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Exact solutions to the telegraph equation in terms of airy functions
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Two exact different solutions to the Telegraph equation in three-dimensional space are obtained in terms of Airy functions. As a result, these
solutions unveil a distinctive propagation pattern along a coordinate that resembles a speed-cone-like coordinate of the system. This unique
characteristic leads to effective Schrödinger-like equations, amenable to exact solutions through Airy functions.
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1. Introduction

Berry and Balazs’ groundbreaking work [1], which demon-
strates non-diffracting solutions for quantum mechanical
free-particles through Airy functions, has gained substantial
attention in recent years from both physics and engineering
communities. Notably, Airy wavepackets have been identi-
fied as versatile solutions across a wide spectrum of wave
phenomena, ranging from from optics to fluid dynamics,
acoustics, thermal conduction (see Refs. [2-17], and refer-
ences therein), among others. Remarkably, these solutions
have been identified in the context of both Schrödinger-like
equations and hyperbolic space-time equations, thereby high-
lighting their fundamental significance within a wide range of
mathematical and physical frameworks.

In light of these developments, this work delves
into the study of non-diffracting solutions for the well-
established Telegraph equation [18-20]. Although several
well-documented solutions for this equation exist in diverse
domains (see for example Refs. [21-35]), including those in
terms of Bessel functions [36], we show here that Airy func-
tions also emerge as a three-dimensional solution for propa-
gating wavepackets of the general Telegraph equation, writ-
ten as

∂2u

∂t2
+ α

∂u

∂t
− c2∇2u + βu = 0 , (1)

for some physical dynamical quantityu evolving in time
t and three-dimensional space with Cartesian coordinates

x, y, z, and where∇2 is the Laplacian. Here,c is a constant
that can be identified with the characteristic speed of the sys-
tem, andα andβ are two arbitrary constants with units of
frequency and square frequency, respectively.

The Telegraph Eq. (1) plays a major role in several
physics fields of study. It is enough to choose the param-
etersα, β andc properly to switch from one physical sys-
tem to another. Depending on the values of such constants
(which could be either real or complex), we can describe
several different phenomena. For example, as originally for-
mulated, the Telegraph equation describes the propagation of
an electric signal along a coaxial transmission line (such as
RLC circuits), whenα = G/C + R/L, β = RG/LC, and
c = 1/

√
LC, whereR, L, G andC are the resistance, the in-

ductance, the conductance and the capacitance, respectively
[37,38]. We can also model electromagnetic field propaga-
tion in a conducting medium whenc = 1/

√
µε represents

the speed of light in such medium (with the permittivityε
and permeabilityµ), α = σ/ε (whereσ is the medium con-
ductivity), andβ = 0 [37,39]. Besides, this equation is used
to study extended diffusive systems and random walks pro-
cess whenα = 1/T andβ = 0, whereT is a characteristic
time [40,41]. Furthermore, the Telegraph equation describes
extended or relativistic quantum mechanical systems when
c is the speed of light,α = ±i2mc2/~ (where~ is the re-
duced Planck constant andm is the mass of the particle) and
β = 0, m2c4/~2, 2mc2 or V/~2, depending on the quantum
system to be described (whereV is a potential) [42-44]. Even
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more, Eq. (1) has been used in biomedicine for optical imag-
ing, whenα = 3 + 2µs andβ = µs(3 + µs), beingµs a
normalized inverse scattering length of the medium [41,45].

All of the above examples show that knowing new solu-
tions to the (old) Telegraph Eq. (1) can bring new insights into
several different physical phenomena. That is the purpose of
this work.

2. Airy solutions

In order to find a solution in terms of Airy functions, let us
start assuming a solution of the form

u(t, x, y, z) = f(ζ, y, z) exp
(

γ

c
η +

β + αγ

c2λ
ζ

)
, (2)

where ζ = x − ct and η = x + ct are characteristic
speed-cone-like coordinates [46],γ is an arbitrary constant,
and λ ≡ (4γ + α)/c. This ansatz is invoked to obtain a
Schr̈odinger-like equation (Fourier-like heat equation). Thus,
substituting (2) in the Telegraph Eq. (1), we find

λ
∂f

∂ζ
= −

(
∂2

∂y2
+

∂2

∂z2

)
f . (3)

From this point on, we can straightforwardly solve the
above equation in terms of Airy functions in two different
ways. They will be discussed separately.

