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In this research, we used the Nikiforov Uvarov functional analysis method to solve the Schrödinger equation with the Hulthén plus screened
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1. Introduction

Getting the precise analytical solution to the Schrödinger
problem is crucial. One important aspect is a specific po-
tential connected to certain physical systems that we find in-
triguing. The numerous obstacles that researchers face when
studying quantum mechanics are some of the key challenges.
This problem is encountered and observed frequently in al-
most every scientific field, including solid-state, nuclear, par-
ticle, atomic, and molecular research. Physics is just one of
the many subfields within the discipline of study. Numer-
ous fascinating and promising approximation methods have
been devised since the theory was first introduced, showcas-
ing their ability to produce accurate or nearly flawless results
on occasion. [1-4].

Several methods and approaches, such as the Nikiforov-
Uvarov method [5], the WKB approximation [6], the path in-
tegral approach [7], supersymmetry [8], the variational itera-
tion method [9], and the semi-inverse variation principle [10],
have demonstrated improvements and are frequently utilized
in mathematical physics. Despite relying on the integration of
second-order linear differential equations, this method can be
considered an algebraic tool. The goal is to use this method
to investigate relativistic problems such as the Schrödinger
equation [11], the Klein-Gordon [12] equation, and the Dirac
equation [13]. The methods may solve general second-order
differential equations with linear solutions, such as extended
orthogonal polynomial functions. The final option gives us
an exact answer for the energy spectrum and wave functions.
In addition to solving the Schrödinger equation with different
potentials like modified Kratzer [14], Yukawa [15], Hylleraas
[16], Morse [17], Woods Saxon [18], and Hellmann [19], we
can employ one of the well-known methods. In this work, the

NUFA method is applied to solve the Schrödinger equation.
This technique is being utilized because of its accuracy, clar-
ity, simplicity, and effectiveness. We have previously tested
this technique on basic potentials like the Coulomb [20] and
the screened Coulomb [21].

For instance, the screened Kratzer potential is used to
investigate quark confinement. It also has two distinctive
features: strong interaction-asymptotic freedom and confine-
ment, and it has been used extensively in atomic and molecu-
lar physics and vibrational and rotational spectroscopy [22].
One of the significant short-range potentials in physics is the
Hulthén potential. Researchers have recently become very
interested in and concerned about its applicability to a vari-
ety of disciplines of physics, including nuclear and particle
physics, atomic physics, molecular physics, condensed mat-
ter, and chemical physics [23].

This work aims to compute the energy spectrum of
certain diatomic molecules (LiH, HCL, VH, I2) through
the Schr̈odinger problem’s solution following the NUFA
approach while accounting for the modified Kratzer and
Hulthén potentials. This potential is chosen because it is
composed of attractive and repulsive components that act
over long distances. Combining at least two potential pro-
cesses and a wide variety of applications and using potentials
with more suitable parameters often leads to improved results
[24-30]. The scholarship on the energy spectrum of diatomic
compounds is extensive and varied, illustrating the signifi-
cant role that diatomic molecules perform in various fields of
science and engineering [31-40].

The Hulth́en plus screened Kratzer potential is given by :

V (r) = − V0e
−αr

1− e−αr
− 2De

(
re

e
− R2

e

2r2

)
e−αr, (1)



2 KHALID REGGAB

FIGURE 1. Plotting the Hulth́en plus screened Kratzer potential for
selected diatomic molecules.

whereDe represents the dissociation energy,re defined as
the molecular bond length,V0 strength of potential,α is the
screening parameter,r the inter-atomic separation,α is the
screening parameter. The plot of the potentialV (r) against
the inter-nuclear distance is displayed in Fig. 1.

2. Review of the Nikiforov-Uvarov-Functional
Analysis (NUFA) method

NUFA is an elegant and straightforward technique for resolv-
ing a second-order differential equation. The probabilistic

NUFA methodology is a more basic and straightforward
method. For the NUFA to compute wave and composition,
accurate translation of waveform formulas and discontinuity
recognition are required. Because of the essential particular
choices of the required parameters in this technique, the ap-
plication of this method is very powerful to the Schrödinger
and Klein Gordon and Dirac equations with sophisticated po-
tential profiles. Also, the NUFA method cannot be utilized
effectively to solve more realistic physical systems. Ignoring
the complexity of the NU technique, which involves, among
other things, finding the square roots of polynomial func-
tions, can lead to ineffective solutions [41].

ϕ′′(s) +
τ̃(z)
σ(z)

ϕ′(s) +
σ̃(z)
σ2(z)

ϕ(z) = 0, (2)

where σ̃(z) polynomial typically from the 2nd degree also
σ(z), τ̃(z) 1st degree polynomial. Then

ϕ′′(z) +
c1 − c2z

s(1− c3z)
ϕ′(s) +

1
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× [−γ1z
2 + γ2z − γ3]ϕ(z) = 0, (3)

with ci andγi are constants withi = 1, 2 . . .

Then

ϕ(z) = zλ(1− z)vf(z). (4)

Equation (3) plus Eq. (4) yields the subsequent expression:
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Equation (5) may be made simpler by applying the subsequent the Gaussian hypergeometric process:

λ(λ− 1) + c1λ− γ3 = 0. (6)

Then
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c3
+ γ2 − γ3c3 = 0. (7)

Equation (3) turns into:
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As a result of Eqs. (6) and (7),

λ =
1
2
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2
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(1− c1)2 + 4γ3, (9)

and
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and
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c = c1 + 2λ. (14)

Using the fundamental standards listed below:
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After squaring and flipping each component of Eq. (26), we obtain:
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For this NUFA, the waveform Equation might turn into:

Rnl = Nz
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√
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2
(1− c3s)

×
(c3 + c1c3 − c2) +

√
(c3 + c1c3 − c2)2 + 4

(
γ1
c2
3

+ c3γ3 − γ2

)

2c3
2F1(a, b, c; z), (18)

whereN is the normalization parameter.

3. Analytical solutions of SE with Hulthén-Screened Kratzer potential using NUFA method

The Schr̈odinger equation for the Hulthén plus screened Kratzer potential is presented by [42]:
(

d2

dr
− 2µ

~2

[
E +

V0e
−αr

1− e−αr
+ 2De

{
re

r
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e

2r2

}
e−αr − ~

2l(l + 1)
2µr2

])
Rnl(r) = 0. (19)

We apply the Greene -Aldrich approximation [43]. Applying the approximation solves the centrifugal issue. This strategy is
good forα ¿ 1 and operates effectively for the centrifugal problem:

1
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)
. (20)
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The Eq. (19) becomes
(

d2
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Rnl(r) = 0. (21)

Applying the transformationy = e−αr we obtain
(
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To be able to use the NUFA method, modify Eq. (22) as follows:
([
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Equations (24), (25), and (26) are compared to the NUFA preceding Eqs. (3), (9), and (23) to obtain

c1 = c2 = c3 = 1, (27)
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√
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Inserting Eqs. (24), (27), (28) and (29) into Eq. (17), we obtain
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Equation (18) may also be used to get the radial wave function. It is expressed in the form:

Rnl(y) = Ny
√

(2µE/α2~2)−l(l+1)(1− y)(1/2)+(1/2)
√

(8µDer2
e/~2)+(2l+1)2

2F1(a, b, c; z), (31)

with N is the parameter normalization.
The spectroscopic parameter in Table I is adopted to obtain energy spectrum of the selected diatomic molecules. These

specifications come from references [44,45]. We utilize the conversions1amu= 931.494028 Mev/c andc = 1973.29 eV [46]
to carry out the remaining computations.

TABLE I. Parameters of selected diatomic molecules.

Molecule De (eV) α (Å−1) re (Å) µ (amu)

HCl 4.619061175 1.8677 1.2746 0.9801045

LiH 2.5152672118 1.1280 1.5956 0.8801221

VH 2.33 1.4437 1.719 0.09203207571

I2 1.5556 1.8643 2.6986 63.45224
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TABLE II. Spectra of energy of the Hulthén plus screened modified Kratzer potential of LiH, HCl, VH and I2.

