10.1016/j. padiff.2021.100214�
https://doi.org/10.1103/PhysRevA.87.043834�
https://doi.org/10.1103/PhysRevA.87.043834�
https://doi.org/10.1103/PhysRevE.101.042221�
https://doi.org/10.1103/PhysRevE.101.042221�
https://doi.org/10.1103/ PhysRevE.81.056603�
https://doi.org/10.1103/ PhysRevE.81.056603�

