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A4×Z2×Z4 flavor symmetry model for neutrino oscillation phenomenology
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We propose a Standard Model (SM) extension which aims to explain the most recent experimental data on neutrino oscillation. Beside
A4, two Abelian symmetriesZ2 andZ4 are supplemented to prevent some Yukawa terms to get the desired mass matrices and then give
predictions for the neutrino oscillation parameters in agreement with the most recent experimental data on neutrino oscillation in 3σ range.
The model provide a predictive relation between the solar and reactor neutrino mixing angles and gives possible prediction on the Dirac CP
phase and two Majorana phases as well as the effective neutrino mass being in agreement with the most recent constraints.
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1. Introduction

The current neutrino data (see, for example, Ref. [1], as
shown in Table I) has promoted various theoretical efforts to
understand neutrino flavor mixing and small non-degenerate
mass.

In the three-neutrino scheme, the neutrino oscillation
probability is described by six parameters, including two neu-
trino mass squared splittingsi ∆2

21 and|∆2
31|; three neutrino

mixing anglesθ12, θ13 andθ23; and one Dirac CP-violation
phaseδ. Presently, although the absolute value of two mass
squared splittings, the solar mixing angleθ12 and the reactor
mixing angleθ13 have now been determined with high ac-
curacy [1], three other quantities including the sign of∆2

31,
the octant of atmospheric neutrino mixing angleθ23 and the
Dirac CP violation phaseδ are still unknown. On the other
hand, the sign of∆2

31 provides two neutrino mass hierarchies,
namely, normal hierarchy (NH) withm1 < m2 < m3 and in-
verted hierarchy (IH) withm3 < m1 < m2. Although some
of the analysis seem favor the normal hierarchy [2–4], the
most recent result from KamLAND-Zen provides a clue of
the Majorana nature of neutrinos in the inverted mass order-
ing [5].

Discrete symmetries are useful tools for explaining the
observed neutrino data in whichA4 symmetry has been used
in different works (see for instance Refs. [6, 7] and the ref-
erences therein). However, the previous works include non
minimal scalar sectors with manySU(2)L doublets or/and
alot of singlets and and most of them have not mentioned
the mass hierarchy problem which are significant differences
with our current work. The minimal scalar sector is an im-
portant feature of the model to distinguish it from previous
works; thus, it would be necessary to construct anA4 flavor
model with less scalar content compared to the mentioned
works.

A4 is a group of even permutations of four objects which
is known as the tetrahedron group. It has four irreducible rep-
resentations including three one-dimensional representations

TABLE I. Neutrino oscillation parameters [1]. The second column
is for NH and the third column is for IH.

Parameters Best-fit point(3σ) Best-fit point(3σ)
∆2

21 [meV2]

10
7.50 (6.94, 8.14) 7.50 (6.94, 8.14)

|∆2
31| [meV2]

103 2.55 (2.47, 2.63) 2.45 (2.37, 2.53)

s2
12 0.318 (0.271, 0.369) 0.318 (0.271, 0.369)

s2
23 0.574 (0.434, 0.610) 0.578 (0.433, 0.608)

s2
13

10−2 2.200 (2.00, 2.405) 2.225 (2.018, 2.424)

δ/π 1.08 (0.71, 1.99) 1.58 (1.11, 1.96)

1, 1′ and1′′, and one three-dimensional representation. We
will work in the T-diagonal basis, in which the tensor product
of the triplets is given by [8]:

3




x1

x2

x3


× 3




y1

y2

y3


 = (x1y1 + x2y3 + x3y2)1

+(x3y3 + x1y2 + x2y1)1′ + (x2y2 + x1y3 + x3y1)1′′

+
1
3




2x1y1 − x2y3 − x3y2

2x3y3 − x1y2 − x2y1

2x2y2 − x1y3 − x3y1




3s

+
1
2




x2y3 − x3y2

x1y2 − x2y1

x3y1 − x1y3




3a

. (1)

The remainder of our paper is organized as follows. Section 2
is the description of the model. Neutrino masses and mixings
is presented in Sec. 3. Section 4 is devoted for the numeri-
cal analysis as well as the effective neutrino mass parameters.
Some conclusions are given in Sec. 5. Appendix A provides
the Yukawa terms prevented by the model symmetries and
Appendix B presents the scalar potential of the model.

2. The model

In the considered model, the SM is supplemented by three
discrete symmetriesA4, Z2 and Z4, i.e., the full symmetry
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TABLE II. The assignment of leptons and scalars underA4, Z2 and
Z4.

Field ψL l1R l2R l3R νR H1 H2 φ ϕ ρ η

A4 3 1 1′′ 1′ 3 1 1 3 3 1 1′

Z2 + + − − + + − − − − −
Z4 i i i i 1 1 1 1 i i i

of the model isGSM × A4 × Z2 × Z4 ≡ G. Besides, three
right-handed neutrinos, oneSU(2)L doublet and four singlet
scalars are added to the SMii. UnderA4 symmetry, three left-
handed leptons (ψL) and three right-handed neutrinos (νR)
are assigned in3 while right-handed charged leptonsl1,2,3R

are assigned in1, 1′′ and1′, respectively. The particle content
of the model is given in Table II.

The invariant Yukawa terms, up to five-dimension, is as
follows:

−Lclep =
h1

Λ
(ψLφ)1(H2l1R)1 +

h2

Λ
(ψLφ)1′(H1l2R)1′′

+
h3

Λ
(ψLφ)1′′(H1l3R)1′ +

3x1

Λ
(ψLνR)3s

(H̃2ϕ)3

+
2x2

Λ
(ψLνR)3a(H̃2ϕ)3 +

y1

Λ
(ψLνR)1(H̃2ρ)1

+
y2

Λ
(ψLνR)1′′(H̃2η)1′ +

M

2
(νC

RνR)1 + h.c, (2)

where the termsh1,2,3, x1,2 andy1,2 are Yukawa-like cou-
plings, M is the Majorana bare mass term of the right-
handed neutrino andΛ is the cut-off scale. The factors
“3” and “2” in the numerators of the terms in the sec-
ond row of Eq. (2) is just for convenience. It is noted
that ϕ does not contribute to the charged lepton mass ma-
trix while φ does not contribute to the neutrino mass ma-
trices. Namely, the charged-lepton masses can be gener-
ated from the couplings of̄ψLl1,2,3R to scalars in which, un-
der the considered symmetries,ψ̄Ll1R ∼ (2,−1/2, 3, +, 1)
and ψ̄Ll2,3R ∼ (2,−1/2, 3,−, 1), i.e., the scalar doublets
which respectively transform as(2, 1/2, 3, +, 1) ≡ H2φ and
(2, 1/2, 3,−, 1) ≡ H1φ are needed to construct invariant
terms which generate the charged-lepton mass matrix. On
the other hand, the Majorana neutrino masse s can be pro-
duced by the couplings of̄νc

RνR to scalars wherēνc
RνR ∼

(1, 0, 1 + 1′ + 1′′ + 3s + 3a,+, 1), i.e., 1 as one of results
of the tensor product of twoA4 triplets corresponding to
(ν̄c

RνR)1 ∼ (1, 0, 1,+, 1) is invariant under all the consid-
ered symmetries which contributes to the entries “11”, “23”
and “32” of the Majorana neutrino mass matrixMR. Fur-
thermore, the Dirac neutrino masses arise from the coupling
of ψ̄LνR to scalars wherēψLνR ∼ (2, 1/2, 1 + 1

′
+ 1

′′
+

3s + 3a, +,−i), i.e., the scalar doublets which transform as
(2,−1/2, 1+1

′
+1

′′
+3s +3a, +,−i). For the given scalar

fieldsH1,H2 andφ, all Yukawa terms up to five-dimensions
are prevented by one (or some) of the considered symmetries
(see Table III). We thus additionally introduce oneSU(2)L

singet put in3 of A4 (denoted asϕ) which can combine with
H2 to form invariant terms including(ψLνR)3s(H̃2ϕ)3 and
(ψLνR)3a(H̃2ϕ)3. With the VEV〈ϕ〉 = (vϕ, vϕ, vϕ), these
terms contribute to all the entries of the Dirac neutrino mass
matrix MD. However, due to the properties of the3 × 3
tensor product ofA4, the efective neutrino matrix obtained
via Type-I seesaw mechanism owns two degenerate masses
which is ruled out by experimental data [1]. Hence, two ad-
ditional scalars (ρ andη) are introduced to eliminate the neu-
trino mass degeneracy.

Besides, there exist five-dimensional terms which are
invariant under all the considered symmetries, including
(1/2Λ)

(
φ2

)
1/1′/1′′/3s,a

(
νC

RνR

)
1/1′′/1′/3s,a

, (1/2Λ)
(
ϕ∗ρ +

ϕρ∗
)
3

(
νC

RνR

)
3s,a

, (1/2Λ)
(
ϕ∗η + ϕη∗

)
3

(
νC

RνR

)
3s,a

,

(1/2Λ)
(
ρ∗η

)
1′

(
νC

RνR

)
1′′ and (1/2Λ)

(
ρη∗

)
1′′

(
νC

RνR

)
1′

which contribute to the Majorana neutrino mass matrix.
However, the couplings corresponding to

(
νC

RνR

)
3a

are van-
ished due to the antisymmetry ofνiR andνjR under3a as a
consequence of the tensor product of3 × 3 of A4 symme-
try. Moreover, the other terms contributes to the Majorana
neutrino mass matrix which corresponding to(vϕvρ/Λ),
vϕvη/Λ and(vρvη/Λ) which are very small compared toM
since(vϕ/Λ) ∼ (vρ/Λ) ∼ (vη/Λ) ∼ 10−3 ÷ 10−2; thus,
their contributions were ignored. The additional symmetries
A4, Z2 andZ4 play crucial roles in forbidding some Yukawa
terms to get the desired form of the mass matrices which are
listed in Appendix A, respectively.

As presented in Appendix B, the vacuum expectation
value (VEV) of the scalars, which comes from the minimum
condition of scalar potential, are given as follows:

〈H1〉 =
(
0 v1

)T
, 〈H2〉 =

(
0 v2

)T
,

〈φ〉 = (vφ, 0, 0), 〈ϕ〉 = (vϕ, vϕ, vϕ),

〈ρ〉 = vρ, 〈η〉 = vη. (3)

In 2HDM, the electroweak symmetry breaking is performed
by both twoSU(2)L scalar doubletsH1 and H2 via their
non-zero VEVsv1 andv2. On the other hand, the scalarφ
with the VEV 〈φ〉 = (vφ, 0, 0) breaksA4 down toZ2 sym-
metry whileϕ with the VEV owns equal value for all three
components,〈ϕ〉 = (vϕ, vϕ, vϕ), breaksA4 down toZ3 sym-
metry.

The fact that the electroweak scale is low
√

v2
1 + v2

2 =
v = 246 GeV, and the cut-off scaleΛ is unknown and it
is assumed to be a very high scaleΛ ∈ (1013, 1015)GeV
[12]. However, in a recent work [11] it is demonstrated that
Λ ' 3.8 × 1013 GeV in electroweak theory. Therefore, in
this study, we useΛ ' 1013 GeV for its scale:

v = 246 GeV, Λ ' 1013 GeV. (4)

On the other hand, to solve the hierarchy problem of charged-
lepton masses and the implementation of the type I see-
saw mechanism that generates the smallness of the neutrino
masses, the VEVs of scalar fields are required as follows:
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vφ = vϕ = 5× 1010 GeV, vη = 2vρ = 2× 1010 GeV,

v1 = 2.458× 102 GeV, v2 = 10 GeV. (5)

3. Lepton masses and mixings

Using the multiplication rules of theA4 [8], from the Yukawa
terms in the first line in Eq. (2), after the scalarsH1,2 andφ
get their VEVs as in Eq. (3), the charged-lepton mass matrix
get the diagonal form,

Ml =
vφ

Λ
diag (h1v2, h2v1, h3v1) ≡

(
me, mµ, mτ

)
. (6)

Therefore, the diagonalization matrices of charged-lepton
mass matrixMl areUR = UL = I3×3 and the lepton mix-
ing matrix depends on only that of the neutrinos,Ulep = Uν .
From Eq. (6) we get the relation:

h1 =
Λme

v2vφ
, h2 =

Λmµ

vφ

√
v2 − v2

2

,

h3 =
Λmτ

vφ

√
v2 − v2

2

. (7)

As will see in Sec. 4, there exist possible regions ofv2 andvφ

such that the quantitiesh1, h2 andh3 are just different from
each other by one order of magnitude. Thus, the charged
lepton mass hierarchy problem is naturally achievable in the
model.

Similarity from the Yukawa terms in the second and third
lines in Eq. (2), after the scalarsH2, ϕ, ρ and η get their
VEVs as in Eq. (3), we obtain the Dirac and Majorana neu-
trino mass matrices as follows:

MD =




2a + c −a + b −a− b + d
−a− b 2a + d −a + b + c

−a + b + d −a− b + c 2a


 ,

MR = M




1 0 0
0 0 1
0 1 0


 , (8)

where the parameterM is related to the Majorana mass term
of the right-handed neutrino in Eq. (2) which can be in the
range of very high scale [13], and

a =
x1v2vϕ

Λ
, b =

x2v2vϕ

Λ
,

c =
y1v2vρ

Λ
, d =

y2v2vη

Λ
. (9)

The effective neutrino mass matrix is obtained via the type-I seesaw mechanism,mν = MDM−1
R MT

D , as follows:

mν =




2α + γ + 2σ −α + κ− β − σ −α + β − σ + τ
−α + κ− β − σ −α + β + 2σ + τ 2α + γ − σ
−α + β − σ + τ 2α + γ − σ −α− β + κ + 2σ


 , (10)

where

α =
3a2 − b2

M
, β =

6ab

M
, γ =

c2

M
, κ =

d2

M
, σ =

2ac− ad + bd

M
, τ =

2cd

M
. (11)

Since the Yukawa-like couplingsx1,2 andy1,2 are complex parameters, Eq. (9) implies that the parametersα, β, γ, κ, σ andτ
are complex. As a consequence, the neutrino matrixmν in Eq. (10) is complex. Therefore, in order to get the real and positive
neutrino masses, we define a Hermitian matrixM2

ν = m†
νmν whose entries take the following form:

M2
ν =




B + 2H −A− F −H + iK −A + F −H − iK
−A− F −H − iK B + F −H −A + 2H + iK
−A + F −H + iK −A + 2H − iK B − F −H


 , (12)

whereA,B, F, H andK are defined in Appendix A.
Diagonalizing the matrixM2

ν in Eq. (12) we obtain:





m2
1 = A + B −√3X0, m2

2 = B − 2A,

m2
3 = A + B +

√
3X0(NH),

m2
1 = A + B +

√
3X0, m2

2 = B − 2A,

m2
3 = A + B −√3X0(IH).

(13)

s2
13 =

{
1
3 + H√

3X0
(NH),

1
3 − H√

3X0
(IH),

t212 =





1

1−
√

3H
X0

(NH),

1

1+
√

3H
X0

(IH),
(14)
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t223 =





7F 2 + 9H2 + 4K2 + 4
√

3FX0

(F − 3H)2 + 4K2
(NH),

7F 2 + 9H2 + 4K2 − 4
√

3FX0

(F − 3H)2 + 4K2
(IH),

(15)

s12c12s13c
2
13s23c23 sin δ =





− K

6
√

3c12c2
13c23s12s13s23X0

(NH),

K

6
√

3c12c2
13c23s12s13s23X0

(IH).
(16)

α1M =





arctan




Υ1 sin

(
arctan

(
ReΩ1
ImΩ1

)

2

)
− 3KΩ1 cos

(
arctan

(
ReΩ1
ImΩ1

)

2

)

3KΩ1 sin

(
arctan

(
ReΩ1
ImΩ1

)

2

)
+ Υ1 cos

(
arctan

(
ReΩ1
ImΩ1

)

2

)




(NH),

arctan


3KΩ3 cos

(
1
2 arg

(
− 1

Ω3

))
+ Υ3 sin

(
1
2 arg

(
− 1

Ω3

))

3KΩ3 sin
(

1
2 arg

(
− 1

Ω3

))
−Υ3 cos

(
1
2 arg

(
− 1

Ω3

))

 (IH),

(17)

α3M =





arctan


3KΩ3 cos

(
1
2 arg

(
− 1

Ω3

))
+ Υ3 sin

(
1
2 arg

(
− 1

Ω3

))

3KΩ3 sin
(

1
2 arg

(
− 1

Ω3

))
−Υ3 cos

(
1
2 arg

(
− 1

Ω3

))

 (NH),

arctan




Υ1 sin

(
arctan

(
ReΩ1
ImΩ1

)

2

)
− 3KΩ1 cos

(
arctan

(
ReΩ1
ImΩ1

)

2

)

3KΩ1 sin

(
arctan

(
ReΩ1
ImΩ1

)

2

)
+ Υ1 cos

(
arctan

(
ReΩ1
ImΩ1

)

2

)




(IH),

(18)

where

X0 =
√

F 2 + 3H2 + K2,

X± =

√
X0

2X0 ±
√

3(F + H)
, (19)

Ω1,3 =
√

3(F + H)± 2X0,

Υ1,3 =
√

3
(
3H2 + 5F 2 + 2K2

)

± 3X0(3F −H), (20)

with A,B, F, H,K are given in Appendix C.

Equations (15) and (20) provide the following relations:

A =
1
6
(∆2

31 − 2∆2
21) (NH and IH),

H =
∆2

31

6
(
3s2

13 − 1
)

(NH and IH), (21)

F =
∆2

31c
2
13

(
t223 − 1

)

2 (t223 + 1)
(NH and IH),

K =
∆2

31Y0

2 (t223 + 1)
(NH and IH), (22)

t212 =
1

2− 3s2
13

(NH and IH),

sδ = − Y0

6c12c2
13c23s12s13s23 (t223 + 1)

× (NH and IH), (23)

t1M =





3Y0cΘ + [(5− 6s2
13)t

2
23 − 1]sΘ

3Y0sΘ − [(5− 6s2
13)t

2
23 − 1]cΘ

(NH),

Y0

(2s2
13 − 1)t223 + 1

(IH),

t3M =





Y0

(2s2
13 − 1)t223 + 1

(NH),

3Y0cΘ + [(5− 6s2
13)t

2
23 − 1]sΘ

3Y0sΘ − [(5− 6s2
13)t

2
23 − 1]cΘ

(IH),

(24)

Rev. Mex. Fis.70060801



A4×Z2×Z4 FLAVOR SYMMETRY MODEL FOR NEUTRINO OSCILLATION PHENOMENOLOGY 5

with

Y0=
√

4s2
13 (t423+1)−4s4

13 (t423+t223+1)− (t223−1)2, (25)

Θ =
1
2

arctan
(

2(t223 + 1)− 3c2
13

3c2
13

)
. (26)

It is noted that the determination of the octant of atmospheric
mixing angle (θ23) is still an open problem experimentally,
i.e., it either in the first octan (θ23 < 45◦, i.e., s2

23 < 0.5)
or the second octant (θ23 > 45◦, i.e., s2

23 > 0.5). The data
in Ref. [1] as shown in Table I impliess2

23 ∈ (0.434, 0.610)
for NH ands2

23 ∈ (0.433, 0.608) for IH. On the other hand,
the neutrino mass hierarchy depends the sign of∆m2

31, i.e.,
∆m2

31 > 0 (or m1 < m2 < m3) for normal hierarchy
and∆m2

31 < 0 (or m3 < m1 < m2) for inverted hierar-
chy. Furthermore, expressions (23) and (25) yield the rela-
tions between lepton mixing angles and Dirac CP-violating
phase, expressions (21)-(22) and (25) tell us that four model
parametersA,F, H andK are expressed in terms of four ob-
servable quantitiess2

23, s2
13, ∆m2

21 and∆m2
31 that have now

been quite well measured [1]. Namely,A depends on∆m2
21

and∆m2
31; H depends on∆m2

31 ands2
13; F andK depend

on ∆m2
31, s

2
13 ands2

23; sin δ depends ons2
13 ands2

23, i.e., A
andH depend on the neutrino mass hierarchy,sδ depends on
the octant ofθ23, andF andK depend on both the neutrino
mass hierarchy and the octant ofθ23 which will be presented
in Sec. 4.

Now, we calculate the effective neutrino mass parameter.
From Eq. (13) we can rewrite three neutrino masses in terms
of two neutrino mass-squared differences andB,

m1 =

√
B − ∆2

21 + ∆2
31

3
,

m2 =

√
B +

2∆2
21 −∆2

31

3
,

m3 =

√
B − ∆2

21 − 2∆2
31

3
(NH and IH), (27)

∑
=

√
B − ∆2

21 + ∆2
31

3
+

√
B +

2∆2
21 −∆2

31

3

+

√
B − ∆2

21 − 2∆2
31

3
(NH and IH). (28)

It should be noted that the analytic expression in Eq. (27) is
satisfied for both NH and IH, however, the range of values
∆2

31 are different from each other with respect to NH and
IH [1].

Next, the effective neutrino mass governing the neutrino-
less beta decay,

mβ =

(
3∑

i=1

|Uei|2 m2
i

)1/2

,

allows us to expressB in terms of three parameters∆2
31, s

2
13

andmβ ,

B = ∆2
31

(
1
3
− s2

13

)
+ m2

β (NH and IH). (29)

Furthermore, one can express the effective neutrino mass
governing the neutrinoless double beta decay,〈mee〉 =
|∑3

i=1 U2
eimi|, in terms of five parameterss2

13, s2
23, ∆2

21,
∆2

31 andmβ as follows

〈mee〉 =
Z0

√
Γ

2
√

3
{

[(2s2
13−1)t223+s2

13]
2 +Y2

0

}

× (NH and IH), (30)

where

Z0 =
√

3B −∆2
21 −∆2

31,

Γ =
[
2

(
t223 − s2

13(2t223 + 1)
)2

+ Y2
0

]2

− Y4
0 , (31)

with Y0 is defined in Eq. (25).
Expressions (25), (27)-(28) and (29) tell us thatB de-

pends on three parametersθ13, ∆2
31 andmβ ; three active neu-

trino massesm1,2,3 and their sum
∑

depend on four param-
etersθ13,∆2

31, ∆
2
21 andmβ whereθ13, ∆2

21, ∆2
31 are observ-

able parameters that have now been quite well measured [1]
andmβ has been constrained by experiments [16,25]. On the
other hand, expressions (25), (30) and (31) imply that〈mee〉
depends on five parameterss2

13, s2
23, ∆2

21, ∆2
31 andmβ , i.e.,

〈mee〉 depends on the neutrino mass hierarchy and the oc-
tant ofθ23. Therefore, we will considereds2

13, s2
23, ∆2

21, ∆2
31

andmβ as input parameters to determine the possible range
of B, m1,2,3,

∑
and 〈mee〉 as well as Dirac and Majorana

phases which will be presented in Sec. 4.
For the quark sector, underG symmetry quark

fields transforms asQ1L ∼ (2, 1/6, 1, +, 1), u1R ∼
(1, 2/3, 1, +,−i), d1R ∼ (1,−1/3, 1, +,−i); Q2L ∼(
2, 1/6, 1

′
,+, 1

)
, u2R ∼

(
1, 2/3, 1

′
,−, 1

)
, d2R ∼(

1,−1/3, 1
′
,−, 1

)
; Q3L ∼

(
2, 1/6, 1

′′
,−, 1

)
, u3R ∼(

1, 2/3, 1
′′
, +, 1

)
, d3R ∼

(
1,−1/3, 1

′′
,+, 1

)
. The up

quarks masses arise from the couplings ofQ̄iLujR (i, j =
1, 2,3) to scalars and the down quarks masses arise from the
couplings ofQ̄iLdjR (i, j = 1, 2,3) to scalars. With the
scalar fields of the model in Table II, the SM quark masses
are generated by the following Yukawa terms:

−Lq =
hu

1

Λ
(Q̄1Lu1R)1(H̃2ρ)1 + hu

2 (Q̄2Lu2R)1H̃2

+ hu
3 (Q̄3Lu3R)1H̃1 +

hd
1

Λ
(Q̄1Ld1R)1(H2ρ)1

+ hd
2(Q̄2Ld2R)1H2 + hd

3(Q̄3Ld3R)1H1 + h.c. (32)
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After symmetry breaking, from Eq. (32), we obtain the quark
masses as follows

mu = hu
1v2

(vρ

Λ

)
, , mc =u

2 v2, mt = hu
3v1,

md = hd
1v2

(vρ

Λ

)
, ms = hd

2v2, mb = hd
3v1. (33)

With the aid of Eqs. (4) and (5), the obtained quark masses in
Eq. (33) can accommodate the quark mass heirarchy [16],
mu = 2.16 MeV, mc = 1.27 GeV, mt = 172.76 GeV,
md = 4.67 MeV, ms = 93.0 MeV, mb = 4.18 GeV provided
thathu

1 ∼ hu
2 ∼ hu

3 ∼ hd
1 ∼ 1, hd

2 ∼ 10−1, hd
3 ∼ 10−2. The

unitary matrices which couple the left-handed up-and down-
quarks are unit matrices, and as a consequence, the quark
mixing matrix is unity. A detailed study of quark mixing is
out of scope of this work.

4. Numerical analysis and discussion

• For the charged lepton sector, using the observed values of
the charged lepton masses [16],me = 0.51099MeV,mµ =
105.65837 MeV,mτ = 1776.86MeV, and v and Λ in
Eq. (4), three Yukawa-like couplingsh1, h2 andh3 in Eq. (7)
depend on two parametersv2 andvφ. We find the possible
ranges forv2 andvφ with

v2 ∈ (5× 108, 109) eV,

vφ ∈ (8× 1010, 1011) GeV, (34)

so that

h1 ∈ (0.051, 0.128), h2 ∈ (0.043, 0.054),

h3 ∈ (0.722, 0.903), (35)

which are just different from each other by one order of mag-
nitude, i.e., the charged-lepton mass hierarchy is naturally
satisfied.

