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We present a new family of Bessel solutions of the paraxial equation. Such solutions keep their form during propagation because of a
quadratic phase factor that makes them scaled propagation invariant fields. When a Gaussian support is incorporated, the solution loses its
invariant properties, although, over some volume, it closely resembles a scaled propagation invariant field. The Bessel beams we introduce
have the particularity that they present a very strong focusing effect and do not necessarily require a Gaussian support.
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1. Introduction

Novel closed-form solutions to the paraxial equation in cylin-
drical coordinates have been proposed over the last 40 years.
In a seminal paper, Durning presented in 1987 [1] an exact
solution to the scalar wave equation, namely the zero-order
Bessel function of the first kind, which has the property of
maintaining its intensity pattern in any transverse plane,i.e.
a non-diffracting beam, opening up a very prolific research
area. Among its more relevant applications, we can mention
particle trapping and energy transfer through the orbital angu-
lar momentum of light. Shortly after, Goriet al. [2] found an
exact solution that consisted of multiplying the Bessel func-
tion J0 by a Gaussian distribution, calling this solution the
Bessel-Gauss beam of zero order. A clear advantage of the
latter solution is that it possesses finite energy at any trans-
verse plane, making it physically realizable, although the
non-diffracting properties are also affected. Some years later,
Caronet al. [3] (see also [4]) presented an exact solution to
the paraxial equation consisting of a Gaussian function mul-
tiplied by a Bessel function with quadratic radial dependence
and a quadratic phase function; the proposed solution also
includes a topological charge that doubles the order of the
Bessel function, and its transverse intensity profile has most
of its energy concentrated in a single ring. Later, Caiet al.[5]
presented a solution consisting of a Gaussian function multi-
plied by the radial coordinate elevated to an even power, pro-
ducing a transverse intensity consisting of a single ring car-
rying all the beam energy; this solution was called a hollow
Gaussian beam. In 2007 [6,7], a broad family of closed-form
solutions to the paraxial equation was introduced, called hy-
pergeometric and hypergeometric-Gaussian beams, the latter
having as a particular case the solutions reported in [3]. One
year later, Kotlyaret al. reported another family of hyper-
geometric beams [8], while Bandreset al. reported circu-
lar beams [9], the most general closed-form solution to the

paraxial equation in circular cylindrical coordinates reported
so far.

We present a novel family of closed-form solutions to the
paraxial equation in cylindrical coordinates. Our approach
consists of proposing an ansatz that contains a Gaussian dis-
tribution multiplied by a Bessel function of the first kind with
quadratic radial dependence and a topological charge that
doubles the order of the Bessel function. In addition, the am-
plitude is modulated by a function that varies with the prop-
agation distance. First, we show a family of solutions with
infinite energy in any transverse plane to thez-axis. Subse-
quently, a Gaussian function is introduced employing quan-
tum optic operators, resulting in an additional set of solutions
characterized by finite energy along any transverse plane to
thez-axis.

These new solutions exhibit a focusing effect, which is a
remarkable characteristic in the field of wave optics. This ef-
fect allows the solutions to concentrate the majority of their
energy within a single, sharply defined ring. Such a con-
figuration is particularly advantageous for applications that
require high-intensity focal points, as it ensures that energy
is not dispersed but rather confined to a specified region in
space. This confinement not only enhances the beam’s inten-
sity but also improves the precision and efficacy of its inter-
action with materials or particles. The ability of these beams
to maintain their structural integrity during propagation is at-
tributed to the designed quadratic phase factor. This phase
factor acts as a stabilizing mechanism, allowing the beam
to preserve its form and energy distribution over certain dis-
tances. The quadratic dependence ensures that as the beam
propagates, it dynamically adjusts its phase, compensating
for potential diffraction effects that would normally lead to
beam spreading. The stability and resilience offered by this
quadratic phase factor make these beams suitable for appli-
cations that demand long-range propagation without loss of
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beam quality. In practical terms, this means that the beams
can be employed in environments where maintaining a con-
sistent and focused energy delivery is critical, such as in op-
tical tweezers for precise particle manipulation, in advanced
imaging systems where clarity and focus are paramount, and
in telecommunications where signal integrity over distance
is essential. Furthermore, the robustness of these beams
against diffraction and their energy-efficient design open new
avenues for exploration in fields ranging from biomedical
engineering, where they can enhance the precision of laser
surgery, to material science, where focused energy delivery
can facilitate advanced fabrication techniques. The combina-
tion of a pronounced focusing effect with propagation invari-
ance thus represents a significant leap forward in the capabil-
ities of optical beam technologies.

