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Scaled propagation invariant Bessel beams
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We present a new family of Bessel solutions of the paraxial equation. Such solutions keep their form during propagation because of a
quadratic phase factor that makes them scaled propagation invariant fields. When a Gaussian support is incorporated, the solution loses it
invariant properties, although, over some volume, it closely resembles a scaled propagation invariant field. The Bessel beams we introduce
have the particularity that they present a very strong focusing effect and do not necessarily require a Gaussian support.
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1. Introduction paraxial equation in circular cylindrical coordinates reported
so far.
Novel cl -form solution h raxial ionin cylin- . .
ove coseq orm solutions to the paraxial equation in cy We present a novel family of closed-form solutions to the
drical coordinates have been proposed over the last 40 years

In a seminal paper, Durning presented in 1987 [1] an exaéearamal equation in cylindrical coordinates. Our approach

- - consists of proposing an ansatz that contains a Gaussian dis-
solution to the scalar wave equation, namely the zero-ordef Prop 9

Bessel function of the first kind, which has the property Oftnbutlon multiplied by a Bessel function of the first kind with

maintaining its intensity pattern in any transverse plame quadratic radial dependence and a topological charge that

a non-diffracting beam, opening up a very prolific researchdoubles the order of the Bessel function. In addition, the am-
' litude is modulated by a function that varies with the prop-

area. Among its more relevant applications, we can mentioa ation distance. First, we show a family of solutions with
particle trapping and energy transfer through the orbital angu.—g ' ' y

lar momentum of light. Shortly after, Gaet al.[2] found an infinite energy in any transverse plane to thaxis. Subse-

exact solution that consisted of multiplying the Bessel func.auently, a Gaussian function is introduced employing quan-

tion Jy by a Gaussian distribution, calling this solution the tum optic _operators,_resulting in an additional set of solutions
Bessel-Gauss beam of zero order. A clear advantage of t charactgrlzed by finite energy along any transverse plane to
latter solution is that it possesses finite energy at any trans- €z-axs.

verse plane, making it physically realizable, although the These new solutions exhibit a focusing effect, which is a
non-diffracting properties are also affected. Some years lateremarkable characteristic in the field of wave optics. This ef-
Caronet al. [3] (see also [4]) presented an exact solution tofect allows the solutions to concentrate the majority of their
the paraxial equation consisting of a Gaussian function mulenergy within a single, sharply defined ring. Such a con-
tiplied by a Bessel function with quadratic radial dependencdiguration is particularly advantageous for applications that
and a quadratic phase function; the proposed solution als@quire high-intensity focal points, as it ensures that energy
includes a topological charge that doubles the order of thés not dispersed but rather confined to a specified region in
Bessel function, and its transverse intensity profile has mostpace. This confinement not only enhances the beam’s inten-
of its energy concentrated in a single ring. Later, &sal.[5] sity but also improves the precision and efficacy of its inter-
presented a solution consisting of a Gaussian function multiaction with materials or particles. The ability of these beams
plied by the radial coordinate elevated to an even power, prato maintain their structural integrity during propagation is at-
ducing a transverse intensity consisting of a single ring cartributed to the designed quadratic phase factor. This phase
rying all the beam energy; this solution was called a hollowfactor acts as a stabilizing mechanism, allowing the beam
Gaussian beam. In 2007 [6, 7], a broad family of closed-fornto preserve its form and energy distribution over certain dis-
solutions to the paraxial equation was introduced, called hytances. The quadratic dependence ensures that as the beam
pergeometric and hypergeometric-Gaussian beams, the latteropagates, it dynamically adjusts its phase, compensating
having as a particular case the solutions reported in [3]. Onéor potential diffraction effects that would normally lead to
year later, Kotlyaret al. reported another family of hyper- beam spreading. The stability and resilience offered by this
geometric beams [8], while Bandres al. reported circu- quadratic phase factor make these beams suitable for appli-
lar beams [9], the most general closed-form solution to thecations that demand long-range propagation without loss of
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beam quality. In practical terms, this means that the beams Figure 1 exemplifies the scaled propagation invariant at-

can be employed in environments where maintaining a contribute of this field across planesat= 0.10 m, z = 0.25 m,

sistent and focused energy delivery is critical, such as in opandz = 0.50 m. Figure 1a) presents the intensity distribution

tical tweezers for precise particle manipulation, in advanceaf the field as a function of for the three distinct propagation

imaging systems where clarity and focus are paramount, andistances, while Figs. 1b), 1c), and 1d) depict the field inten-

in telecommunications where signal integrity over distancesity across three transverse planes at the same propagation

is essential. Furthermore, the robustness of these beandsstances.