n l HCl LiH VH I 2

0 0 -21.3940468 -8.06537323 -10.9179947 -18.2056622

0 1 -21.3922026 -8.06536029 -10.9161572 -18.2054235

0 2 -21.3885755 -8.06533488 -10.9125488 -18.2049462

0 3 -21.3832831 -8.06529788 -10.9072968 -18.2042304

0 4 -21.3764897 -8.06525053 -10.9005777 -18.2032764

0 5 -21.3683936 -8.06519428 -10.8926032 -18.2020847

1 0 -22.2248882 -8.24339054 -11.4633412 -18.3944526

1 1 -22.2224964 -8.24343586 -11.4611451 -18.3942134

1 2 -2.,217779 -8.24352506 -11.4568195 -18.3937353

1 3 -22.2108637 -8.24365542 -11.4504922 -18.3930183

1 4 -22.2019302 -8.24382312 -11.4423425 -18.3920627

1 5 -22.1911981 -8.24402356 -11.4325876 -18.3908689

2 0 -23.4018013 -8.59408422 -12.194766 -18.5866915

2 1 -23.399682 -8.59442709 -12.1927844 -18.5864522

2 2 -23.3954957 -8.59510288 -12.1888749 -18.5859736

2 3 -23.389344 -8.59609249 -12.1831403 -18.5852561

2 4 -23.3813701 -8.59736921 -12.1757259 -18.5842997

2 5 -23.3717507 -8.59890068 -12.166809 -18.5831049

3 0 -24.8667539 -9.08066827 -13.0830175 -18.782336

3 1 -24.8655961 -9.0815646 -13.0817074 -18.7820967

3 2 -24.8633067 -9.083333 -13.0791196 -18.7816182

3 3 -24.8599367 -9.08592683 -13.0753165 -18.7809006

3 4 -24.8555586 -9.08928062 -13.0703865 -18.7799443

3 5 -24.8502618 -9.09331468 -13.064438 -18.7787495

4 0 -26.5826633 -9.68080744 -14.1096736 -18.9813453

4 1 -26.5830307 -9.68248777 -14.1093956 -18.9811062

4 2 -26.5837577 -9.68580562 -14.108846 -18.9806281

4 3 -26.5848293 -9.69067854 -14.1080372 -18.9799112

4 4 -26.5862239 -9.6969905 -14.1069866 -18.9789557

4 5 -26.5879147 -9.7045997 -14.1057158 -18.9777619

In this study, we calculated the bound energies of several diatomic molecules, considering the Hulthén plus screened
Kratzer potential. Equation (30) served as the basis for all the computations. The findings were computed using the parameters
given in Table I.

Table II shows the bound energies of LiH, HCl, VH, and I2 for quanta statesn andl. It shows that the energy eigenvalues
drop for each of the specific diatomic compounds when the quantum states are different fromn to l. The energy increases by
increasing the vibration numbern and the rotation numberl.

Specific cases

1.- By PuttingV0 = 0 we obtain energy spectra of screened Kratzer potential on the form:

E =
α2~2

2µ
l(l + 1)− α2~2

8µ


 (n + v)2 +

[
4µDere

α~2 +
]

n + v




2

. (32)

The findings are displayed in Table III.
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TABLE III. Spectra of energy of screened Kratzer potential of LiH and HCl.

n l Our results LiH Ref [47] LiH Our results HCl Ref [47] HCl

0 0 -9.0709681363 -9.070968135 -22.1932905150 -22.19329052

1 0 -9.0594461198 -9.059446120 -22.2695372170 -22.26953722

1 -9.0470561241 -9.047056120 -22.2426601076 -22.24266011

2 0 -9.05443111855 -9.054431115 -22.3566328803 -22.35663288

1 -9.04227809368 -9.042278085 -22.3301252097 -22.33012521

2 -9.017997941977 -9.017997940 -22.2771478258 -22.27714784

0 -9.0555658678 -9.055565865 -22.4541271909 -22.27714784

1 -9.04363707225 -9.043637070 -22.4279726546 -22.42797265

3 2 -9.0198039856 -9.019803985 -22.3756997899 -22.42797265

3 -8.9841153576 -8.984115355 -22.2973807185 -22.29738072

0 -9.0625244751 -9.062524470 -22.5616048355 -22.56160484

1 -9.0508081726 -9.050808170 -22.5357882509 -22.53578825

4 2 -9.0273987751 -9.027398770 -22.4841896449 -22.48418965

3 -8.9923424559 -8.992342455 -22.4068778664 -22.40687787

4 -8.9457078747 -8.945707875 -22.3039554976 -22.30395550

0 -9.0750091716 -9.075009170 -22.6786822859 -22.67868230

1 -9.0634945347 -9.063494530 -22.6531894991 -22.65318950

2 -9.0404872599 -9.040487255 -22.6022369402 -22.60223694

5 3 -9.0060311194 -9.006031120 -22.5258903759 -22.52589037

4 -8.9601912095 -8.960191210 -22.4242478046 -22.42424781

5 -8.9030532894 -8.903053285 -22.2974386839 -22.29743871

In this specific scenario, the screened Kratzer potential is utilized. Table III provides the energy spectrum of LiH and HCl
for various quanta states ofn andl. Although there is some disagreement between the calculated findings and Ref. [47], overall,
the results indicate high consistency. This implies that the energy level of such molecules may be reliably estimated using the
energy-based SK molecular potential. The bounded energies often tend to increase as the quantum numbern grows. One
possible explanation for the increase in energy might be the addition of nodes to the framework wave solution. The presence
of these inclusion nodes augments the probability of finding the electron close to the atomic nucleus.