This approach is motivated by acknowledging the similar-
ity between the paraxial wave equation and the Schrödinger
equation in quantum theory [10]. Notably, the temporal vari-
able in the Schr̈odinger equation corresponds to the coordi-
nate along the propagation axis in the paraxial wave equation,
establishing a formal analogy that is widely understood and
linking wave optics and quantum mechanics. The solutions
we present hereafter can not be obtained from the general
solutions proposed in the past, and they distinguished them-
selves from the ones proposed in Ref. [3] by the strong fo-
cusing effect they possess. We believe that the solutions can
be of interest to applications in several fields. All beams pro-
posed and analyzed in this work were produced and tested
experimentally, as explained in Sec. 4. In Figs. 3 and 4 the
experimental results are presented, together with the theoret-
ical predictions.

2. Ansatz for a simple solution

A method for finding solutions to the wave equation is the
ansatz method, which involves proposing a solution com-
posed of the product of two guessed functions. In this con-
text, we are seeking solutions of the form

Eµ (r, θ, z)=
1√
z

exp
(

i
kr2

4z

)
Jµ

(
kr2

4z

)
exp(2iµθ). (1)

This field satisfies the paraxial equation

∇2
⊥E (r, θ, z) + 2ik

∂E (r, θ, z)
∂z

= 0, (2)

in cylindrical coordinates. The validity of this solution can
be easily verified by a simple direct substitution (for more
details, see Appendix A). As can be observed, Eq. (1) repre-
sents a field that changes its scale as it propagates, or, in other
words, a propagation-invariant field on a scale. For the field
to have real physical significance, the parameterk must be
real and, without loss of generality, considered strictly pos-
itive. Additionally, the parameterµ must be an integer or a
semi-integer, which can be taken, again without loss of gen-
erality, as equal to or greater than zero.

Figure 1 exemplifies the scaled propagation invariant at-
tribute of this field across planes atz = 0.10 m, z = 0.25 m,
andz = 0.50 m. Figure 1a) presents the intensity distribution
of the field as a function ofr for the three distinct propagation
distances, while Figs. 1b), 1c), and 1d) depict the field inten-
sity across three transverse planes at the same propagation
distances.

3. Providing a Gaussian support

The field described by Eq. (1) is not square-integrable, akin
to typical Bessel beams. Similarly to other diffractive beams,
such as Bessel beams [1], these solutions lack physical real-
izability due to their non-square integrable nature. To over-
come this constraint, drawing insight from the Bessel-Gauss
beams [2], we aim to develop a generalized variant incor-
porating a Gaussian factor, ensuring that the field becomes
square-integrable. Consequently, our quest involves crafting
a generalized version incorporating a multiplicative Gaussian
factor to render it square-integrable. To achieve this goal, we
write the paraxial equation as a Schrödinger-like equation,

∂E (x, y, z)
∂z

=
i

2k
∇2
⊥E (x, y, z) , (3)

whose formal solution is

E (x, y, z) = exp
(

i

2k
z∇2

⊥

)
E(x, y, 0), (4)

being E(x, y, 0) the initial field atz = 0. The choice to
consider the paraxial equation as a Schrödinger-like equation
stems from the possibility of employing an operator approach
within the realm of quantum optics, an unconventional ap-
proach in paraxial optics [10,12,13]. Taking this into consid-
eration in Cartesian coordinates, the aforementioned equation
can be reformulated as:

E (x, y, z) = exp
[
− i

2k
z

(
p̂2

x + p̂2
y

)]
E(x, y, 0), (5)

where we introduced the operatorŝpx = −i(∂/∂x) and
p̂y = −i(∂/∂y), satisfying the following commutation re-
lations: [x, p̂x] = [y, p̂y] = i and[x, y] = [x, p̂y] = [y, p̂x] =
[p̂x, p̂y] = 0. Next, we express the initial condition as

E(x, y, 0) = exp
[−g

(
x2 + y2

)] E (x, y) , (6)

with g a positive real constant, andE(x, y) represents a cur-
rently generic field. Substituting this initial condition into
Eq. (5), we obtain

E (x, y, z) = exp
[
− i

2k
z

(
p̂2

x + p̂2
y

)]

× exp
[−g

(
x2 + y2

)] E (x, y, 0) . (7)
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FIGURE 1. Intensity distribution of the field as determined by Eq. (1). a) Profile illustrating the intensity distribution as a function of the
radiusr at z = 0.10 m, 0.25 m, 0.50 m. b)-(d) Field intensity distribution in three observation planes (same propagation distances as in a))
perpendicular to the propagation distance. The implemented physical parameters for the beam arek = 9.926× 106 m−1 (λ = 633 nm), and
µ = 0.