• Now, we analyze the neutrino sector.Expression (23)
shows the relation betweenθ12 andθ13. Since the experimen-
tal result forθ13 is more accurate than that ofθ12 [1], we will
determine the possible region oft212 based on the experimen-
tal region ofs2

13. At 3 σ range [1]s2
13 ∈ (2.000, 2.405)10−2

for NH ands2
13 ∈ (2.018, 2.424)10−2 for IH, from Eq.(23)

we find the possible ranges oft212 as follows:

t212 ∈
{

(0.515, 0.519) (NH)
(0.516, 0.519) (IH)

,

i.e., θ12 ∈
{

(35.68◦, 35.76◦) (NH)
(35.68◦, 35.77◦) (IH)

. (36)

Expression (21) implies thatA depends on∆2
21 and ∆2

31,
and H depends on∆2

31 and s2
13. At 3σ range [1],

∆2
21 ∈ (69.40, 81.40) meV2, ∆2

31 ∈ (2.47, 2.63)103 meV2

and s2
13 ∈ (2.000, 2.405)10−2 for NH while ∆2

21 ∈
(69.40, 81.40)meV2, ∆2

31 ∈ (−2.53,−2.37)103 meV2 and

s2
13 ∈ (2.018, 2.424)10−2 for IH, we find the following pos-

sible ranges ofA andH:

A ∈
{

(384.500, 415.200)meV2 (NH)

(−448.800,−418.100)meV2 (IH)
,

H ∈
{

(−412.000,−382.000)meV2 (NH)

(366.500, 396.400)meV2 (IH)
. (37)

At present, the constrain on the effective electron anti-
neutrino massmβ has been implemented by experiments.
Namely, the constraint onmβ is given in Ref. [16] with
8.5meV < mβ < 1100meV for NH and48 meV < mβ <
1100meV for IH [16]. Another improved bound onmβ

is [25] mβ < 800 meV. Therefore, we will considermβ as
an input parameter with

mβ ∈
{

(9.508, 100.00) meV (NH),

(50.061, 200.00) meV (IH).
(38)

At 3σ range of the best-fit point ofθ13, ∆m2
21, ∆m2

31 taken
from Ref. [1] andmβ given in Eq. (38), with the aid of
Eqs. (27), (28) and (29), we find the possible ranges of
B,m1,2,3 and

∑
as follows





m1 ∈ (0.131, 99.640)meV,
m2 ∈ (8.568, 100.024)meV,
m3 ∈ (49.740, 112.046)meV (NH),
m1 ∈ (50.270, 200.100)meV,
m2 ∈ (50.990, 200.300)meV,
m3 ∈ (0.161, 194.100)meV (IH).

(39)

∑
∈

{
(60.940, 331.600)meV (NH),
(117.500, 594.400)meV (IH).

(40)

B ∈
{

(8.543× 102, 1.082× 104)meV2 (NH),
(1.714× 103, 3.927× 104)meV2 (IH).

(41)

The followings are some comments:

(1) The obtained values ofθ12 in Eq. (36) belongs to2 σ
range of the best-fit value taken from Ref. [1]. This
proves that the relation betweent12 ands13 in Eq. (23)
is predictive.

(2) For NH, in the case ofmβ < 9.508 meV the minimum
value of the lightest neutrino mass (m1) being com-
plex number which is ruled out. For IH, in the case
of mβ < 50.061 meV the minimum value of the light-
est neutrino mass (m3) being complex number which is
ruled out. In the case ofmβ > 230 meV, the maximum
value of the sum of neutrino masses, for both NH and
IH, is relatively large and can go beyond the limit taken
from Refs. [1, 19–21]; thus, it is not preferred in this
study. Furthermore, in the case ofmβ > 100 meV, the
maximum value of the effective neutrino mass〈mee〉 is
relatively large and can go beyond the limit taken from
Refs. [22–24].
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(3) The obtained result on the sum of neutrino masses
as in Eq. (40) is consistent with the current experi-
mental constraints, such as,

∑
ν mν < 0.13 eV for

NH,
∑

ν mν < 0.15 eV for IH [1] and
∑

ν mν <
0.12÷ 0.69 eV [19–21].

4.1. Higher octant of atmospheric mixing angleθ23

For the higer octant of atmospheric mixing angleθ23, θ23 >
45◦, i.e., s2

23 > 0.50; thus, experimental range ofs2
23 is

s2
23 ∈ (0.500, 0.610) [1]. However, from the real condition

of t1M for IH and of t3M for NH in Eq. (24), we find the
possible ranges ofs2

23 for higher octant as followsiii

s2
23 ∈

{
(0.513, 0.600) (NH),
(0.505, 0.600) (IH),

i.e., θ23 ∈
{

(45.74, 50.77)◦ (NH),
(45.29, 50.77)◦ (IH).

(42)

Expressions (22)- (23) and (25) show thatF andK depend
on three parameters∆2

31, s
2
13 ands2

23, andsδ depends ons2
13

ands2
23. At 3σ range of∆2

31 ands2
13 taken from Ref. [1], and

with the aid of Eq. (42), we find the possible ranges ofF, K
andsδ as follows

F ∈
{

(31.340, 257.700)meV2 (NH),
(−247.900,−11.560)meV2 (IH),

K ∈
{

(24.200, 281.200)meV2 (NH),
(−273.100,−32.160)meV2 (IH),

(43)

sδ ∈
{

(−0.993,−0.102) (NH),
(−0.999,−0.140) (IH),

i.e., δ(◦) ∈
{

(276.60, 354.20) (NH),
(270.50, 352.00) (IH).

(44)

Furthermore, expressions (24)-(26) imply that t1M and t3M
depend on two parameterss2

13 ands2
23. At 3σ range ofs2

13

ands2
23 taken from Ref. [1], we find the possible ranges of

t1M andt3M as follows

t1M ∈
{

(−0.320,−0.023) (NH),
(−0.331,−0.033) (IH),

i.e., α1M(◦) ∈
{

(342.30, 358.70) (NH),
(341.70, 358.10) (IH),

(45)

t3M ∈
{

(−161.400,−0.110) (NH),
(−0.067, 6.478) (IH),

i.e., α3M(◦) ∈
{

(270.40, 353.60) (NH),
(81.22, 356.20) (IH).

(46)

Finally, at 3σ range of the best-fit point ofθ13, ∆2
21, ∆2

31

taken from Ref. [1], with the aid of Eqs. (38) and (42), we
find the possible range of〈mee〉 for the higher octant,

〈mee〉 ∈
{

(2.607, 141.200) meV (NH ),
(46.850, 199.800) meV (IH ).

(47)

4.2. Lower octant of atmospheric mixing angleθ23

For the lower octant ofθ23, θ23 < 45◦, i.e., s2
23 < 0.50;

thus, at 3σ ranges2
23 ∈ (0.434, 0.500) for NH ands2

23 ∈
(0.433, 0.500) for IH [1]. At 3σ range of∆2

31, s
2
13 ands2

23

taken from Ref. [1], we find the possible ranges ofF,K and
sδ as follows

F ∈
{

(−170.100, 0.00)meV2 (NH),
(0.00, 163.600)meV2 (IH),

K ∈
{

(183.500, 283.200)meV2 (NH),
(−273.400,−177.400) meV2 (IH).

(48)

sδ ∈
{

(−1.00,−0.761) (NH)
(−1.00,−0.763) (IH)

i.e., δ(◦) ∈
{

(270.00, 310.50) (NH),
(270.00, 310.20) (IH).

(49)

Furthermore, at 3σ range ofs2
13 ands2

23 for the lower octant
of θ23 taken from Ref. [1], we find the possible ranges oft1M
andt3M as follows

t1M ∈
{

(−0.356,−0.287) (NH),
(−0.331,−0.290) (IH),

i.e., α1M(◦) ∈
{

(340.40, 344.00) (NH),
(341.70, 343.80) (IH),

(50)

t3M ∈
{

(0.995, 9.849) (NH),
(−1.00,−0.102) (IH),

i.e., α3M(◦) ∈
{

(44.840, 84.200) (NH),
(315.00, 354.20) (IH).

(51)

Similar to the higher octant, at 3σ range of the best-fit point
of s2

13, s
2
23, ∆m2

21 and∆m2
31 taken from Ref. [1], with the

help of Eq. (38), we find the possible range of〈mee〉 for the
lower octant as follows

〈mee〉 ∈
{

(2.606, 141.200) meV (NH),
(46.520, 184.600) meV (IH).

(52)

The followings are some comments:
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• The predicted ranges of the Dirac CP violating phaseδ
in Eqs. (44) and (49) are in consistent with3 σ range of
the best-fit value taken from Ref. [1] with128 ≤ δ◦ ≤
358 for NH and200 ≤ δ◦ ≤ 353 provided thats2

23 ∈
(0.513, 0.600) for NH ands2

23 ∈ (0.505, 0.600) for
IH in the higher octant ofθ23 ands2

23 ∈ (0.434, 0.500)
for NH ands2

23 ∈ (0.433, 0.500) for IH in the lower
octant of θ23 while s2

13 belongs to3 σ range of the
best-fit value taken from Ref. [1]. Thus, the considered
model gives predictions for the neutrino mixing angles
and the Dirac CP violating phase in agreement with the
data on neutrino oscillation taken from Ref. [1] in 3σ
range.

• The predicted Majorana phases in Eqs. (45)-(46) and
(50)-(51) are acceptable because these phases have not
yet been experimentally determined but are assumed to
be in [0, 360◦] [16]. The model thus provides possible
predictions on two Majorana phases.

• The obtained effective neutrino mass in Eqs. (47) and
(52) are in consistent with the most recent upper lim-
its on 〈mee〉, such as, CUORE [22]〈mee〉 < (75 ÷
350)meV, Majorana Collaboration [23]〈mee〉 <
(113 ÷ 269) meV and KamLAND-Zen [24]〈mee〉 <
(36÷156)meV. Hence, the model provides a possible
prediction for the effective neutrino mass.

5. Conclusions

We have proposed a SM extension that can accommodate the
most recent experimental data on neutrino oscillation. Beside
A4, two Abelian symmetriesZ2 andZ4 are supplemented to
prevent some Yukawa terms to get the desired mass matrices
and then give predictions for the neutrino oscillation param-
eters in agreement with the most recent experimental data on
neutrino oscillation in 3σ range.

The model provides a relation between the solar neutrino
mixing angleθ12 and the reactor neutrino mixing angleθ13

with
(
2 − 3s2

13

)
t212 = 1 with predictsθ12 ∈ (35.68, 35.76)◦

provided thats2
13 belongs to3 σ range of the best-fit value

taken from Ref. [1].
For the higher octant ofθ23, the considered model

predicts the Dirac CP phase to be approximately range
δ ∈ (270.50, 352.00)◦ and two Majorana phases to be
approximately rangeα1M(◦) ∈ (342.30, 358.70) (NH)
and α1M(◦) ∈ (341.70, 358.10) (IH) while α3M(◦) ∈
(270.40, 353.60) (NH) andα3M(◦) ∈ (81.22, 356.20) (IH).

For the lower octant ofθ23, the considered model
predicts the Dirac CP phase to be approximately range
δ ∈ (270.00, 310.00)◦ and two Majorana phases to be
approximately rangeα1M(◦) ∈ (340.40, 344.00) (NH)
and α1M(◦) ∈ (341.70, 343.80) (IH) while α3M(◦) ∈
(44.840, 84.200) (NH) andα3M(◦) ∈ (315.00, 354.20) (IH).

The effective Majorana mass is also predicted to be
〈mee〉 ∈ (5.044, 141.200)meV (NH) and 〈mee〉 ∈
(46.850, 199.800) meV (IH) for higher octant whereas
〈mee〉 ∈ (5.030, 141.200)meV (NH) and 〈mee〉 ∈
(46.520, 184.600) meV (IH) for lower octant.

Appendix

A. Yukawa terms prevented by the model sym-
metries

TABLE III. Forbidden interactions.

Yukawwa couplings Prevented by

(ψLl1R)3(H̃2ϕ)3, (ψLl2R)3(H̃1ϕ)3 U(1)Y

(ψLl1R)3H1 A4

(ψLl1R)3(H1φ)3, (ψLl2R)3(H2φ)3,

Z2(ψLl3R)3(H2φ)3; (ψLνR)3(H̃1ϕ)3,

(ψLνR)1(H̃1ρ)1, (ψLνR)1′′(H̃1η)1′

(ψLl1R)3(H2ϕ)3, (ψLl1R)3(H2ϕ
∗)3,

Z4

(ψLl2R)3(H1ϕ)3, (ψLl2R)3(H1ϕ
∗)3,

(ψLl3R)3(H1ϕ)3, (ψLl3R)3(H1ϕ
∗)3;

(ψLνR)3(H̃2ϕ
∗)3, (ψLνR)1(H̃2ρ

∗)1,

(ψLνR)1′(H̃2η
∗)1′′

B. Higgs potential invariant under the model’s
symmetry

The total scalar potential invariant under the model’s symme-
try is given byiv:

VS = V (H1) + V (H2) + V (φ) + V (ϕ) + V (ρ)

+ V (η) + V (H1,H2) + V (H1, φ) + V (H1, ϕ)

+ V (H1, ρ) + V (H1, η) + V (H2, φ) + V (H2, ϕ)

+ V (H2, ρ) + V (H2, η) + V (φ, ϕ) + V (φ, ρ)

+ V (φ, η) + V (ϕ, ρ) + V (ϕ, η) + V (ρ, η)

+ Vtri + Vquart, (B.1)

wherev

V (H1) = µ2
1H(H†

1H1)1 + λ1H(H†
1H1)1(H

†
1H1)1,

V (H2) = V (H1 → H2),

V (φ) = µ2
φ(φ∗φ)1 + λφ

[
(φ∗φ)1(φ∗φ)1 + (φ∗φ)3s

(φ∗φ)3s

]
,

V (ϕ) = V (φ → ϕ, 3s → 1),

V (ρ) = µ2
ρ(ρ

∗ρ)1 + λρ(ρ∗ρ)1(ρ∗ρ)1,

V (η) = V (ρ → η),
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V (H1,H2) = λ12H

[
(H†

1H1)1(H
†
2H2)1 + (H†

1H2)1(H
†
2H1)1

]
,

V (H1, φ) = λH1φ

[
(H†

1H1)1(φ∗φ)1 + (H†
1φ)3(φ∗H1)3

]
,

V (H2, φ) = V (H1 → H2, φ), V (H1, ϕ) = V (H1, φ → ϕ),

V (H2, ϕ) = V (H1 → H2, ϕ), V (H1, ρ) = V (H1, ϕ → ρ),

V (H2, ρ) = V (H1 → H2, ρ),

V (H1, η) = λH1η

[
(H†

1H1)1(η∗η)1 + (H†
1η)1′(η∗H1)1′′

]
,

V (H2, η) = V (H1 → H2, η),

V (φ, ϕ) = λφϕ

[
(φ∗φ)1(ϕ∗ϕ)1 + (φ∗ϕ)1(ϕ∗φ)1 + (φ∗ϕ)1′(ϕ∗φ)1′′ + (φ∗ϕ)1′′(ϕ∗φ)1′ + (φ∗ϕ)3s

(ϕ∗φ)3s

+ (φ∗ϕ)3s
(ϕ∗φ)3a

+ (φ∗ϕ)3a
(ϕ∗φ)3s

+ (φ∗ϕ)3a
(ϕ∗φ)3a

]
,

V (φ, ρ) = λφρ

[
(φ∗φ)1(ρ∗ρ)1 + (φ∗ρ)3(ρ∗φ)3

]
,

V (φ, η) = V (φ, ρ → η),

V (ϕ, ρ) = V (φ → ϕ, ρ),

V (ρ, η) = λρη

[
(ρ∗ρ)1(η∗η)1 + (ρ∗η)1′(η∗ρ)1′′

]
,

V (ϕ, η) = V (φ → ϕ, η),

Vtri = λϕρη

[
(ϕ∗ϕ)1′′(ρ∗η)1′ + (ϕ∗ϕ)1′(ρη∗)1′′

]
,

Vquart = λH1H2φϕρ

[
(H†

1H2)1(φϕ∗)1ρ + (H†
1H2)1(φϕ)1ρ∗ + (H†

2H1)1(φϕ∗)1ρ + (H†
2H1)1(φϕ)1ρ∗

]

+ λH1H2φϕη

[
(H†

1H2)1(φϕ∗)1′′η + (H†
1H2)1(φϕ)1′η∗ + (H†

2H1)1(φϕ∗)1′′η + (H†
2H1)1(φϕ)1′η∗

]
. (2)

All the other terms, up to five-dimension, of three or four or five distinct scalars are vanished due to the violations under
one or some of the symmetries of the model. Now, we can show that the VEVs in Eq. (3) satisfy the minimization condition
of VS by supposing that all the VEVs are real. The minimization condition ofVS, ∂VS/∂vΦ = 0, δ2

Φ ∼ ∂2VS/∂v2
Φ > 0 with

vΦ = v1,2, vφ, vϕ, vρ, vη, has the form

µ2
1Hv1 + 2v1

(
λ1Hv2

1 + λ12Hv2
2 + λH1ηv2

η + λH1φv2
φ + λH1ρv

2
ρ

)

+ 2v2vφvϕ(λH1H2φϕηvη + λH1H2φϕρvρ) + 6λH1ϕv1v
2
ϕ = 0, (3)

µ2
2Hv2 + 2v2

(
λ2Hv2

2 + λ12Hv2
1 + λH2ηv2

η + λH2φv2
φ + λH2ρv

2
ρ

)

+ 2v1vφvϕ(λH1H2φϕηvη + λH1H2φϕρvρ) + 6λH2ϕv2v
2
ϕ = 0, (4)

µ2
φvφ + 2vφ

(
λH1φv2

1 + λH2φv2
2 +

26
9

λφv2
φ + λφηv2

η + λφρv
2
ρ

)

+ 2v1v2vϕ

(
λH1H2φϕηvη + λH1H2φϕρvρ

)
+

62
9

λφϕvφv2
ϕ = 0, (5)

µ2
ϕvϕ + 2vρvϕ(λϕρvρ + λϕρηvη) +

2v1v2vφ

3
(
λH1H2φϕηvη + λH1H2φϕρvρ

)

+ 2vϕ

(
λH1ϕv2

1 + λH2ϕv2
2 +

31
27

λφϕv2
φ + 6λϕv2

ϕ + λϕηv2
η

)
= 0, (6)

µ2
ρvρ + 2vρ

(
λH1ρv

2
1 + λH2ρv

2
2 + λφρv

2
φ + λρv

2
ρ

)

+ 2λH1H2φϕρv1v2vφvϕ + 3(2λϕρvρ + λϕρηvη)v2
ϕ = 0, (7)

µ2
ηvη + 2vη(ληv2

η + λH1ηv2
1 + λH2ηv2

2 + λφηv2
φ)

+ 2λH1H2φϕηv1v2vφvϕ + 3(2λϕηvη + λϕρηvρ)v2
ϕ = 0, (8)
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µ2
1H + 2

(
3λ1Hv2

1 + λ12Hv2
2 + λH1ηv2

η + λH1φv2
φ + λH1ρv

2
ρ + 3λH1ϕv2

ϕ

)
> 0, (9)

µ2
2H + 2

(
3λ2Hv2

2 + λ12Hv2
1 + λH2ηv2

η + λH2φv2
φ + λH2ρv

2
ρ + 3λH2ϕv2

ϕ

)
> 0, (10)

µ2
φ + 2λH1φv2

1 + 2λH2φv2
2 +

26λφv2
φ

3
+ 2λφηv2

η + 2λφρv
2
ρ +

62λφϕv2
ϕ

9
> 0, (11)

µ2
ϕ + 2λH1ϕv2

1 + 2λH2ϕv2
2 +

62λφϕv2
φ

27
+ 36λϕv2

ϕ + 2λϕηv2
η + 2vρ(λϕρvρ + λϕρηvη) > 0, (12)

µ2
ρ + 2

(
λH1ρv

2
1 + λH2ρv

2
2 + λφρv

2
φ + 3λρv

2
ρ + 3λϕρv

2
ϕ

)
> 0, (13)

µ2
η + 2

(
3ληv2

η + λH1ηv2
1 + λH2ηv2

2 + λφηv2
φ + 3λϕηv2

ϕ

)
> 0, (14)

Equations (3)-(8) yield the following solution:

µ2
1H = −2

(
λ1Hv2

1 + λ12Hv2
2 + λH1φv2

φ + 3λH1ϕv2
ϕ + λH1ρv

2
ρ + λH1ηv2

η

)− 2v2vφvϕΛρη

v1
, (15)

µ2
2H = −2

(
λ12Hv2

1 + λ2Hv2
2 + λH2φv2

φ + 3λH2ϕv2
ϕ + λH2ρv

2
ρ + λH2ηv2

η

)− 2v1vφvϕΛρη

v2
, (16)

µ2
φ = −2

(
λH1φv2

1 + λH2φv2
2 +

13
9

λφv2
φ +

31
9

λφϕv2
ϕ + λφρv

2
ρ + λφηv2

η

)− 2v1v2vϕΛρη

vφ
, (17)

µ2
ϕ = −2

(
λH1ϕv2

1 + λH2ϕv2
2 +

31λφϕv2
φ

27
+ 6λϕv2

ϕ + λϕρv
2
ρ + λϕηv2

η + λϕρηvρvη +
v1v2vφΛρη

3vϕ

)
, (18)

µ2
ρ = −2

(
λH1ρv

2
1 + λH2ρv

2
2 + λφρv

2
φ + 3λϕρv

2
ϕ + λρv

2
ρ

)− Λφϕη

vρ
, (19)

µ2
η = −2

(
λH1ηv2

1 + λH2ηv2
2 + λφηv2

φ + 3λϕηv2
ϕ + ληv2

η

)− Λφϕρ

vη
, (20)

where

Λρη = λH1H2φϕρvρ + λH1H2φϕηvη, Λφϕη = vϕ(3λϕρηvηvϕ + 2λH1H2φϕρv1v2vφ),

Λφϕρ = vϕ(3λϕρηvρvϕ + 2λH1H2φϕηv1v2vφ). (21)

With the aid of Eq. (20), expressions (9)-(14) become

λ1H >
v2vφvϕΛρη

2v3
1

, λ2H >
v1vφvϕΛρη

2v3
2

, λφ >
9v1v2vϕΛρη

26v3
φ

,

λϕ >
v1v2vφΛρη

36v3
ϕ

, λρ >
Λφϕη

4v3
ρ

, λη >
Λφϕρ

4v3
η

. (22)

C. Explicit expressions ofA,B, F, H and K

The elements of the Hermitian matrixM2
ν in Eq. (12) are

A = 3α2
0 + β2

0 + 3σ2
0 + 2α0γ0 cos∆αγ − α0κ0 cos∆ακ − α0τ0 cos∆ατ − β0κ0 cos∆βκ

+ β0τ0 cos∆βτ − γ0κ0 cos∆γκ − γ0τ0 cos∆γτ − κ0τ0 cos∆κτ ,

B = 6α2
0 + 2β2

0 + γ2
0 + κ2

0 + 6σ2
0 + τ2

0 + 4α0γ0 cos∆αγ

− 2
(
α0κ0 cos∆ακ + α0τ0 cos∆ατ + β0κ0 cos∆βκ − β0τ0 cos∆βτ

)
,

F = 3σ0(2β0 cos∆βσ − κ0 cos∆κσ + τ0 cos∆στ ),

H = σ0(6α0 cos∆αγ + 2γ0 cos∆γσ − κ0 cos∆κσ − τ0 cos ∆στ ),

K = 3α0

(
2β0 sin∆αβ − κ0 sin∆ακ + τ0 sin∆ατ

)− κ0τ0 sin∆κτ + β0(κ0 sin ∆βκ + τ0 sin∆βτ

− 2γ0 sin∆βγ)− γ0(κ0 sin∆γκ + τ0 sin∆γτ ). (C.1)
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with

∆mn = xm − xn, xm = Arg(m), m0 = |m| (
m,n = α, β, γ, κ, σ, τ

)
. (C.2)
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i. In this study, we use the following notaions:∆2
ij = m2

i −m2
j ,

sij = sin θij , cij = cos θij , tij = sij/cij with θ12, θ23

andθ13 are respectively the solar, atmospheric and reactor an-
gles; sδ = sin δ with δ is the Dirac CP phase;t1,3M =
tan α1,3M with α1,3M being two Majorana phases;sΘ =
sinΘ and cΘ = cosΘ. Further, there are three Majorana
phases of the formdiag

(
eiδ1M , eiδ2M , eiδ3M

)
which are spec-

ified by two combinations of the formδiM − δ2M instead of
δiM (i = 1, 2, 3), i.e., diag

(
eiδ1M , eiδ2M , eiδ3M

)
is reduced

to diag
(
eiα1M , 1, eiα3M

)
.

ii. The considered model contains twoSU(2)L doublets. See, for
instance [9,10], for a review of the 2HDM.

iii. In the case ofs2
23 < 0.513 or s2

23 > 0.600 for NH tan α3M

becomes complex function and in the case ofs2
23 < 0.505 or

s2
23 > 0.600 for IH tan α1M becomes complex function.

iv. Here,V (a → x,b → y, · · · ) ≡ V (a,b, · · · )|{a=x,b=y,··· }.

v. It is noted that, with the VEV aligments in Eq. (3), (φ∗φ)1′ =
(φ∗φ)1′′ = 0, (φ∗φ)3a

= 0, (ϕ∗ϕ)3s
= (ϕ∗ϕ)3a

= 0;
(ϕ∗ϕ)1′′(ϕ

∗ϕ)1′ = (ϕ∗ϕ)1′(ϕ
∗ϕ)1′′ .
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