By Puttingα → 0 andV0 = 0 we conclude the bound energies of the Kratzer potential.

E =
α2~2

2µ




4µDer
2
e

~2[
2n + 1 +

√
8µDer

2
e

~2
+ (2l + 1)2

]




2

. (33)

Table IV shows the Kratzer potential energy spectrum of LiH and HCl for different quanta states ofn andl. The results
show high consistency despite occasional discrepancies between the computed findings and references [48]. This suggests that
the energy-based Kratzer molecular potential can be a useful tool for accurately estimating the energy level of such molecules.
As the quantum number n increases, the bound energies frequently show an increasing trend. Including nodes in the framework
and solutions could be one reason for the increase in energy. These inclusion nodes increase the likelihood of discovering the
electron near the atomic nucleus.
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TABLE IV. Energy spectrum of Kratzer potential for specified diatomic molecules LiH and HCl.

Quantum numbers LiH LiH [26] HCl HCl [26]

n l

0 0 -2.4673101 -2.467310304097 -4.54184788 -4.541848211101

1 0 -2.37581864 -2.375819214406 -4.39372703 -4.393727956046

1 -2.37410739 -2.374107972668 -4.3912929 -4.391293850595

0 -2.28932336 -2.289324266253 -4.25273564 -4.252737112329

2 1 -2.28770469 -2.287705602815 -4.25041772 -4.250419208735

2 -2.28447428 -2.284475215373 -4.24578952 -4.245791052967

0 -2.20746701 -2.207468200275 -4.11842341 -4.118425371585

1 -2.20593435 -2.205935555783 -4.11621441 -4.116216389518

3 2 -2.20287552 -2.202876749755 -4.11180361 -4.111805631214

3 -2.19830341 -2.198304679122 -4.10520538 -4.105207449232

0 -2.12992367 -2.129925128672 -3.99037501 -3.990377425087

1 -2.12847105 -2.128472514560 -3.98826822 -3.988270645562

4 2 -2.12557186 -2.125573350591 -3.98406142 -3.984063879462

3 -2.12123818 -2.121239701434 -3.97776815 -3.977770657506

4 -2.11548794 -2.115489505754 -3.96940857 -3.969411138650

0 -2.0563956 -2.056397286593 -3.86820694 -3.868209749404

1 -2.05501753 -2.055019226505 -3.86619614 -3.866198963636

5 2 -2.05226707 -2.052268785922 -3.86218095 -3.862183802008

3 -2.04815552 -2.048157264859 -3.85617413 -3.856177032746

4 -2.04269968 -2.042701466576 -3.84819472 -3.848197679994

5 -2.03592169 -2.035923524667 -3.83826784 -3.838270872139

4. Conclusion

In this study, the centrifugal barrier was eliminated by solv-
ing the Schr̈odinger equation with the Hulthén plus screened
Kratzer potential using the Greene Aldrich approximation
and the Nikiforov Uvarov functional analysis approach. We
ascertain the associated wave functions and bound state en-
ergy. The bound energies of the Hulthén plus SK potential of
diatomic molecules (VH, I2, LiH, HCl) are computed compu-
tationally. We could also reduce the bound energy expression
for the HPSK potential to those of the conventional SK and
Kratzer and Hulth́en potential by altering the Hulthén plus
screened Kratzer potential parameters. Our numerical results
for the SK and Kratzer potentials likely standards agree with
those reported in the literature. It is crucial to emphasize that
our research cannot be compared to any of Kratzer’s possible
calculations in published works. The results were used to de-
rive the energy spectrum of well-known diatomic chemicals

in this specific Kratzer potential example and (HCl, LiH) for
the SK likely instance. The current method has the advan-
tage of allowing for quick identification of bound energies.
When diatomic molecules are considered, the method pre-
sented in this work may be used to find determined energies
and matching wave functions for the Schrödinger equation
within a given potential. The results are highly valuable in
determining properties of diatomic molecules, such as the
thermodynamic one, and in concluding the mass spectra of
certain heavy quarkoniums. Our works in the future is to ap-
ply the validate method to determine spectrum of energy for
non-relativistic case by applying the approach on the Klein-
Gordon and Dirac equations.
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