2.1. First kind of solution

We can look for a solution in which each spatial dynamic is
decoupled from the other one. This is achieved by consider-
ing in Eq. (3) the ansatz

f(ζ, y, z) = fy(ζ, y)fz(ζ, z) , (4)

such that we find the simplest solution

λ
∂fj

∂ζ
= −∂2fj

∂j2
, (5)

for j ≡ y, z, where the separation constants are taken to van-
ish. These previous equations correspond to one-dimensional
spatial free Schr̈odinger-like equations. Therefore, following
Berry and Balazs [1], we readily find that one possible solu-
tion for each of them is in terms of an Airy function, spell it
as

fj(ζ, j) = Ai

([
ajλ

2

2

]1/3 [
j +

aj

2
ζ2

])

× exp
(
−ajλ

2
ζ

[
j +

aj

3
ζ2

])
, (6)

where Ai is the Airy function, andaj is an arbitrary con-
stant that usually is interpreted as the acceleration induced
on the maximum intensity lobe of the Airy function in thej-
direction. Thus, the most general solution of Eq. (1) of this
kind (in Cartesian coordinates) is

u(t, x, y, z) = Ai

([
ayλ2

2

]1/3 [
y +

ay

2
ζ2

])
Ai

([
azλ

2

2

]1/3 [
z +

az

2
ζ2

])

× exp

(
−λ

2
ζ

[
ayy + azz +

a2
y + a2

z

3
ζ2

]
+

γ

c
η +

β + αγ

c2λ
ζ

)
. (7)

2.2. Second kind of solution

Instead of having independent dynamics on the spatial directions, we can construct a single solution of Eq. (3) that present a
single accelerated behavior on the planey–z. It is straightforward to obtain that a solution of Eq. (3) is

f(ζ, y, z) = Ai

([
aλ2

8

]1/3 [
y + z +

a

2
ζ2

])
exp

(
−aλ

4
ζ

[
y + z +

a

3
ζ2

])
, (8)

wherea is the acceleration of the dynamics of this solution in they–z plane. Therefore, the most general Airy solution for this
second case is

u(t, x, y, z) = Ai

([
aλ2

8

]1/3 [
y + z +

a

2
ζ2

])
exp

(
−aλ

4
ζ

[
y + z +

a

3
ζ2

]
+

γ

c
η +

β + αγ

c2λ
ζ

)
, (9)

which is different from its counterpart (7) in terms of the effective acceleration of the wavepacket, and in how it propagates in
they − z plane.
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3. Discussion

We have proved that a general three-dimensional spatial Tele-
graph Eq. (1) always admits exact solutions in terms of
Airy functions. Such solutions propagate along character-
istic speed-cone-like coordinates, whereas they dynamically
develop in the transverse directions. This implies that these
solutions with only one Airy function do not exist for sys-
tems that have one spatial dimension, as erroneously has been
claimed in Ref. [47].

Differently to the usual plane-wave solutions of Eq. (1),
the both solutions (7) and (9) have a distintive dynamical be-
havior. The maximum intensity lobe of the Airy function will
present different forms of acceleration (because theζ2 depen-
dence) in they − ζ, z − ζ, or y − z − ζ planes. Besides, the

position of the maximum intensity lobe will be determined by
λ. Therefore, each different phenomena determine the form
of the evolution of the main Airy lobe of the solution.

In addition to the above two solutions, and depending on
the values of the constants, a more general square-integrable
solution [48] can be constructed directly from solutions (7)
and (9). With all these, we expect that the general solutions
presented here may be used to test new phenomena in a broad
set of different physical scenarios.
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