Now, we introduce the identity operator̂I, written asÎ =
e(i/2k)z(p̂2

x+p̂2
y)e−(i/2k)z(p̂2

x+p̂2
y), beforeE (x, y),

E (x, y, z) = exp
[
− i

2k
z

(
p̂2

x + p̂2
y

)]
exp

[−g
(
x2 + y2

)]

× exp
[

i

2k
z

(
p̂2

x + p̂2
y

)]
exp

[
− i

2k
z

(
p̂2

x + p̂2
y

)]

× E (x, y) . (8)

Hereafter, leveraging standard operator techniques of quan-
tum optics, we transit to polar coordinates, leading to the fol-
lowing expression:

E (r, θ, z) =
k

k + 2igz
exp

(
ar2

)
exp (2brp̂r)

× exp
(

i
1
2k

kz

k + 2igz
∇2
⊥

)
E (r, θ) , (9)

where the coefficients are determined by:a =

−gk/(k + 2igz) andb = −(π/4) − (i/2) ln (i− [2gz/k]),
with p̂r = −i(∂/∂r).

We establish a connection with the initial simple solution
given by Eq. (1). Since the field described in Eq. (1) satisfies
the paraxial equation, it requires an initial condition, denoted
asE (r, θ), from which it evolves. This evolution is expressed
as

exp
(

i

2k

kz

k + 2igz
∇2
⊥

)
E (r, θ) =

√
k + 2igz

kz

× exp
(

ir2 (k + 2igz)
4z

)

× Jµ

(
r2 (k + 2igz)

4z

)
exp(2iµθ), (10)

and where z, in Eq. (1), has been substituted by
kz/(k + 2igz). What follows is laborious, but easy and di-
rect, and leads us to the following expression:

Rev. Mex. Fis.71041301



4 F. SOTO-EGUIBARet al.,

FIGURE 2. Experimental setup. Spatial light modulator (SLM), lenses (L1 andL2), spatial filter (SF), and CCD camera (CCD).

Eµ(r, θ, z) = exp(2iµθ)

√
k

z(k + 2igz)

× exp
[
kr2(ik − 4gz)
4z(k + 2igz)

]

× Jµ

(
k2r2

4kz + 8igz2

)
. (11)

This constitutes our new exact solution to the parax-
ial equation, named thescaled propagation invariant Bessel
beam. Introducing a Gaussian support disrupts the invari-
ant nature of the field originally contained in Eq. (1), sim-
ilar to how the Bessel-Gauss beam deviates from the prop-
agation invariance of the unbounded Bessel beam. How-
ever, it is important to note that, over the propagation dis-
tances where4gz is much smaller thank, the field described
by Eq. (11) maintains a scaled propagation quasi-invariance.
In these conditions, the impact of the Gaussian support on
the field invariance is minimized, allowing the beam to ef-
fectively preserve its structural integrity and energy distribu-
tion over significant distances. This quasi-invariance means
that while the beam does not remain perfectly invariant, its
deviation from ideal behavior is small enough to be negli-
gible for many practical applications, especially those that
do not require extreme long-range propagation. As a re-
sult, the propagation characteristics of these newly scaled
propagation-invariant Bessel beams remain highly relevant
to applications, offering a practical balance between physi-
cal realizability and functional performance. This nuanced
understanding of the quasi-invariant behavior helps in lever-
aging the benefits of the Gaussian support while mitigating
its potential drawbacks in specific scenarios.

4. Experimental setup and results

We generate some fields experimentally, in order to show
good agreement with the theoretical ones. For this task, we
use a synthetic phase hologram capable of encoding any com-
plex field,s(x, y) = a(x, y) exp[iφ(x, y)], wherea(x, y) and

φ(x, y) represent the amplitude and the phase modulation, re-
spectively. The synthetic phase hologram is given by [11].

h(x, y) = exp (if [a(x, y)] sin [φ(x, y)]) . (12)

For instance, the functionf [a(x, y)] can be evaluated through
the relationshipJ1 (f [a(x, y)]) = Aa(x, y). The maximum
value of A that satisfies Eq. (12) is A = 0.5819, corre-
sponding to the peak value of the first-order Bessel function
J1(α), which, in turn, occurs atα = 1.84. Using a4f -
optical system, shown in Fig. 2, we display the correspond-
ing synthetic phase hologram on a phase-only spatial light
modulator (SLM), which is induced by a collimated He-Ne
laser (λ = 633 nm). The lensL1 performs the Fourier trans-
form of the phase hologram at its back focal length (f1), a
spatial filter (SF) blocks the noise-diffracted orders and the
lensL2 recovers the codified complex field.

