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Exact solutions to the telegraph equation in terms of airy functions
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Two exact different solutions to the Telegraph equation in three-dimensional space are obtained in terms of Airy functions. As a result, these
solutions unveil a distinctive propagation pattern along a coordinate that resembles a speed-cone-like coordinate of the system. This uniqu
characteristic leads to effective Sotdinger-like equations, amenable to exact solutions through Airy functions.
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1. Introduction z,v, z, and wherév? is the Laplacian. Here; is a constant

) ) that can be identified with the characteristic speed of the sys-
Berry and Balazs’ groundbreaking work [1], which demon-tem, anda and 3 are two arbitrary constants with units of
strates non-diffracting solutions for quantum mechanicakequency and square frequency, respectively.

free-particles through Airy functions, has gained substantial

attention in recent years from both physics and engineering The Telegraph Eq.[1j plays a major role in several
communities. Notably, Airy wavepackets have been identiphysics fields of study. It is enough to choose the param-
fied as versatile solutions across a wide spectrum of wavetersa, § andc properly to switch from one physical sys-
phenomena, ranging from from optics to fluid dynamics,tem to another. Depending on the values of such constants
acoustics, thermal conduction (see Refs. [2-17], and refeffwhich could be either real or complex), we can describe
ences therein), among others. Remarkably, these solutioseveral different phenomena. For example, as originally for-
have been identified in the context of both Sutinger-like = mulated, the Telegraph equation describes the propagation of
equations and hyperbolic space-time equations, thereby higlan electric signal along a coaxial transmission line (such as
lighting their fundamental significance within a wide range of RLC circuits), wherv = G/C + R/L, f = RG/LC, and
mathematical and physical frameworks. c=1/vLC,whereR, L, G andC are the resistance, the in-

In light of these developments, this work delvesductance, the conductance and the capacitance, respectively
into the study of non-diffracting solutions for the well- [37,38]. We can also model electromagnetic field propaga-
established Telegraph equation [18-20]. Although severaiion in a conducting medium when = 1/, /i€ represents
well-documented solutions for this equation exist in diversethe speed of light in such medium (with the permittivity
domains (see for example Refs. [21-35]), including those irand permeability:), « = o/e (whereos is the medium con-
terms of Bessel functions [36], we show here that Airy func-ductivity), andg = 0 [37,39]. Besides, this equation is used
tions also emerge as a three-dimensional solution for propde study extended diffusive systems and random walks pro-
gating wavepackets of the general Telegraph equation, writtess whervx = 1/7" and8 = 0, whereT is a characteristic

ten as time [40,41]. Furthermore, the Telegraph equation describes
92 P extended or relativistic quantum mechanical systems when
8TZ + aai: — V24 fu=0, (1)  cis the speed of lighta = +i2mc?/h (whereh is the re-

duced Planck constant andis the mass of the particle) and
for some physical dynamical quantity evolving in time 3 = 0, m?c*/h%, 2mc? or V/h?, depending on the quantum
t and three-dimensional space with Cartesian coordinatesystem to be described (whéres a potential) [42-44]. Even
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more, Eq./l) has been used in biomedicine for optical imag-2.1. First kind of solution

ing, whena = 3 + 2us and 8 = ps(3 + ps), beingpu, a L . .

normalized inverse scattering length of the medium [41,45]. We can look for a solution in which each spatial dynamic is
All of the above examples show that knowing new SO|U_QecpupIed from the other one. This is achieved by consider-

tions to the (old) Telegraph Edl)can bring new insightsinto N9 in Eq. ) the ansatz

several different physical phenomena. That is the purpose of

thlS Work. f(vaaZ) = fy(47y)fz(<'az) 9 (4)
such that we find the simplest solution
2. Airy solutions , 2p
d b 9 ©)
o¢ 9j5°

In order to find a solution in terms of Airy functions, let us
start assuming a solution of the form for j = y, 2, where the separation constants are taken to van-
ish. These previous equations correspond to one-dimensional
u(t,z,y,2) = F(C,y,2) exp <7n LB ‘; O”g) , (2) spatial free Sclidinger-like equations. Therefore, following
¢ A Berry and Balazs [1], we readily find that one possible solu-
tion for each of them is in terms of an Airy function, spell it

where( = z — ¢t andn = =z + ct are characteristic
speed-cone-like coordinates [46],is an arbitrary constant,
and\ = (4v + «)/c. This ansatz is invoked to obtain a A Taa21? P
Schidinger-like equation (Fourier-like heat equation). Thus, fi(C,3) = A ({]2} {j + QJCQD
substituting2) in the Telegraph Eqd}, we find
N 92 o2 2 X exp (—agAC [j + Cg@D : (6)
W(W+MW' ®
where Ai is the Airy function, and:; is an arbitrary con-
From this point on, we can straightforwardly solve the stant that usually is interpreted as the acceleration induced
above equation in terms of Airy functions in two different on the maximum intensity lobe of the Airy function in tlie
ways. They will be discussed separately. direction. Thus, the most general solution of E%). ¢f this
| kind (in Cartesian coordinates) is

1/3 1/3
u(t,z,y,z) = Al ([ay?)?} [y + a;(ﬂ) Ai ({aZQ)\Q] [z + C;ZCQ})
X exp (;\C +Zn+ﬁ:a74> . @)

Instead of having independent dynamics on the spatial directions, we can construct a single solutioB)ahBtp(esent a
single accelerated behavior on the plgnre. It is straightforward to obtain that a solution of E8) (s

9-1/3
wawF#“<F§} p+z+;eDem(J§<@+z+§@D, ®

2 2
ay + a3 C2
3

ayy +az +

2.2. Second kind of solution

whereaq is the acceleration of the dynamics of this solution inghe plane. Therefore, the most general Airy solution for this
second case is

2 1/3
u(t,z,y,z) = Al ({a/\] [y—l—z—i—;cz})exp (—CZ\C [y—&—z%—%gﬂ +Zn+ﬂ+a7C) , 9)

8 2\

which is different from its counterpai¥) in terms of the effective acceleration of the wavepacket, and in how it propagates in
they — z plane.
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3. Discussion position of the maximum intensity lobe will be determined by

) ) ] A. Therefore, each different phenomena determine the form
We have proved that a general three-dimensional spatial Telgys the evolution of the main Airy lobe of the solution.
graph Eq. 1) always admits exact solutions in terms of |y aqdition to the above two solutions, and depending on
Airy functions. Such solutions propagate along characterihe valyes of the constants, a more general square-integrable

istic speed-cone-like coordinates, whereas they dynamically|ytion [48] can be constructed directly from solutiof (
develop in the transverse directions. This implies that thesg,q ). With all these, we expect that the general solutions

solutions with only one Airy function do not exist for sys- yrasented here may be used to test new phenomena in a broad
tems that have one spatial dimension, as erroneously has begg of gifferent physical scenarios.

claimed in Ref. [47].

Differently to the usual plane-wave solutions of E#j), (

the both solutions7) and 9) have a distintive dynamical be- Acknowledgments
havior. The maximum intensity lobe of the Airy function will
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