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The use of the Dunkl derivative, defined by a combination of the difference-differential and reflection operators, allows the classification of the
solutions according to even and odd solutions. Recently, we considered the Dunkl formalism to investigate the Bose-Einstein condensation
of an ideal Bose gas confined in a gravitational field. In this work, we address another essential problem and examine an ideal Bose gas
trapped by a three-dimensional harmonic oscillator within the Dunkl formalism. To this end, we derive an analytic expression for the critical
temperature of the N particle system, discuss its value at large-N limit and finally derive and compare the ground state population with the
usual case result. In addition, we explore two thermal quantities, namely the Dunkl-internal energy and the Dunkl-heat capacity functions.

Keywords: Bose-Einstein condensate; Dunkl derivative; harmonic potential traps; thermal quantities.

DOI: https://doi.org/10.31349/RevMexFis.70.051701

1. Introduction

The influence of the external potential on the Bose-Einstein
condensate (BEC) has been extensively discussed in the lit-
erature. For example, in Ref. [1], Bagnatoet al. calculated a
three-dimensional ideal Boson gas system’s critical temper-
ature and ground state population using a generic power-law
potential energy. In Ref. [2], Gersch discussed how the grav-
itational field affects the Bose-Einstein gas system’s thermo-
dynamics. In Ref. [3], Widom provided theoretical evidence
of the BEC for an ideal Bose liquid trapped by a gravitational
field. Similarly, in Ref. [4], Baranovet al investigated the
influence of the gravitational field on the two-dimensional
BEC of atoms that are confined in a rectangular well. In
Ref. [5], Rivaset al. determined the BEC temperature for
two distinct trapping scenarios and discussed how the tran-
sition temperature is modified when considering a homoge-
neous gravitational field. In Ref. [6], Liuet al. examined a
one-dimensional non-interacting Bose gas system in the pres-
ence of a uniform gravitational field, and they derived the
BEC temperature and the condensate fraction using the semi-
classical approach. Subsequently in Ref. [7], Duet al. han-
dled the same problem in two and three dimensions, and they

obtained new features beyond the results of Liuet al. Har-
monic potential traps were also subjected as an external po-
tential. In Ref. [8], Kirstenet al. discussed the BEC of atomic
gases in a spin-0 system with harmonic oscillator potential
energy. In Ref. [9], Ketterleet al. examined the BEC for one
and three-dimensional nonrelativistic systems under isotropic
harmonic oscillator potential, while in Ref. [10] Mullin han-
dled the same problem in two dimensions. Later, in Ref. [13]
he discussed the problem in a more generalized form. In out-
standing works [11, 12], Qi-Jun Zeng et al studied the BEC
of a two and three-dimensional harmonically trapped system
in the context of the q-deformed bosons theory.

A question that would historically be assumed to form
the basis of Dunkl derivation and formalism was posed by
Eug̀ene Wigner in the middle of the last century: “Can the
dynamics of a quantum mechanical system produce canon-
ical commutation relations?” [14]. Although Wigner’s con-
clusion was negative, because of an extra constant parame-
ter that forbids a unique solution, one year later L. M. Yang
managed to present a unique solution by considering the one-
dimensional quantum harmonic oscillator with several re-
strict conditions [15]. According to Yang, if one introduces a
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reflection operator into the conventional Heisenberg algebra,
in other words, if one deforms the conventional Heisenberg
algebra by

[x̂, p̂] = i~
(
1 + 2θR̂

)
, (1)

then, a unique solution is always achieved. Here,θ is the
Wigner parameter,̂p is the usual quantum mechanical mo-
mentum operator, and̂R is the reflection operator satisfying
the following properties [16]

R̂if (xj) = δijf (−xj) , R̂i
d

dxj
= −δijR̂i

d

dxj
,

R̂iR̂j = R̂jR̂i. (2)

It is worthwhile mentioning that this representation is not
unique in the position space. A particularly interesting repre-
sentation can be found using the Dunkl operator,D̂, [17]

D̂j ≡ i

~
p̂ =

d

dxj
+

θj

xj
(1− R̂j), j = 1, 2, 3. (3)

which is a combination of differential and difference opera-
tors [18]. Let us emphasize that the Wigner parameter does
not have inherent bounds in the Dunkl formalism, and its
range depends on the specific context and application within
mathematics or physics. However, in certain contexts, con-
straints or specific ranges may arise naturally from the con-
ditions under consideration. Indeed, we will see later that in
our specific case, it will admit alowerbound. Therefore, this
“free” parameter can be used to construct a better fit between
theory and experiment.