Figure 3 shows the intensity distribution of such a field in
the planesz = 0.10 m, z = 0.25 m, andz = 0.50 m. On the
other hand, Fig. 4 shows the intensity distribution for planes
where the field does not scale anymore as it propagates. In
the latter case, the value ofg is an order of magnitude greater
than that used in Fig. 3. To generate the fields in both figures,
we used the experimental setup shown in Fig. 2.

Finally, Fig. 5 illustrates a transverse view (x, y = 0)
displaying the field intensity betweenz = 0.0 m andz =
1.0 × 10−1 m. At z = 0, the field achieves its maximum
focus, evident from its peak intensity. At the focal point of
z = 0, the field exhibits its maximum concentration, as ev-
idenced by its peak intensity. However, beyond this focal
juncture a change occurs in the factor governing the field’s
focusing behavior, leading to an expansion in its intensity
profile. It is important to note that the solution represented
by Eq. (11) becomes indeterminate, as a common function,
at z = 0; for clarity, in the visualization depicted in Fig. 4
we omitted this particular plane. Interestingly, as the field
approachesz = 0, its intensity diverges, resembling the be-
havior of a Dirac delta function, characterized by an intensity
profile similar to1/z.

Rev. Mex. Fis.71041301
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FIGURE 3. Intensity distribution of the field as determined by Eq. (11). a) Profile illustrating the intensity distribution as a function of the
radiusr atz = 0.10 m, 0.25 m, 0.50 m. b)-d) Field intensity distribution in three observation planes (same propagation distances as in (a))
perpendicular to the propagation distance. The physical parameters of the beam arek = 9.926 × 106 m−1 (λ = 633 nm), µ = 2, and
g = (|k|/10) m−2. e)-g) Experimental realization using the same parameters.

5. The field is transversally square-integrable

We now prove that the introduced beams, Eq. (11), are square-integrable. Substituting the field intensity of the field Eq. (11)
in the integral over all space and performing the integral inθ, we get

∞∫

0

rdr

2π∫

0

dθ |E(r, θ, z)|2 =
2πk

|z|
√

k2 + 4g2z2

∞∫

0

exp
(
− gk2r2

k2 + 4g2z2

) ∣∣∣∣Jµ

(
k2r2

4kz + 8igz2

)∣∣∣∣
2

r dr. (13)
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FIGURE 4. Intensity distribution of the field as determined by Eq. (11). a) Profile illustrating the intensity distribution as a function of the
radiusr at z = 0.10 m, 0.25 m, 0.50 m. b)- d) Field intensity distribution in three observation planes (same propagation distances as in
a)) perpendicular to the propagation distance. The physical parameters of the beam arek = 9.926 × 106 m−1 (λ = 633 nm),µ = 2, and
g = |k| m−2. e)-g) Experimental realization using the same parameters.

We have not been able to compute the integral overr, but we can show that it is finite; to do that, we use theorem [14,15]:

Theorem 1. If ν is real andν ≥ −1/2,

|Jν(ζ)| ≤ 1
Γ(ν + 1)

∣∣∣∣
ζ

2

∣∣∣∣
ν

exp [Im (ζ)] , (14)

whereζ is an arbitrary complex number.
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FIGURE 5. Visually depict the propagated intensity profile of the field governed by Eq. (11), for two distinct values ofµ: a) µ = 0 and b)
µ = 2. We employed the same set of physical parameters utilized in constructing Fig. 3,i.e., k = 9.926 × 106 m−1 (λ = 633 nm) and
g = (|k|/10) m−2.

Consequently, we have
∣∣∣∣Jµ

(
k2r2

4kz + 8igz2

)∣∣∣∣ ≤ exp
[
− gk2r2

2k2 + 8g2z2

]
(kr)2µ

8µΓ(µ + 1)zµ (4g2z2 + k2)µ/2
. (15)

Using elementary calculus, we conclude that

∞∫

0

exp
(
− gk2r2

4g2z2 + k2

) ∣∣∣∣Jµ

(
k2r2

4kz + 8igz2

)∣∣∣∣
2

rdr ≤ k4µ

64µΓ2(µ + 1)z2µ+1 (k2 + 4g2z2+)µ+1/2

×
∞∫

0

r4µ+1 exp
(
− 2gk2r2

k2 + 4g2z2

)
dr. (16)

The integral on the right side of the previous inequality can be easily done, and it is finite and positive; thus, the paraxial Bessel
beams, defined in Eq. (11), are square-integrable.