against diffraction and their energy-efficient design open new

avenues for exploration in fields ranging from biomedical o )

engineering, where they can enhance the precision of lasé. Providing a Gaussian support

surgery, to material science, where focused energy deliver)f ] . ) ) )

can facilitate advanced fabrication techniques. The combinalhe field described by Eql)is not square-integrable, akin

tion of a pronounced focusing effect with propagation invari-© typical Bessel beams. Similarly to other diffractive beams,

ance thus represents a significant leap forward in the capabifuch as Bessel beams [1], these solutions lack physical real-

ities of optical beam technologies. izability due to their non-square integrable nature. To over-
This approach is motivated by acknowledging the similar-come this constrqint, drawing insight from. the Be;sel-C_;auss

ity between the paraxial wave equation and the Saimger beams [2], we aim to develop a generahzed variant incor-

equation in quantum theory [10]. Notably, the temporal vari-Porating a Gaussian factor, ensuring that the field becomes

able in the Sclirdinger equation corresponds to the coordi-Sauare-integrable. Consequently, our quest involves crafting

nate along the propagation axis in the paraxial wave equatiot generalized version incorporating a multiplicative Gaussian

establishing a formal analogy that is widely understood and@ctor to render it square-integrable. To achieve this goal, we

linking wave optics and quantum mechanics. The solutiondVrite the paraxial equation as a Sotinger-like equation,

we present hereafter can not be obtained from the general OB ( )

solutions proposed in the past, and they distinguished them- SaANGE L)

selves from the ones proposed in Ref. [3] by the strong fo- 9z

cusing effect they possess. We believe that the solutions caghose formal solution is

be of interest to applications in several fields. All beams pro-

posed and analyzed in this work were produced and tested _ v o2

experimentally, as explained in Sec. 4. In Figs. 3 and 4 the E(@y,z) = exp (%ZVL) Elw,y,0), @

experimental results are presented, together with the theoret- o )
ical predictions. being E(z,y,0) the initial field atz = 0. The choice to

consider the paraxial equation as a Sclinger-like equation
. . stems from the possibility of employing an operator approach
2. Ansatz for a simple solution within the realm of quantum optics, an unconventional ap-

A method for finding solutions to the wave equation is theproach in paraxial optics [10,12,13]. Taking this into consid-

ansatz method, which involves proposing a solution comerationin Cartesian coordinates, the aforementioned equation
posed of the product of two guessed functions. In this con®an be reformulated as:

text, we are seeking solutions of the form

1 kr? kr? .
E,(r0,z) :ﬁ exp (L4Z> Ju <42) exp(2ipd). (1)

7

Ble.p2) = exp |~ 50x (124 72)| B0, ©)

o o _ _ where we introduced the operatofs = —i(9/0x) and
This field satisfies the paraxial equation p, = —i(d/dy), satisfying the following commutation re-
_OE(r,0,2) lations: [z, p;] = [y, py] = i and[z, y] = [z, py] = [y, Pa] =
2 s Yy
VIE(r.0,2) + 2ik—5—=— =0, (@) [pa, p,] = 0. Next, we express the initial condition as

in cylindrical coordinates. The validity of this solution can _ B P

be easily verified by a simple direct substitution (for more E(z,y,0) = exp [=g (¢" +¢°)] € (z,9), ©®)
details, see Appendix A). As can be observed, Bjjrépre- . .

sents a field that changes its scale as it propagates, or, in oth§f ¢ @ positive real constant, arfilz, y) represents a cur-
words, a propagation-invariant field on a scale. For the fiel ently generic f!eld. Substituting this initial condition into
to have real physical significance, the paramétenust be g. ), we obtain

real and, without loss of generality, considered strictly pos- i

itive. Additionally, the parameter must be an integer or a E(z,y,2) = exp [—%Z (p2 —I—ﬁf,)]

semi-integer, which can be taken, again without loss of gen-

erality, as equal to or greater than zero. x exp [—g (2> +y°)] € (z,9,0).  (7)
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FIGURE 1. Intensity distribution of the field as determined by E®). (a) Profile illustrating the intensity distribution as a function of the
radiusr atz = 0.10 m, 0.25 m, 0.50 m. b)-(d) Field intensity distribution in three observation planes (same propagation distances as in a))
perpendicular to the propagation distance. The implemented physical parameters for the eamdaigs x 10° m~! (A = 633 nm), and

pn=0.