This representation found many applications in various
mathematical [19–21] as well as physical [22–30] prob-
lems. Recently, there has been a growing interest in us-
ing the Dunkl operator in the investigation of quantum me-
chanical problems in both relativistic and non-relativistic
regimes [31–48]. The reflection operator embodied in the
Dunkl operator allows authors to classify the solutions of
the Dunkl-Schr̈odinger [31–33], the Dunkl-Dirac [39–42],
the Dunkl-Klein-Gordon [43–46], and the Dunkl-Duffin-
Kemmer-Petiau [44] equations by parity.

This year we studied the ideal Bose gas condensation us-
ing the Dunkl formalism in two stages, taking into account
the presence and absence of a gravitational field [47,48]. Let
us mention in this context that, to the best of our knowledge,
in a deformed formalism, two approaches may be used for
the derivation of the partition function and the total number
of particles in the grand canonical ensemble [49]:

1. One may employ deformed commutation relations, in-
volving the Dunkl derivative, with the standard Hamil-
tonian. In this case, deformed measures of integrals,
which lead to a modification of the density of states,
should be taken into account [50].

2. One may also use standard commutation relations
with a modified Hamiltonian. In this case, the de-
formed occupation number operator should be consid-
ered [35,48,51].

In this paper, we use the second approach. The present
manuscript intends to extend these works by examining a
three-dimensional harmonically trapped ideal Bose gas. We
construct the manuscript as follows: In Sec. 2, we derive the
BEC temperature and ground state population number in the
Dunkl formalism. In Sec. 3, we obtain the Dunkl-internal en-
ergy and Dunkl heat capacity functions of the system. In the
last section, we conclude the manuscript.

2. Ideal Bose gas trapped in harmonic oscilla-
tor potential and Dunkl formalism

Let us consider a Bose gas composed ofN neutral atoms
which are trapped by a three-dimensional harmonic potential
of the form

V (x, y, z) =
mω2

1

2
x2 +

mω2
2

2
y2 +

mω2
3

2
z2, (4)

wherem andωi correspond to the mass of the atoms and their
trap frequencies. In this case, the total energy can be given
by the sum of the single-particle energies [52]

En1,n2,n3 = ~ (ω1n1 + ω2n2 + ω3n3) + E0, (5)

whereni = 0, 1, 2, ..., i = 0, 1, 2... . Here, the zero-point
energy is

E0 =
~
2

(ω1 + ω2 + ω3) . (6)

In the Dunkl formalism, the number of condensed (ground
state) and thermal (excited states) particles are given the
grand canonical ensemble as follows [35,48]:

ND
0 =

2
z−2−1

+
(1+2θ)

z−(1+2θ)+1
, (7)

ND
e =

∑

i 6=0

(
2

e2βEiz−2 − 1
+

(1+2θ)
eβ(1+2θ)Eiz−(1+2θ)+1

)
. (8)

Here,β = (kBT )−1; kB is the Boltzmann’s constant, and
z = eβ(µ−E0) is the fugacity of the system. It is worth not-
ing in three dimensions, the most general form of the Dunkl
formalism should be given with three different Wigner pa-
rameters, however, for simplicity we assume that they are the
same and we denote them byθ. Also, we shift the ground
state energy to zero, with the replacementµ − E0 → µ, for
simplifying the formulae. The analytical evaluation of the
given sum in Eq. (8) is quite difficult. To circumvent this
issue, one may substitute the discrete sum with a weighted
integral,