6. Conclusions

We have presented a new family of closed-form solutions of the paraxial equation, which is essentially formed by a Bessel
factor with quadratic dependence in the radius. The fields are re-scaled as they propagate. We incorporate a Gaussian support
into the solution employing quantum optics mathematical tools, yielding a field that is scaled propagation quasi-invariant over
some propagation distance and then loses this property. A very important characteristic of the new solutions presented in this
work, that differentiates them from those introduced previously [3,4], is that they are square-integrable Eq. (11), do not require
Gaussian support Eq. (1), although they allow it, and the focusing is very strong. Thus, we suggest naming them asscaled
propagation invariant Bessel beams.

The applications of these scaled propagation-invariant Bessel beams span a wide array of fields. Their inherent focusing
capability makes them promising candidates for numerous practical applications, including but not limited to particle manip-
ulation and trapping, biomedical applications, and material processing and engineering. In conclusion, the introduction of
scaled propagation invariant Bessel beams represents a significant stride forward in optical field solutions that offer versatile
and impactful applications across various scientific and technological domains.

Appendix

A. Demonstration that the ansatz field, Eq.(1), is the solution of the paraxial equation

We show that the field

Eµ (r, θ, z) =
1√
z

exp (2iµθ) exp
(

i
kr2

4z

)
Jµ

(
kr2

4z

)
, (A.1)

is a solution of the paraxial equation

∇2
⊥E (r, θ, z) + 2ik

∂E (r, θ, z)
∂z

= 0, (A.2)
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in cylindrical coordinates.
To do this, we obtain the derivatives of Eq. (A.1) with respect tor,

∂Eµ (r, θ, z)
∂r

=
kr

2z3/2
exp (2iµθ) exp

(
i
kr2

4z

) [
J ′µ

(
kr2

4z

)
+ iJµ

(
kr2

4z

)]
, (A.3)

and

∂2Eµ (r, θ, z)
∂r2

=
k

4z5/2
exp (2iµθ) exp

(
i
kr2

4z

)

×
[
− kr2J ′′µ

(
kr2

4z

)
− 2

(
ikr2 + z

)
J ′µ

(
kr2

4z

)
+

(
kr2 − 2iz

)
Jµ

(
kr2

4z

)]
, (A.4)

where the prime means derivative with respect to the argument of the function.
The second derivative with respect toθ is

∂2Eµ (r, θ, z)
∂θ2

= −4µ2

√
z

exp (2iµθ) exp
(

i
kr2

4z

)
Jµ

(
kr2

4z

)
. (A.5)

Thus, the two-dimensions Laplacian reads

∇2
⊥Eµ (r, θ, z) =

1
4r2z5/2

exp (2iµθ) exp
(

i
kr2

4z

)

×
[
k2r4J ′′µ

(
kr2

4z

)
+ 2kr2

(
ikr2 + 2z

)
J ′µ

(
kr2

4z

)
+

(−k2r4 + 4ikr2z − 16µ2z2
)
Jµ

(
kr2

4z

)]
. (A.6)

To complete the paraxial wave equation, we need the derivative with respect toz,

2ik
∂Eµ (r, θ, z)

∂z
=

1
4r2z5/2

exp (2iµθ) exp
(

i
kr2

4z

)

×
[
k2r4J ′′µ

(
kr2

4z

)
+ 4kr2zJ ′µ

(
kr2

4z

)
+

(
k2r4 − 16µ2z2

)
Jµ

(
kr2

4z

)]
. (A.7)

Hence, the paraxial equation can be cast as

k2r4J ′′µ

(
kr2

4z

)
+ 4kr2zJ ′µ

(
kr2

4z

)
+

(
k2r4 − 16µ2z2

)
Jµ

(
kr2

4z

)
= 0. (A.8)

From [16, formula 8.491.2, page 931] and [14, formula 9.1.53, page 362], we know that

k2r4J ′′µ

(
kr2

4z

)
= −4kr2zJ ′µ

(
kr2

4z

)
− (

k2r4 − 16µ2z2
)
Jµ

(
kr2

4z

)
, (A.9)

and substituting in the paraxial equation in the form Eq. (A.8), we get that it is satisfied.
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