Now, we introduce the identity operatdy written as/ =  —gk/(k + 2igz) andb = —(7/4) — (i/2)In (i — [292/k]),
e(i/Qk)z(ﬁi—&-ﬁi)e—(i/?k)z(ﬁi+ﬁ§)’ before& (x’ y), with ﬁr = —z(é)/@r)

. We establish a connection with the initial simple solution
E (2,y,2) = exp {_Zkz (pi + ﬁi)] exp [_g (x2 + yQ)] given by Eq. /). Since the field described in Ed.)(satisfies

2 the paraxial equation, it requires an initial condition, denoted
i i o asé& (r,0), from which it evolves. This evolution is expressed
X exp [%Z (pz +py)] €Xp {_ka (pw +py)} as
x E(x,y). 8 i k k+2i
) O e (3 raa v ) £ o) = 122
Hereafter, leveraging standard operator techniques of quan- + gz :
tum optics, we transit to polar coordinates, leading to the fol- ir? (k + 2igz)
lowing expression: X exp 4z
k . 2(k+2i
E(r,0,2) = T 2i0 exp (ar?) exp (2brp,) X J, <T(1—z192)) exp(2ipud), (10)

1 k
X exp (i%kﬂr;vi)su,ey (90 and where z, in Eg. 1), has been substituted by
t9% kz/(k + 2igz). What follows is laborious, but easy and di-
where the coefficients are determined by.a = rect, and leads us to the following expression:
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FIGURE 2. Experimental setup. Spatial light modulator (SLM), lenses&nd L), spatial filter (SF), and CCD camera (CCD).

o(x,y) represent the amplitude and the phase modulation, re-
i spectively. The synthetic phase hologram is given by [11].

EM(T’ 9, Z) = eXp(?m@) W

o h(z,y) = exp (ifa(z,y)[sin[p(z,y)]).  (12)
“ ox {kr (ik — 4gz)]
Az(k + 2ig2) For instance, the functiofia(z, /)] can be evaluated through
k2r? the relationship/; (f[a(z,y)]) = Aa(z,y). The maximum
Xy <4kz+82922> ’ (1) value of A that satisfies EqllQ) is A = 0.5819, corre-
This constitutes our new exact solution to the paraX_sponding to the peak value of the first-order Bessel function

ial equation, named thecaled propagation invariant Bessel Ji(a), which, in tumn, occurs atv = 1.84. Using adf-

beam Introducing a Gaussian support disrupts the invari-_Optlcal system, shown in Fig. 2, we display the correspond-

ant nature of the field originally contained in E4),(sim- ing synthetic phase hologrgm ona phase-o_nly spatial light
ilar to how the Bessel-Gauss beam deviates from the prop- odulat(_)r (SLM), V\fpr']Chl |sS|Lnduce;j by aﬁd::'mat.ed He-Ne
agation invariance of the unbounded Bessel beam. Ho fgser (/\f_h633hnm).h Ie €ns; per c;)rmitf € Iolurlertrans—
ever, it is important to note that, over the propagation dis o'™ Of the phase hologram at its back focal lengfh)(a

tances wherdgz is much smaller tha, the field described spatial filter (SF) blocks the noise-diffracted orders and the

by Eq. (L1) maintains a scaled propagation quasi-invariancel.enSL2 recovers the codified complex field.

In these conditions, the impact of the Gaussian support on Figure 3 shows the intensity distribution of such a field in
the field invariance is minimized, allowing the beam to ef-the planes = 0.10 m, z = 0.25 m, andz = 0.50 m. On the
fectively preserve its structural integrity and energy distribu-other hand, Fig. 4 shows the intensity distribution for planes
tion over significant distances. This quasi-invariance meanwhere the field does not scale anymore as it propagates. In
that while the beam does not remain perfectly invariant, itghe latter case, the value gfs an order of magnitude greater
deviation from ideal behavior is small enough to be negli-than that used in Fig. 3. To generate the fields in both figures,
gible for many practical applications, especially those thawve used the experimental setup shown in Fig. 2.

do not require extreme long-range propagation. As a re- Finally, Fig. 5 illustrates a transverse view, (y = 0)

sult, the propagation characteristics of these newly scalegisplaying the field intensity between= 0.0 m andz =
propagation-invariant Bessel beams remain highly relevant o x 10! m. At z = 0, the field achieves its maximum
to applications, offering a practical balance between physifocus, evident from its peak intensity. At the focal point of
cal realizability and functional performance. This nuanced, — (, the field exhibits its maximum concentration, as ev-
understanding of the quasi-invariant behavior helps in leveridenced by its peak intensity. However, beyond this focal
aging the benefits of the Gaussian support while mitigatinguncture a change occurs in the factor governing the field’s

its potential drawbacks in specific scenarios. focusing behavior, leading to an expansion in its intensity
profile. It is important to note that the solution represented
4. Experimental setup and results by Eqg. (11) becomes indeterminate, as a common function,

at z = 0; for clarity, in the visualization depicted in Fig. 4
We generate some fields experimentally, in order to showve omitted this particular plane. Interestingly, as the field
good agreement with the theoretical ones. For this task, wapproaches = 0, its intensity diverges, resembling the be-
use a synthetic phase hologram capable of encoding any corhavior of a Dirac delta function, characterized by an intensity
plex field,s(z,y) = a(z, y) expliod(z,y)], wherea(x, y) and  profile similar tol/z.
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FIGURE 3. Intensity distribution of the field as determined by Etl)( a) Profile illustrating the intensity distribution as a function of the
radiusr atz = 0.10 m, 0.25 m, 0.50 m. b)-d) Field intensity distribution in three observation planes (same propagation distances as in (a))
perpendicular to the propagation distance. The physical parameters of the belarsea9926 x 10° m™* (A = 633 nm), u = 2, and

g = (Jk|/10) m~2. e)-g) Experimental realization using the same parameters.

5. The field is transversally square-integrable
We now prove that the introduced beams, Hd)(are square-integrable. Substituting the field intensity of the field Ely. (
in the integral over all space and performing the integrdl, we get
3 k272
<4kz + 8igz? )

27 00
21k gk2r?
/rdr/d9|E(r 0,2) :—/exp (—) J
Y N 2,2 k2 +4g222 ) |H
J |2|\/k% + 4922 ] g

0

2
r dr. (13)
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FIGURE 4. Intensity distribution of the field as determined by Etd)( a) Profile illustrating the intensity distribution as a function of the
radiusr atz = 0.10 m, 0.25 m, 0.50 m. b)- d) Field intensity distribution in three observation planes (same propagation distances as in
a)) perpendicular to the propagation distance. The physical parameters of the bdam are26 x 10° m™! (A = 633 nm), x = 2, and

g = |k| m—2. e)-g) Experimental realization using the same parameters.

We have not been able to compute the integral eyéut we can show that it is finite; to do that, we use theorem [14, 15]:
Theorem 1.1f visreal andv > —1/2,

v

exp [Im (¢)] , (14)

1
901 < 557 |5

(v+1)

where( is an arbitrary complex number.
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FIGURE 5. Visually depict the propagated intensity profile of the field governed by Eij, for two distinct values ofi: a) » = 0 and b)
= 2. We employed the same set of physical parameters utilized in constructing Fig, 8,= 9.926 x 10° m~* (A = 633 nm) and
g = (|k|/10) m~2.

Consequently, we have

P GRS | [P N (r)™ (15)
H\4kz + 8igz2 )| = 2k2 + 8g222 81T (1 + 1)2# (4222 + kz)/t/Q'

Using elementary calculus, we conclude that

7 . gk?r? ; k2r2 2 < e
X —_—_ -
5 P\ g w7 ke £ i T G4ART2 (i 1)220H ) (B2  4g2224)H T2
r 2gk>3r?
X /7'4“+1 exp (W dr. (16)
0

The integral on the right side of the previous inequality can be easily done, and it is finite and positive; thus, the paraxial Bessel
beams, defined in Ecl1), are square-integrable.