∑ → ∫
ρ(E)dE. Here,ρ(E) is the density of states

given by

ρ (E) =
1
2

E2

(~Ω)3
+ γ

E

(~Ω)2
, (9)
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whereΩ = (ω1ω2ω3)
1/3 is the average frequency value of

the harmonic trap, andγ is a coefficient that depends on
the values of the individual frequencies of the harmonic trap
(ω1, ω2, ω3) to be determined numerically. In Ref. [52], au-
thors calculated theγ factor for an isotropic oscillator and
they found it to be equal to3/2. It should be emphasized that
the above substitution is valid as long as the number of par-
ticles is large and the spacing between energy levels is small
enough. Following some simple algebra, we obtain the total
number of particles

N = ND
0 + 2

∫ ∞

0

ρ (E) dE

e2βEz−2 − 1

+ (1 + 2θ)
∫ ∞

0

ρ (E) dE

eβ(1+2θ)Ez−(1+2θ) + 1
, (10)

which, after integration, becomes

N=ND
0 +

1
4

(
kBT

~Ω

)3
{

g3(z2)− 4
(1+2θ)2

g3

(−z1+2θ
)
}

+
γ

2

(
kBT

~Ω

)2 {
g2(z2)− 2

(1+2θ)
g2

(−z1+2θ
)}

. (11)

Here, the functiongs(z) is the Bose (Polylogarithmic) func-
tion defined by

gs(z) =
1

Γ(s)

∫ ∞

0

xs−1

exz−1 − 1
dx. (12)

By employing the property,

gs(z) + gs(−z) = 21−sgs(z2), (13)

we restate Eq. (11)

N = ND
0 +

(
kBT

~Ω

)3

g3 (z, θ)

+ γ

(
kBT

~Ω

)2

g2 (z, θ) , (14)

with a new function

gs (z, θ) = gs(z) + gs(−z)

− 1
(1 + 2θ)s−1 gs

(−z1+2θ
)
, (15)

which may be called the Dunkl-Bose function. In the limit of
θ → 0, the Dunkl-Bose function reduces to the usual Bose
function, so that Eq. (14) becomes the same as the Eq. (4) of
Ref. [52]. Before the investigation of the Dunkl-BEC tem-
perature, we would like to demonstrate the properties of the
Dunkl-Bose function. To this end, we plot the Dunkl-Bose
function fors = 2 ands = 3 versus the Wigner parameter in
Fig. 1.

We observe that the Dunkl-Bose function decreases as the
Wigner parameter increases. Then, we depict the Dunkl-Bose

FIGURE 1. The Dunkl-Bose function versus the Wigner parameter.

FIGURE 2. The Dunkl-Bose function,g3(z, θ), versusz for differ-
ent Wigner parameters.

function ofs = 3 for three different Wigner parameters ver-
susz in Fig. 2.

We observe that the Dunkl-Bose function is a monotoni-
cally increasing function. We see that for a positive value of
the Wigner parameter, the Dunkl-Bose function takes smaller
values compared to the standard Bose function. Forθ < 0,
this behavior changes oppositely, and the Bose-Dunkl func-
tion becomes greater than the usual Bose function. These
properties are the characteristic behavior of the functions, and
thus, independent of the orders.

Now, let us focus on the condensation phenomenon. We
know that when the temperature decreases to the condensa-
tion temperature,Tc, the particles will condense in the ground
state of the trap. However, for this (BEC) transition to occur,
N −ND

0 , as given by Eq. (11) should be bounded which will
happen providedθ > −1/2. This is the same lower bound
as imposed in Ref. [31] for consistency reasons. In such a
case of the condensation onset, the system has the state of
ND

0 ' 0 andz ' 1. Therefore, we can express the Dunkl-
BEC temperature,TD

c , as

TD
c '

~Ω
kB

[
N

g3(1, θ)

]1/3
{

1−γ

3

[
g2(1, θ)

g3(1, θ)2/3

]
1

N1/3

}
. (16)

For θ = 0, the Dunkl-BEC temperature converts to the tradi-
tional critical temperature form,TB

c , given in Ref. [52].
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TB
c ' ~Ω

kB

[
N

g3(1)

]1/3
{

1− γ

3

[
g2(1)

g3(1)2/3

]
1

N1/3

}
. (17)

Then, we match Eqs. (16) and (17) to construct a relationship
between the latter and the conventional temperatures. We find
the ratio

TD
c

TB
c

=
[

ζ (3)
g3(1, θ)

] 1
3 1− γ

3N1/3
g2(1,θ)

g3(1,θ)2/3

1− γ
18N1/3

π2

ζ(3)2/3

, (18)

whereζ (n) is the Riemann-Zeta function. We note that the
second term in Eq. (16) can be neglected if the particle num-
ber of the ensemble is sufficiently large,N → ∞. In this
case, the Dunkl-BEC temperature can be approximated by
TD

0

TD
0 =

~Ω
kB

[
N

g3(1, θ)

] 1
3

, (19)

which reduces to the ordinary case forθ = 0 [52]

TB
0 =

~Ω
kB

[
N

ζ (3)

] 1
3

. (20)

By comparing Eq. (19) with Eq. (20), we get the condensa-
tion temperature ratio

TD
0

TB
0

=
[

ζ (3)
g3(1, θ)

] 1
3

. (21)

We display the change in the condensation temperature ratio
versus the Wigner parameter in Fig. 3.

We see that this ratio increases with the increasing
Wigner parameter value. For the negative Wigner parame-
ter values, this ratio is smaller than one. We see that the ratio
saturates at1.794 at large Wigner values.

Then, by using Eq. (20) in Eq. (14), we obtain the rate of
Dunkl ground state population in terms of normalized tem-
perature as follows:

ND
0

N
=1−g3(1, θ)

ζ (3)

(
T

TB
0

)3

−γ
g2(1, θ)
ζ2/3 (3)

1
N1/3

(
T

TB
0

)2

. (22)

In Fig. 4, we plot this ratio versus the condensation tempera-
ture ratio for an ensemble with two thousand particles.

We see that for positive Wigner parameters, the ground
state population of the standard formalism is always smaller
than the Dunkl formalism. In other words, forθ > 0 the
Dunkl-Bosonic system is more apt to undergo a condensation
than the standard-Bosonic system. In contrast, for negative
values of Wigner parameters, the ground state population in
the Dunkl formalism is smaller than the standard formalism.

FIGURE 3. The variation of(T D
0 /T B

0 ) versusθ.

FIGURE 4. The population of the Dunkl ground state ratio versus
normalized temperature for different Wigner parameters.

3. Thermodynamics of the system

At this point, we can employ the internal energy,U to derive
the heat capacity function. To obtain the internal energy we
substitute the sum with the weighted integral. In this case,
the Dunkl internal energy

UD = 2
∫ ∞

0

Eρ (E) dE

e2βEz−2 − 1

+ (1 + 2θ)
∫ ∞

0

Eρ (E) dE

eβ(1+2θ)Ez−(1+2θ) + 1
, (23)

yields the following result after the substituting Eq. (9) into
Eq. (23):

UD

~Ω
= 3

(
kBT

~Ω

)4

g4(z, θ)

+ 2γ

(
kBT

~Ω

)3

g3(z, θ). (24)

To compute the heat capacity, we have to make a distinc-
tion between the two regimes. BelowTD

c , we may safely set
z = 1, however, forT > TD

c , we cannot sincez is a compli-
cated function ofT . By using the well-known relation,

Rev. Mex. Fis.70051701
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C = ∂U/∂T , we derive a general expression for the reduced Dunkl heat capacity forT < TD
c

CD
≤

NkB
= 12

g4(1, θ)
ζ(3)

(
T

TB
0

)3

+
6γ

N1/3

g3(1, θ)
ζ2/3(3)

(
T

TB
0

)2

. (25)

ForN sufficiently large, it simplifies to

CD
≤

NkB
= 12

g4(1, θ)
g3(1, θ)

(
T

TD
c

)3

. (26)

whereTD
c is given by Eq. (19). Furthermore, forT > TD

c , we get the general expression

CD
>

NkB
= 12

(
T

TB
0

)3
g4(z, θ)
ζ (3)

+ 6γ

(
T

TB
0

)2 1
N1/3

g3(z, θ)
ζ2/3 (3)

+

[
3

(
T

TB
0

)4
g3 (z, θ)

ζ (3)
+

2γ

N1/3

(
T

TB
0

)3
g2 (z, θ)
ζ2/3 (3)

]
TB

0

z

dz

dT
. (27)

Here, the quantity(1/z)(dz/dT ) can be calculated by using the fact that the total particle number is a constant. Considering
(dN/dT ) = 0, we find

TB
0

z

dz

dT
= −3

TB
0

T
.
g3(z, θ)
g2(z, θ)

1 +
2γ

3
ζ1/3 (3)
N1/3

g2(z, θ)
g3(z, θ)

TB
0

T

1 + γ
ζ1/3 (3)
N1/3

g1(z, θ)
g2(z, θ)

TB
0

T

, (28)

so that, the Dunkl-specific heat capacity reads

CD
>

NkB
= 12

(
T

TB
0

)3
g4(z, θ)
ζ (3)

+ 6γ

(
T

TB
0

)2 1
N1/3

g3(z, θ)
ζ2/3 (3)

− 3TB
0

T

g3(z, θ)
g2(z, θ)

×
[
3

(
T

TB
0

)4
g3 (z, θ)

ζ (3)
+

2γ

N1/3

(
T

TB
0

)3
g2 (z, θ)
ζ2/3 (3)

]1 +
2γ

3
ζ1/3 (3)
N1/3

g2(z, θ)
g3(z, θ)

TB
0

T

1 + γ ζ1/3(3)
N1/3

g1(z, θ)
g2(z, θ)

TB
0

T

, (29)

and it drastically simplifies in the largeN limit, yielding

CD
>

NkB
= 12

g4(z, θ)
g3(z, θ)

− 9
g3(z, θ)
g2(z, θ)

. (30)

We can easily notice that our expressions forCD
< andCD

> nicely generalize the results of [52] to the caseθ 6= 0. Finally, in
Fig. 5 we plot the Dunkl heat capacity versus the reduced temperatureT/TD

c for different values of the Wigner parameters.
We observe that for different values of the Wigner parameter, the Dunkl heat capacity exhibits the typicalλ− profile for

the transition point. The jump at the transition, given by

CD
> − CD

<

NkB
= 9

g3(1, θ)
g2(1, θ)

(31)

reduces to the known value9ζ(3)/ζ(2) ' 6.577 for θ = 0, but differs significantly for a nonzero Wigner parameter. Moreover,
the classical (high temperature) limit reads

CD
>

NkB

∣∣∣∣
T>>Tc

' 3
1 + 2θ

(32)

and we see, as can also be observed in the figure, that forθ < 0 (resp.θ > 0), the heat capacity is greater (resp. lower) than
the standardθ = 0 limit.
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FIGURE 5. Heat capacity versusT/T D
c in the largeN limit. The

dashed horizontal line is the classical limit forθ = 0.

The key point here is that one may use these behaviors to get
an estimate for an upper bound (or a range) forθ when the
experimental results do not completely fit with the theory. In
particular, one can examine the data giving the slopes near
the critical temperature and at high temperatures to obtain a
better fit with experiments.

4. Conclusions

We consider an ideal Bose gas trapped by a three-dimensional
anisotropic harmonic oscillator potential in the Dunkl for-
malism. We derive analytic expressions for the Dunkl-BEC

temperature and the Dunkl ground state population to exam-
ine the impact of the reflection symmetry. We obtain Wigner
parameter-dependent internal energy and heat capacity. With
the use of graphical methods, we demonstrate how the reflec-
tion symmetry affects the conventional BEC. We verify the
validity of our results by examining the limiting expressions
in the non-deformed case.

In the end, it is important to notice that specific ranges for
θ may be obtained from the problem under consideration. In
high energy physics, for instance, some upper bounds have
been derived for deformed problems, see for example [53].
However, in our low energy problem, although we provided
a lower bound for consistency as well as physical reasons, we
did not find in the literature any experimental or theoretical
evidence for an upper bound. Nonetheless, one can use it as
a (free) parameter to better fit the experiments where discrep-
ancies with the theory are observed. This could be an inter-
esting avenue for future research investigations to explore in
more depth.
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