6. Conclusions

We have presented a new family of closed-form solutions of the paraxial equation, which is essentially formed by a Bessel
factor with quadratic dependence in the radius. The fields are re-scaled as they propagate. We incorporate a Gaussian suppc
into the solution employing quantum optics mathematical tools, yielding a field that is scaled propagation quasi-invariant over
some propagation distance and then loses this property. A very important characteristic of the new solutions presented in thi:
work, that differentiates them from those introduced previously [3,4], is that they are square-integrahlk, €. iot require
Gaussian support Ecl), although they allow it, and the focusing is very strong. Thus, we suggest naming treoaled
propagation invariant Bessel beams

The applications of these scaled propagation-invariant Bessel beams span a wide array of fields. Their inherent focusing
capability makes them promising candidates for numerous practical applications, including but not limited to particle manip-
ulation and trapping, biomedical applications, and material processing and engineering. In conclusion, the introduction of
scaled propagation invariant Bessel beams represents a significant stride forward in optical field solutions that offer versatile
and impactful applications across various scientific and technological domains.

Appendix
A. Demonstration that the ansatz field, Eq.(1), is the solution of the paraxial equation

We show that the field

1 kr? kr?
E = — 24 —— —_— Al
1 :0:9) = e i) e (%) 2 (). (1)
is a solution of the paraxial equation
V2E (r,0,2) + k2B 02 _ (A.2)

0z
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in cylindrical coordinates.
To do this, we obtain the derivatives of Eé.1) with respect to-,

OE, (r,0,z)  kr ) kr? , [ kr? , kr?
5 = 5,373 XD (2iu0) exp i gy m +iJ, w1 (A.3)
and
0?E,, (1,0, 2) k , kr?
5,2 = o573 OXP (2ipd) exp (242>
Fer? kr? kr?
2 27,2 2 .
X [ kr?J)] (4z> — 2 (ikr? 4 2) J,, <42) + (kr® — 2iz) J, <42> }, (A.4)

where the prime means derivative with respect to the argument of the function.
The second derivative with respecttds

0%E, (r,0, z 442 . kr? kr?
% = —% exp (2iu0) exp <z42> Ju (42> . (A.5)

Thus, the two-dimensions Laplacian reads

V2E,(r0,z2) = #exp (2iuf) exp zk—rz
LR 4r2,5/2 4z
kr? kr? kr?
2.4 2 (i1.,.2 2.4 gi1.2 2.2
X {k; gy (42) + 2kr? (ikr® +22) J}, <42> + (—K*r* + dikr®z — 16p°2%) J, (42>} . (A.6)

To complete the paraxial wave equation, we need the derivative with respgct to

OB, (r,0,z) 1 , kr?
2ik % = a5 P (2iuf) exp e
x | k2t g kr? + 4kr?zJ! kr? + (K*r* — 16p%2%) J, kr? (A7)
H\ 4z R\ 4z B\ 4z ) |° '
Hence, the paraxial equation can be cast as
ker? kr? Fr?
2,4 2 2,4 2.2
From [16, formula 8.491.2, page 931] and [14, formula 9.1.53, page 362], we know that
kr? kr? kr?
2.4 2 2.4 2.2

and substituting in the paraxial equation in the form [2a8], we get that it is satisfied.

1. J. Durnin, Exact solutions for nondiffracting beams. I. The 0rg/10.1016/S0030-4018(99)00174-1
SC‘?""’“ theoryJ. Opt. Soc. Am. Al (1987) 651 /https:// 4. A. Belafhal, L. Dalil-Essakali, Collins formula and
dol.org/10.1564/JOSAA.4.000651 propagation of Bessel-modulated Gaussian light beams
2. F. Gori, G. Guattari C. Padovani, Bessel-Gauss through an abcd optical systemOptics Communica-

beams, Optics Communications 64 (1987) 491, tions 177 (2000) 181, https:/doi.org/https:
https://doi.org/https://doi.org/10.1016/ /Idoi.org/10.1016/S0030-4018(00)00600-3
0030-4018(87)90276-8 5. Y. Cai, X. Lu, Q. Lin, Hollow Gaussian beams and their propa-

3. C. Caron, R. Potvliege, Bessel-modulated gaussian beams gation propertiesOpt. Lett.28 (2003) 1084https://doi.

with quadratic radial dependenceQptics Communica- org/10.1564/0L.25.0U01U4
tions 164 (1999) 83 https://doi.org/https://doi. 6. V. V. Kotlyar, R. V. Skidanov, S. N. Khonina, V. A. Soifer,

Rev. Mex. Fis71041301


https://doi.org/10.1364/JOSAA.4.000651�
https://doi.org/10.1364/JOSAA.4.000651�
https://doi.org/https://doi.org/10.1016/0030-4018(87)90276-8�
https://doi.org/https://doi.org/10.1016/0030-4018(87)90276-8�
https://doi.org/https://doi.org/10.1016/S0030-4018(99)00174-1�
https://doi.org/https://doi.org/10.1016/S0030-4018(99)00174-1�
https://doi.org/https://doi.org/10.1016/S0030-4018(00)00600-3�
https://doi.org/https://doi.org/10.1016/S0030-4018(00)00600-3�
https://doi.org/10.1364/OL.28.001084�
https://doi.org/10.1364/OL.28.001084�

10.

11.

. M. A. Bandres, J. C. Guirez-Vega, Circular beam®)pt.

SCALED PROPAGATION INVARIANT BESSEL BEAMS 9

Hypergeometric modeQpt. Lett. 32 (2007) 742 |ntips:
//doi.org/10.1364/0L.32.000742

. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, E. Santamato,

Hypergeometric-Gaussian mode3pt. Lett 32 (2007) 3053,
https://dol.org/10.1364/0L.32.003053

. V. V. Kotlyar, A. A. Kovalev, Family of hypergeometric laser

beams,J. Opt. Soc. Am. &5 (2008) 262;https://doi.
0rg/10.1364/JOSAA.25.000262

Lett 33 (2008) 177,https://doi.org/10.1364/OL.
33.0001/7/7

D. Stoler, Operator methods in physical optic3, Opt.
Soc. Am.71 (1981) 334 https://doi.org/10.1364/
JOSA./71.000334

V. Arrizon, U. Ruiz, R. Carrada, L. A. Goalez, Pixelated
phase computer holograms for the accurate encoding of scalar
complex fields,J. Opt. Soc. Am. &4 (2007) 3500 https:
//doi.org/10.1364/JOSAA.24.003500

12.

14.

15.

16.

H. M. Moya-Cessaet al, Cauchy-Riemann beam&hys.
Rev. A109(2024) 04352¢&https://doi.org/10.1103/
PhysRevA.109.043528

13. |. Ramos-Prieto, D. 8chez-de-la-Llave, U. Rz, V. Arrizon,

F. Soto-Eguibar, and H. M. Moya-Cessa, Cauchy-Riemann
beams in GRIN mediaQptik 309 (2024) 171864 https:
/ldoi.org/10.1016/j.ijle0.2024.171864

M. Abramowitz, I. A. Stegun, and R. H. Romer, Handbook of
mathematical functions with formulas, graphs, and mathemati-
cal tables (American Association of Physics Teachers, 1988).

F. W. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST
Handbook of Mathematical Functions, (Cambridge University
Press, 2010).

I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and
products, (Academic press, 2014).

Rev. Mex. Fis71041301


https://doi.org/10.1364/OL.32.000742�
https://doi.org/10.1364/OL.32.000742�
https://doi.org/10.1364/OL.32.003053�
https://doi.org/10.1364/JOSAA.25.000262�
https://doi.org/10.1364/JOSAA.25.000262�
https://doi.org/10.1364/OL.33.000177�
https://doi.org/10.1364/OL.33.000177�
https://doi.org/10.1364/JOSA.71.000334�
https://doi.org/10.1364/JOSA.71.000334�
https://doi.org/10.1364/JOSAA.24.003500�
https://doi.org/10.1364/JOSAA.24.003500�
https://doi.org/10.1103/PhysRevA.109.043528�
https://doi.org/10.1103/PhysRevA.109.043528�
https://doi.org/10.1016/j.ijleo.2024.171864�
https://doi.org/10.1016/j.ijleo.2024.171864�

