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A non-newtonian approach to geometric phase
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In this paper, we researched magnetic and electromagnetic curves in multiplicative Euclidean 3-space via multiplicative quaternion algebra.
Firstly, we examined the geometric phase representation of the polarized light wave in the optic fiber by multiplying Frenet frame. Using
the quaternionic approaches, we were able to derive the magnetic curve equations and theorems. Then, three particular instances have been
illustrated with examples of electromagnetic curves and magnetic field equations. Lastly, we provided an interpretation of the findings. With
the help of the results, we were able to present an alternative viewpoint on the construction of trajectories (such as circular or spiral-like ones)
that do not exist uniquely in the realm of physics.
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1. Introduction

Alternative calculus, sometimes known as non-Newtonian
calculus, was developed by Grossman and Katz in Ref. [1].
This page, which includes definitions for many different cal-
culi (geometric calculus, anageometric calculus, etc.), made
it possible to deal with various calculus. Then, Grossman
researched this new subject comprehensively [2]. Studies
have advanced since the introduction of these new types of
calculus. Works on bigeometric and multiplicative calcu-
lus were written by Grossman and Stanley, respectively, in
Refs. [3, 4]. This article makes use of multiplicative differ-
ential geometry. Multiplicative calculus was first studied by
several mathematical specialties [5]. After that, authors ex-
amined multiplicative calculi in different systems in Ref. [6].
At the same time, important methods for mathematics were
studied to understand the relationship with multiplicative cal-
culi [7]. Bashirov and the others researched multiplicative
calculi and their interpretations in Ref. [8]. In the light of
these papers, this subject was researched in various fields,
for example, physics and biomedical concerning mathemat-
ical approach [9, 10]. At the same time, Boruah and Haz-
arika produced two significant works on non-Newtonian cal-
culus [11, 12]. Apart from all these publications, a compre-

hensive book was also published that explored multiplicative
differential geometry, which we used as a basis for our pa-
per [13]. Additionally, Georgiev and Zennir produced two
more volumes that dealt with multiplicative differential cal-
culus to build on their earlier work [14] and multiplicative
analytic geometry [15]. Aslanet al. constructed new quater-
nions to integrate these findings with quaternion algebra in
[16]. Outstanding special curves were examined by Aydin
et al. using multiplicative differential geometry [17]. Non-
Newtonian calculus was used by Nurkan and others to in-
vestigate vector characteristics [18]. Ceyhan andÖzdemir
researched the generalized tube surfaces according to multi-
plicative calculus [19]. Then, hyperbolic quaternion, one of
the quaternionic structures, and its motion were investigated
via non-Newtonian approach [20].

A key topic in the study of physics is electromagnetic the-
ory. It is the first paper on topological phase study in this
field, which made it possible for mathematicians to pursue
this topic as a research area [21]. After the seminal work
by Krastov and Oblov [22], it was believed that this topic
could be studied from a geometric perspective. Ross exam-
ined the motions of the polarization plane in a highly sig-
nificant paper, which the author prepared in light of these
events [23]. The geometric phase, or Berry’s phase, has since
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been used in numerous studies on a wide range of topics;
this is our research area for the advancement of electromag-
netic theory [24–26]. Geometry’s foundational topic, Rie-
mannian surfaces, has also been explored concerning this
topic [27]. Moreover, two important areas of geometry re-
search, complex projective space, and Kahler magnetic field
have been studied [28,29]. With all of the advancements and
the capacity to study magnetic trajectories, research on the
connection between magnetic curves and special curves has
started [30]. Studying charged particle mobility along optic
fiber has also been done [31]. Barros released two significant
works that expanded our viewpoint at the same time [32,33].
Cabrerizo has published two works demonstrating that elec-
tromagnetic theory can be examined in other significant ge-
ometric spaces [34,35]. Mathematical researchers have pub-
lished from many perspectives on geometric phase, which
has become one of the most interesting topics of recent times
[36–41]. Bozkurt and her colleagues used mathematical pro-
grams to visualize the motion of magnetic curves [42, 43].
This topic is still being published on and can be developed
further in many other fields of study [44–48].

In this paper, we investigate Berry’s phase concern-
ing multiplicative differential geometry in multiplicative 3D
space. Firstly, we gave some fundamental background about
multiplicative calculi and electromagnetic theory. The defi-
nition of multiplicative quaternion algebra and the basic def-
initions and theorems of mathematics that we used to create
this publication are provided in the second section. In the
third section, we demonstrate the Berry phase model for mul-
tiplicative curves concerning three cases about constant mul-
tiplicative angles between multiplicative Frenet frame vector
fields and E. In the same section, we gave valuable theorems
for the aims and relationships of multiplicative quaternion
algebras. We showed electromagnetic multiplicative curves
and calculated the multiplicative magnetic field in the follow-
ing section. After that, we organized physical interpretations
by finding theorems and calculating equations. To make what
we accomplished more apparent, we provided examples in
the next section and used mathematical tools to display them.

2. Basic materials

R3
∗ = {(u1, u2, u3) : u1, u2, u3 ∈ R∗} be a multiplicative

3-space which has following operations,

+∗ : R3
∗xR3

∗ → R3
∗

u +∗ v = (u1v1, u2v2, u3v3),

−∗ : R3
∗xR3

∗ → R3
∗

u−∗ v =
(

u1

v1
,
u2

v2
,
u3

v3

)

and

·∗ : R∗xR3
∗ → R3

∗,

c ·∗ u = (elogclogu1 , elogclogu2 , elogclogu3),

whereu = (u1, u2, u3), v = (v1, v2, v3) ∈ R3
∗ andc ∈ R∗

thatR∗ is the set of all the positive real numbers.
Moreover,R3

∗ has a metric defined as follows;

〈u, v〉∗ : R3
∗xR3

∗ → R3
∗

〈u, v〉∗ = elog u1 log v1+log u2 log v2+log u3 log v3 ,

whereu = (u1, u2, u3) andv = (v1, v2, v3) ∈ R3
∗.

In 3-D multiplicative Euclidean spaceE3
∗ , the multiplica-

tive product of two 3-D multiplicative vectors are defined as;

u×∗ v=(elog u2 log v3− log v2 log u3 , elog v1 log u3−log u1 log v3 ,

elog u1 log v2−log v1 log u2),

whereu = (u1, u2, u3) andv = (v1, v2, v3) ∈ E3
∗ .

On the other hand, we takeθ ∈ [0∗, eπ].Then, it can be
written as follows,

cos∗ θ = ecos(log θ),

arccos∗ ψ = earccos(log ψ),

for ψ ∈ [e−1, 1∗],for more details see [13, 17]. The multi-
plicative angle is represented byθ in this entire study.

Moreover,s → p(s) ∈ R∗ is the multiplicative derivative
of p ats defined by rule of L’Hospital as follow;

p∗(s) = es(log(p(s))′ ,

where′ is the usual derivative.
Let (I, f∗), f∗ : R∗ → R3

∗ is a multiplicative biregu-
lar curve, namely nowheref∗(s) andf∗∗ are multiplicative
collinear, (see more details [17]).

Then the multiplicative Frenet frame equations concern-
ing f are calculated as follows;

τ∗(s) = k(s) ·∗ ν(s),

ν∗(s) = −∗k(s) ·∗ τ(s) +∗ κ(s) ·∗ β(s),

β∗(s) = −∗κ(s) ·∗ ν(s),

wherek(s) andκ(s) are called the multiplicative curvature
and multiplicative torsion of the multiplicative curve, respec-
tively. Moreover,τ(s), ν(s), andβ(s) are called the multi-
plicative unit tangent, unit principal normal, and binormal at
the point(s0), respectively. Then the binormal satisfies that;

β(s) = τ(s)×∗ ν(s).

Definition 1. Let (I, f) be a multiplicative parameterized
curve. We can say the curve is the multiplicative generalized
helix if its multiplicative tangents make a constant angle with
a fixed multiplicative vector in the paceR3

∗ [13].
The definition ofH∗, the set of multiplicative quater-

nions, is:

H∗={qe=(q1, q2, q3, q4) : q1, q2, q3, q4) :∈ R∗} ⊂ R4
∗.
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One way to express a multiplicative quaternionqe is as

qe=(q1 ·∗ e∗)+∗(q2 ·∗ i∗)+∗(q3 ·∗ j∗)+∗(q4 ·∗ k∗),

where1∗ = e, and0∗ = 1.

e∗ = (1∗, 0∗, 0∗, 0∗),

i∗ = (0∗, 1∗, 0∗, 0∗),

j∗ = (0∗, 0∗, 1∗, 0∗),

k∗ = (0∗, 0∗, 0∗, 1∗),

abide by the norms of multiplication

(i∗)2∗ = e−0∗ , ( j∗)2∗ = e−0∗ , (k∗)2∗ = e−0∗ .

Theorem 1. Let xe = (x1 ·∗ e∗) +∗ (x2 ·∗ i∗) +∗ (x3 ·∗
j∗) +∗ (x4 ·∗ k∗) is unit multiplicative quaternion and

Λ
v is

a pure multiplicative quaternion. Then, theΦ linear map-
ping represented as a matrix is given as the matrix form
M = [M1,M2, M3] has the following columns;

Λ

M1 =




elog x2
1+log x2

2−log x2
3−log x2

4

elog 2x1 log x4+log 2x2 log x3

e− log 2x1 log x3+log 2x2 log x4


 ,

Λ

M2 =




e− log 2x1 log x4+log 2x2 log x3

elog x2
1+log x2

3−log x2
2−log x2

4

elog 2x1 log x2+log 2x4 log x3


 ,

Λ

M3 =




elog 2x1 log x3+log 2x2 log x4

e− log 2x1 log x2+log 2x4 log x3

elog x2
1+log x2

4−log x2
3−log x2

2


 ,

where(
Λ

M)t
Λ

M =
Λ

I andΦ(
Λ
v) =

Λ

M
Λ
v.

We give a multiplicative quaternionxe = (x1 ·∗ e∗) +∗
(x2 ·∗ i∗) +∗ (x3 ·∗ j∗) +∗ (x4 ·∗ k∗) and then conjugate,
norm, modulus, and inverse of multiplicative quaternion, re-
spectively, given by

x−∗e = (x1)−∗ (x2 ·∗ i∗)−∗ (x3 ·∗ j∗)−∗ (x4 ·∗ k∗),

N∗(xe) = e(log x1)
2+(log x2)

2+(log x3)
2+(log x4)

2
,

| xe |∗ = e
√

(log x1)2+(log x2)2+(log x3)2+(log x4)2 ,

and

xe
−1∗ = xe

−∗/∗N∗(xe).

3. A geometric phase representation of the po-
larized light wave in the optic fiber through
multiplicative Frenet frame

In multiplicative Euclidean 3-space, we can write an optic
fiber as a multiplicative biregular curve byβ. We can de-
scribe polarized light’s state’s direction as the direction ofE.

Consequently,E’s direction can be represented as the linear
combination of{τ, ν, β} multiplicative Frenet frame fields.
After that, we get as follows:

E∗ = λ1 ·∗ τ(s) +∗ λ2 ·∗ ν(s) +∗ λ3 ·∗ β(s),

whereλi, i = 1, 2, 3 are differentiable functions according to
multiplicative calculus.

Next, for three distinct scenarios, the direction of the po-
larized light’s state was investigated, considering the planes
on whichE lies.
Case 1.Assuming the first scenario, there is a constant mul-
tiplicative angle betweenE(s) andτ(s). We know that the
expression for an electric field is as follows:

E∗ = λ1 ·∗ τ(s) +∗ λ2 ·∗ ν(s) +∗ λ3 ·∗ β(s).

After that, if we consider this case’s sufficiency, we get,

〈E, τ(s)〉∗ = cos∗ θ, θ = const.

Generally, we know, examining the optic fiber allows us to
write,

〈E, E〉∗ = const.

On the other hand,ψ andθ are the multiplicative angles, so
we get as follows,

E = cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ sin∗ ψ ·∗ ν(s)

+∗ sin∗ θ ·∗ cos∗ ψ ·∗ β(s).

If we take a derivative of last equation, we get;

E∗ = (−∗k(s) ·∗ sin∗ θ ·∗ sin∗ ψ) ·∗ τ(s))

+∗ (k(s) ·∗ cos∗ θ −∗ κ(s) ·∗ sin∗ θ ·∗ cos∗ ψ

+∗ ψ∗ ·∗ cos∗ ψ ·∗ sin∗ θ) ·∗ ν(s)

+∗ (κ(s) ·∗ sin∗ θ ·∗ sin∗ ψ

−∗ ψ∗ ·∗ sin∗ ψ ·∗ sin∗ θ) ·∗ β(s).

Generally, we can write electric field with the help of multi-
plicative Frenet frame elements as follows,

E = 〈E, τ(s)〉∗ ·∗ τ(s) +∗ 〈E, ν(s)〉∗ ·∗ ν(s)

+∗ 〈E, β(s)〉∗ ·∗ β(s).

We can get the following equation by matching and correct-
ing the appropriate values.

E∗ = (〈E, τ(s)〉∗∗ −∗ k(s) ·∗ 〈E, ν(s)〉∗) ·∗ τ(s)

+∗ (〈E, ν(s)〉∗∗ +∗ k(s) ·∗ 〈E, τ(s)〉∗
−∗ κ(s) ·∗ 〈E, β(s)〉∗) ·∗ ν(s)

+∗ (〈E, β(s)〉∗∗ +∗ κ(s) ·∗ 〈E, ν(s)〉∗) ·∗ β(s).
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After making the required modifications, we can write it like
this:

E∗ = (−∗k(s) ·∗ 〈E, ν(s)〉∗) ·∗ τ(s)

+∗ (k(s) ·∗ 〈E, τ(s)〉∗) ·∗ ν(s)

+∗ 〈E, β(s)〉 ·∗ (−∗κ(s) +∗ ψ∗) ·∗ ν(s)

+∗ 〈E, ν(s)〉 ·∗ (κ(s)−∗ ψ∗) ·∗ β(s).

When we contrast the top equation with the general equation
of the electric field, we can get as follows;

ψ∗ = κ(s).

We can display all of these in matrix form as follows. The
polarization plane’s rotational motion is displayed in this ma-
trix.(〈E, ν(s)〉∗∗

〈E, β(s)〉∗∗

)
=

(
0∗ κ(s)

−∗κ(s) 0∗

) (〈E, ν(s)〉∗
〈E, β(s)〉∗

)
,

ψ(s) =
∫ ∗

κ(s) ·∗ d∗(s).

Theorem 2. Suppose thatf(s) is a multiplicative curve de-
fined as optic fiber concerning the multiplicative Frenet frame
{τ(s), ν(s), β(s)} andτ(s) has a constant angle between po-
larization vectorE. So, we can examine the motion of this
curve in two ways with the help of the multiplicative quater-
nion. Firstly, through the agency of the unit multiplicative
quaterniona(s, ψ) = cos∗ ψ +∗ sin∗ ψ ·∗ τ(s) the polariza-
tion vector’s homothetic motion is calculated and theEτ(s)

multiplicative Rytov curve acquired two parametric perspec-
tives;

i) by the multiplicative quaternionic approach

Eτ(s)=f(s) +∗ cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ a ~ ν(s).

ii) by the multiplicative homotetic motion

Eτ(s)=f(s) +∗ cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ Ra
ψ ·∗ ν(s).

Proof. Assuming that the optic fiber has a definite
definition via the multiplicative curvef(s) concerning
{τ(s), ν(s), β(s)}. So, the polarization vectorEτ(s) respect
to multiplicative calculus can be described as follows:

E = cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ sin∗ ψ ·∗ ν(s)

+∗ sin∗ θ ·∗ cos∗ ψ ·∗ β(s),

whereψ = const. If we make the necessary calculations, we
compute as follows:

a(s, ψ) ~ ν(s) = cos∗ ψ ·∗ ν(s) +∗ sin∗ ψ ·∗ β(s).

Thus, we can writeEτ(s) multiplicative Rytov curve two
forms:

Eτ(s) = f(s) +∗ cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ a ~ ν(s),

and

Eτ(s) = f(s) +∗ cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ Ra
ψ ·∗ ν(s),

thatψ = const.
Corollary 1. Suppose thatf(s) is a multiplicative curve
defined as optic fiber concerning{τ(s), ν(s), β(s)} andτ(s)
has a right angle between polarization vectorE. So, we can
examine the motion of this curve in two ways with the help of
the multiplicative quaternion. Firstly, through the agency of
a(s, ψ) = cos∗ ψ +∗ sin∗ ψ ·∗ τ(s) the polarization vector’s
homothetic motion is calculated and theEτ(s) multiplicative
Rytov curve acquired two parametric perspectives;

i) by the multiplicative quaternion approach

Eτ(s) = f(s) +∗ a ~ ν(s),

ii) by the multiplicative quaternion approach

Eτ(s) = f(s) +∗ Ra
ψ.

whereRa
ψ is a rotation multiplicative matrix and

ψ(s) =
∫ ∗

κ(s) ·∗ d∗(s).

Corollary 2. Suppose thatf(s) is a multiplicative curve de-
fined as optic fiber concerning{τ(s), ν(s), β(s)} and τ(s)
has a right angle between polarization vectorE. So, we can
examine the motion of this curve in two ways with the help of
the multiplicative quaternion. Firstly, through the agency of
a(s, ψ) = cos∗ ψ +∗ sin∗ ψ ·∗ τ(s) the polarization vector’s
homothetic motion is calculated and theEτ(s) multiplicative
Rytov curve acquired two parametric perspectives;

i) by the multiplicative quaternion approach

Eτ(s) = f(s) +∗ a ~ ν(s),

ii) by the multiplicative homotetic motion

Eτ(s) = f(s) +∗ Ra
ψ.

Case 2. Assuming the second scenario, there is a constant
multiplicative angle betweenE(s) andν(s). We know that
the following can be written as an electric field:

E∗ = λ1 ·∗ τ(s) +∗ λ2 ·∗ ν(s) +∗ λ3 ·∗ β(s).

After that, if we consider this case’s sufficiency, we get,

〈E, ν(s)〉∗ = cos∗ θ, θ = const.

Rev. Mex. Fis.70061301
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Generally, we know that when inspecting the optic fiber, we
can write,

〈E, E〉∗ = const.

On the other hand,ψ andθ are the multiplicative angles, so
we get as follows,

E = sin∗ θ ·∗ cos∗ ψ ·∗ τ(s) +∗ cos∗ θ ·∗ ν(s)

+∗ sin∗ θ ·∗ sin∗ ψ ·∗ β(s)

Next, by taking the last equation’s multiplicative derivative,
we may get the following result:

E∗=(−∗ψ∗ ·∗ sin∗ ψ ·∗ sin∗ θ −∗ k(s) ·∗ cos∗ θ) ·∗ τ(s)

+∗ (sin∗ θ ·∗ cos∗ ψ ·∗ k(s)

−∗ κ(s) ·∗ sin∗ θ ·∗ sin∗ ψ) ·∗ ν(s)

+∗ (κ(s) ·∗ cos∗ θ +∗ ψ∗ ·∗ cos∗ ψ ·∗ sin∗ θ) ·∗ β(s).

Generally, we can write electric field with the help of multi-
plicative Frenet frame elements as follows,

E = 〈E, τ(s)〉∗ ·∗ τ(s)

+∗ 〈E, ν(s)〉∗ ·∗ ν(s) +∗ 〈E, β(s)〉∗ ·∗ β(s).

When we take the last equation’s multiplicative derivative,
we obtain;

E∗ = (〈E, τ(s)〉∗∗ −∗ k(s) ·∗ 〈E, ν(s)〉∗) ·∗ τ(s)

+∗ (〈E, ν(s)〉∗∗ +∗ k(s) ·∗ 〈E, τ(s)〉∗
−∗ κ(s) ·∗ 〈E, β(s)〉∗) ·∗ ν(s)

+∗ (〈E, β(s)〉∗∗ +∗ κ(s) ·∗ 〈E, ν(s)〉∗) ·∗ β(s).

We can get the following equation by matching and cor-
recting the appropriate values

E∗ = (−∗ψ∗ ·∗ 〈E, β(s)〉∗ −∗ k(s) ·∗ 〈E, ν(s)〉∗) ·∗ τ(s)

+∗ (k(s) ·∗ 〈E, τ(s)〉∗ −∗ 〈E, β(s)〉 ·∗ κ(s)) ·∗ ν(s)

+∗ (κ(s) ·∗ 〈E, ν(s)〉∗ +∗ ψ∗ ·∗ 〈E, τ(s)〉∗) ·∗ β(s).

When we contrast the top equation with the general equation
of the electric field, we can get as follows

ψ∗ = 0∗.

We can display all of these in matrix form as follows:. The
polarization plane’s rotational motion is displayed in this ma-
trix.

(〈E, ν(s)〉∗∗
〈E, β(s)〉∗∗

)
=

(
0∗ 0∗
0∗ 0∗

)(〈E, ν(s)〉∗
〈E, β(s)〉∗

)
.

Theorem 3. Suppose thatf(s) is a multiplicative curve de-
fined as optic fiber concerning{τ(s), ν(s), β(s)} and ν(s)

has a constant angle between polarization vectorE. So, we
can examine the motion of this curve in two ways with the
help of the multiplicative quaternion. Firstly, through the
agency ofa(s, ψ) = sin∗ ψ +∗ cos∗ ψ ·∗ ν(s) the polariza-
tion vector’s homothetic motion is calculated and theEτ(s)

multiplicative Rytov curve is acquired two perspectives;

i) by the multiplicative quaternionic approach

Eτ(s) = f(s) +∗ cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ a ~ ν(s),

ii) by the multiplicative homotetic motion

Eτ(s) = f(s) +∗ cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ Ra
ψ ·∗ ν(s).

Proof. We suppose thatf(s) is a multiplicative curve defined
as optic fiber concerning{τ(s), ν(s), β(s)}. So, the polar-
ization vectorEν(s) respect to multiplicative calculus can be
described as follows;

E = sin∗ θ ·∗ cos∗ ψ ·∗ τ(s) +∗ cos∗ θ ·∗ ν(s)

+∗ sin∗ θ ·∗ sin∗ ψ ·∗ β(s),

whereψ = const. If we make the necessary calculations, we
compute as ;

a(s, ψ) ~ β(s) = sin∗ ψ ·∗ β(s) +∗ sin∗ ψ ·∗ τ(s).

Thus, we can writeEν(s) multiplicative Rytov curve two
forms;

Eν(s) = f(s) +∗ cos∗ θ ·∗ ν(s) +∗ sin∗ θ ·∗ a ~ β(s),

and

Eν(s) = f(s) +∗ cos∗ θ ·∗ ν(s) +∗ sin∗ θ ·∗ Ra
ψ ·∗ β(s),

thatψ = const.
Corollary 3 Suppose thatf(s) is a multiplicative curve de-
fined as optic fiber concerning{τ(s), ν(s), β(s)} and τ(s)
has a right angle between polarization vectorE. So, we can
examine the motion of this curve in two ways with the help of
the multiplicative quaternion. Firstly, through the agency of
a(s, ψ) = cos∗ ψ +∗ sin∗ ψ ·∗ τ(s) the polarization vector’s
homothetic motion is calculated and theEτ(s) multiplicative
Rytov curve acquired two perspectives;

i) by the multiplicative quaternionic representation

Eτ(s) = f(s) +∗ a ~ ν(s),

ii) by the multiplicative homotetic motion

Rev. Mex. Fis.70061301
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Eτ(s) = f(s) +∗ Ra
ψ.

Corollary 4 Suppose thatf(s) is a multiplicative curve de-
fined as optic fiber concerning{τ(s), ν(s), β(s)} and τ(s)
has a right angle between polarization vectorE. So, we can
examine the motion of this curve in two ways with the help of
the multiplicative quaternion. Firstly, through the agency of
a(s, ψ) = cos∗ ψ +∗ sin∗ ψ ·∗ τ(s) the polarization vector’s
homothetic motion is calculated and theEτ(s) multiplicative
Rytov curve acquired two parametric perspectives;

i) by the multiplicative quaternionic approach

Eτ(s) = f(s) +∗ a ~ ν(s),

ii) by the multiplicative homotetic motion

Eτ(s) = f(s) +∗ Ra
ψ.

Case 3.Assuming the third scenario, there is a constant mul-
tiplicative angle betweenE(s) andβ(s). We know that the
expression for an electric field is as follows:

E∗ = λ1 ·∗ τ(s) +∗ λ2 ·∗ ν(s) +∗ λ3 ·∗ β(s)

After that, if we consider this case’s sufficiency, we get,

〈E, β(s)〉∗ = cos∗ θ, θ = const.

Generally, we know, that when inspecting the optic fiber, we
can write,

〈E,E〉∗ = const.

On the other hand,ψ andθ are the multiplicative angles, so
we get as follows,

E = sin∗ θ ·∗ cos∗ ψ ·∗ τ(s) +∗ sin∗ θ ·∗ sin∗ ψ ·∗ ν(s)

+∗ cos∗ θ ·∗ β(s).

Generally, we can write electric field with the help of multi-
plicative Frenet frame elements as follows,

E = 〈E, τ(s)〉∗ ·∗ τ(s) +∗ 〈E, ν(s)〉∗ ·∗ ν(s)

+∗ 〈E, β(s)〉∗ ·∗ β(s).

Next, by taking the last equation’s multiplicative derivative,
we may get the following result

E∗ = (〈E, τ(s)〉∗∗ −∗ k(s) ·∗ 〈E, ν(s)〉∗) ·∗ τ(s)

+∗ (〈E, ν(s)〉∗∗ +∗ k(s) ·∗ 〈E, τ(s)〉∗
−∗ κ(s) ·∗ 〈E, β(s)〉∗) ·∗ ν(s)

+∗ (〈E, β(s)〉∗∗ +∗ κ(s) ·∗ 〈E, ν(s)〉∗) ·∗ β(s).

We can get the following equation by matching and correct-
ing the appropriate value

E∗ = (−∗ψ∗ ·∗ 〈E, ν(s)〉∗ −∗ k(s) ·∗ 〈E, ν(s)〉∗) ·∗ τ(s)

+∗ (k(s) ·∗ 〈E, τ(s)〉∗) +∗ ψ∗ ·∗ 〈E, τ(s)〉∗
−∗ κ(s) ·∗ 〈E, β(s)〉∗) ·∗ ν(s)

+∗ (〈E, ν(s)〉 ·∗ κ(s)) ·∗ β(s).

When we contrast the top equation with the general equation
of the electric field, we can get as follows

ψ∗ = −∗k(s).

We can display all of these in matrix form as follows. The po-
larization plane’s rotational motion is displayed in this matrix

(〈E, τ(s)〉∗∗
〈E, ν(s)〉∗∗

)
=

(
0∗ −∗k(s)

k(s) 0∗

)(〈E, τ(s)〉∗
〈E, ν(s)〉∗

)
,

ψ(s) = −∗
∫ ∗

k(s) ·∗ d∗(s).

Theorem 4. Suppose thatf(s) is a multiplicative curve de-
fined as optic fiber concerning{τ(s), ν(s), β(s)} and τ(s)
has a constant angle between polarization vectorE. So, we
can examine the motion of this curve in two ways with the
help of the multiplicative quaternion. Firstly, through the
agency ofa(s, ψ) = cos∗ ψ +∗ sin∗ ψ ·∗ τ(s) the polariza-
tion vector’s homothetic motion is calculated and theEτ(s)

multiplicative Rytov curve is acquired from two parametric
perspectives;

i) by the multiplicative quaternionic approach

Eτ(s) = f(s) +∗ cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ a ~ ν(s),

ii) by the multiplicative homotetic motion

Eτ(s) = f(s) +∗ cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ Ra
ψ ·∗ ν(s).

Proof. Let us suppose thatf(s) is a multiplicative curve de-
fined as optic fiber concerning{τ(s), ν(s), β(s)}. So, the po-
larization vectorEτ(s) respect to multiplicative calculus can
be described as follows;

E = cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ sin∗ ψ ·∗ ν(s)

+∗ sin∗ θ ·∗ cos∗ ψ ·∗ β(s),

whereψ = const. If we make the necessary calculations, we
compute as;

a(s, ψ) ~ ν(s) = cos∗ ψ ·∗ ν(s) +∗ sin∗ ψ ·∗ β(s).

Thus, we can writeEτ(s) multiplicative Rytov curve two
forms;

Eτ(s) = f(s) +∗ cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ a ~ ν(s),
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and

Eτ(s) = f(s) +∗ cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ Ra
ψ ·∗ ν(s),

thatψ = const.
Corollary 5 Suppose thatf(s) is a multiplicative curve de-
fined as optic fiber concerning{τ(s), ν(s), β(s)} and τ(s)
has a right angle between polarization vectorE. So, we can
examine the motion of this curve in two ways with the help of
the multiplicative quaternion. Firstly, through the agency of
a(s, ψ) = cos∗ ψ +∗ sin∗ ψ ·∗ τ(s) the polarization vector’s
homothetic motion is calculated and theEτ(s) multiplicative
Rytov curve acquired two parametric perspectives;

i) by the multiplicative quaternionic approach

Eτ(s) = f(s) +∗ a ~ ν(s),

ii) by the multiplicative homotetic motion

Eτ(s) = f(s) +∗ Ra
ψ.

Corollary 6 Suppose thatf(s) is a multiplicative curve de-
fined as optic fiber concerning{τ(s), ν(s), β(s)} and τ(s)
has a right angle between polarization vectorE. So, we can
examine the motion of this curve in two ways with the help of
the multiplicative quaternion. Firstly, through the agency of
a(s, ψ) = cos∗ ψ +∗ sin∗ ψ ·∗ τ(s) the polarization vector’s
homothetic motion is calculated and theEτ(s) multiplicative
Rytov curve acquired two parametric perspectives;

i) by the multiplicative quaternionic approach

Eτ(s) = f(s) +∗ a ~ ν(s),

ii) by the multiplicative homotetic motion

Eτ(s) = f(s) +∗ Ra
ψ.

4. EM-trajectories through multiplicative
Frenet frame in an optic fiber in 3D Mul-
tiplicative space

4.1. Electromagnetic trajectories following a light
wave’s polarization plane as it passes through an
optic fiber if Eτ(s)

In section third, first case, the following is how we deter-
mined the electric field’s multiplicative derivative:

E∗ = (−∗k(s) ·∗ 〈E, ν(s)〉∗) ·∗ τ(s)

+∗ (k(s) ·∗ 〈E, τ(s)〉∗) ·∗ ν(s) +∗ 〈E, β(s)〉
·∗ (−∗κ(s) +∗ ψ∗) ·∗ ν(s)

+∗ 〈E, ν(s)〉 ·∗ (κ(s)−∗ ψ∗) ·∗ β(s).

Then, we used the Lorentz force equation and matched ob-
taining the conclusion in the first case, we get as follows

〈φ(E), τ(s)〉∗ = −∗k(s) ·∗ 〈E, ν(s)〉∗ = −∗〈φ(τ(s)), E〉∗
〈φ(E), ν(s)〉∗ = k(s) ·∗ 〈E, τ(s)〉∗

+∗ (−∗κ(s) +∗ ψ∗) ·∗ 〈E, β(s)〉
〈φ(E), β(s)〉∗ = 〈E, ν(s)〉 ·∗ (κ(s)−∗ ψ∗).

We can write the results obtained from the last equation in
the following matrix form




φ(τ(s))
φ(ν(s))
φ(β(s))


 =




0∗ k(s) 0∗
−∗k(s) 0∗ κ(s)−∗ ψ∗

0∗ −∗κ(s) +∗ ψ∗ 0∗







τ(s)
ν(s)
β(s)


 .

On the other hand, we know that if we can make the neces-
sary calculations on the light of the Lorentz force, we can get
a magnetic field equation. So we assume thatB is a magnetic
field and then we get the following;

B(s) = (κ(s)−∗ ψ∗) ·∗ τ(s) +∗ k(s) ·∗ β(s).

Theorem 5. AssumeE has a multiplicative constant angle
with τ(s). Thus, the multiplicative magnetic fieldB of the
Eτ(s) trajectories according toE implies;

B(s) = (κ(s)−∗ ψ∗) ·∗ τ(s) +∗ k(s) ·∗ β(s).

Proof. Generally, we can write the multiplicative magnetic
vector as follows;

B = a1 ·∗ τ(s) +∗ a2 ·∗ ν(s) +∗ a3 ·∗ β(s).

With the help of the Lorentz force equation, we can ob-
tain the following;

B ×∗ τ(s) = −∗a2 ·∗ β(s) +∗ a3 ·∗ ν(s) = φ(τ(s)),

B ×∗ ν(s) = a1 ·∗ β(s)−∗ a3 ·∗ τ(s) = φ(ν(s)),

B ×∗ β(s) = −∗a1 ·∗ ν(s) +∗ a2 ·∗ τ(s) = φ(β(s)).

Then, we can finda1 = κ(s)−∗ ψ∗, a3 = k(s).

The proof is completed.¤
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4.2. Electromagnetic trajectories following a light
wave’s polarization plane as it passes through an
optic fiber if Eν(s)

In section third, second case, the following is how we deter-
mined the electric field’s multiplicative derivative:

E∗ = (−∗ψ∗ ·∗ 〈E, β(s)〉∗ −∗ k(s) ·∗ 〈E, ν(s)〉∗) ·∗ τ(s)

+∗ (k(s) ·∗ 〈E, τ(s)〉∗ −∗ 〈E, β(s)〉 ·∗ κ(s)) ·∗ ν(s)

+∗ (κ(s) ·∗ 〈E, ν(s)〉∗ +∗ ψ∗ ·∗ 〈E, τ(s)〉∗) ·∗ β(s).

Then, we used the Lorentz force equation and matched ob-
taining the conclusion in the second case, we get as follows

〈φ(E), τ(s)〉∗ = −∗ψ∗ ·∗ 〈E, β(s)〉∗ −∗ k(s) ·∗ 〈E, ν(s)〉∗
= −∗〈φ(τ(s)), E〉∗

〈φ(E), ν(s)〉∗ = k(s) ·∗ 〈E, τ(s)〉∗ −∗ 〈E, β(s)〉 ·∗ κ(s)

〈φ(E), β(s)〉∗ = κ(s) ·∗ 〈E, ν(s)〉∗ +∗ ψ∗ ·∗ 〈E, τ(s)〉∗.

We can write the results obtained from the last equation in
the following matrix form




φ(τ(s))
φ(ν(s))
φ(β(s))


 =




0∗ k(s) ψ∗

−∗k(s) 0∗ κ(s)
−∗ψ∗ −∗κ(s) 0∗







τ(s)
ν(s)
β(s)




On the other hand, we know that if we can make the neces-
sary calculations on the light of the Lorentz force, we can get
a magnetic field equation. So we assume thatB is a magnetic
field and then we get the following;

B(s) = κ(s) ·∗ τ(s)−∗ ψ∗ ·∗ ν(s) +∗ k(s) ·∗ β(s).

Theorem 6. AssumeE has a multiplicative constant angle
with ν(s). Thus, the multiplicative magnetic fieldB of the
Eτ(s) trajectories according toE implies;

B(s) = κ(s) ·∗ τ(s)−∗ ψ∗ ·∗ ν(s) +∗ k(s) ·∗ β(s).

4.3. Electromagnetic trajectories following a light
wave’s polarization plane as it passes through an
optic fiber if Eβ(s)

In section third, third case, The following is how we deter-
mined the electric field’s multiplicative derivative:

E∗ = (−∗ψ∗ ·∗ 〈E, ν(s)〉∗ −∗ k(s) ·∗ 〈E, ν(s)〉∗) ·∗ τ(s)

+∗ (k(s) ·∗ 〈E, τ(s)〉∗) +∗ ψ∗ ·∗ 〈E, τ(s)〉∗
−∗ κ(s) ·∗ 〈E, β(s)〉∗) ·∗ ν(s)

+∗ (〈E, ν(s)〉 ·∗ κ(s)) ·∗ β(s).

Then, we used the Lorentz force equation and matched ob-
taining the conclusion in the third case, we get as follows

〈φ(E), τ(s)〉∗ = −∗ψ∗ ·∗ 〈E, ν(s)〉∗ −∗ k(s) ·∗ 〈E, ν(s)〉∗
〈φ(E), ν(s)〉∗ = k(s) ·∗ 〈E, τ(s)〉∗) +∗ ψ∗ ·∗ 〈E, τ(s)〉∗

−∗ κ(s) ·∗ 〈E, β(s)〉∗
〈φ(E), β(s)〉∗ = 〈E, ν(s)〉 ·∗ κ(s).

We can write the results obtained from the last equation in
the following matrix form




φ(τ(s))
φ(ν(s))
φ(β(s))


 =




0∗ ψ∗ +∗ k(s) 0∗
−∗ψ∗ −∗ k(s) 0∗ κ(s)

0∗ −∗κ(s) 0∗







τ(s)
ν(s)
β(s)


 .

On the other hand, we know that if we can make the neces-
sary calculations on the light of the Lorentz force, we can get
a magnetic field equation. So we assume thatB is a magnetic
field and then we get the following;

B(s) = (κ(s)−∗ ψ∗) ·∗ τ(s) +∗ k(s) ·∗ β(s).

Theorem 7. AssumeE has a multiplicative constant angle
with τ(s). Thus, the multiplicative magnetic fieldB of the
Eτ(s) trajectories according toE implies;

B(s) = (κ(s)−∗ ψ∗) ·∗ τ(s) +∗ k(s) ·∗ β(s).

5. Physical interpretations

Case 1.Assume that the multiplicative unit tangent vectorτ
and the polarization vectorE form a constant angle. Next,
we calculate the magnetic fieldB and the polarization vector
E in the following manner:

E = cos∗ θ ·∗ τ(s) +∗ sin∗ θ ·∗ sin∗

(∫ ∗
κ(s) ·∗ d∗(s)

)

·∗ ν(s) +∗ sin∗ θ ·∗ cos∗

(∫ ∗
κ(s) ·∗ d∗(s)

)
·∗ β(s),

B(s) = (κ(s)−∗ ψ∗) ·∗ τ(s) +∗ k(s) ·∗ β(s).

Therefore, in the following three situations, we can ana-
lyze the behavior of a charged particle in the Killing magnetic
field B:

(I). The charged particle moves parallel to the magnetic
field if E is parallel to the magnetic fieldB.

(II). If 〈E, B〉∗ = 0∗, then

(κ(s)−∗ ψ∗) ·∗ cos∗ θ

+∗ sin∗ θ ·∗ cos∗

( ∫ ∗
κ(s) ·∗ d∗(s)

)
·∗ k(s) = 0∗,
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This givesk(s) = 0∗ andκ(s) = 0∗, the electromag-
netic curve is a multiplicative line. As a result, we may
state that the charged particle follows a multiplicative
line trajectory in the Killing magnetic fieldB.

(III). If 〈E, B〉∗ = const., then

(κ(s)−∗ ψ∗) ·∗ cos∗ θ +∗ sin∗ θ

·∗ cos∗

( ∫ ∗
κ(s) ·∗ d∗(s)

)
·∗ k(s) = const.,

This givesk(s) = const. andκ(s) = const., namely the
electromagnetic curve is a multiplicative helix (see, Fig. 2).
Therefore, we can say that the charged particle follows a mul-
tiplicative helical trajectory in the Killing magnetic fieldB.
Case 2.Assume that the multiplicative unit normal vectorν
and the polarization vectorE form a constant angle. Next,
we calculate the magnetic fieldB and the polarization vector
E in the following manner:

E = sin∗ θ ·∗ cos∗

(∫ ∗
0∗ ·∗ d∗(s)

)
·∗ τ(s) +∗ cos∗ θ

·∗ ν(s) +∗ sin∗ θ ·∗ sin∗

(∫ ∗
0∗ ·∗ d∗(s)

)
·∗ β(s),

B(s) = κ(s) ·∗ τ(s)−∗ ψ∗ ·∗ ν(s) +∗ k(s) ·∗ β(s).

Therefore, in the following three situations, we can ana-
lyze the behavior of a charged particle in the Killing magnetic
field B:

(i). The charged particle moves parallel to the magnetic
field if E is parallel to the magnetic fieldB.

(ii). If 〈E, B〉∗ = 0∗, then

sin∗ θ ·∗ cos∗

(∫ ∗
0∗ ·∗ d∗(s)

)
·∗ κ(s)−∗ ψ∗ ·∗ cos∗ θ

+∗ k(s) ·∗ sin∗ θ ·∗ sin∗

(∫ ∗
0∗ ·∗ d∗(s)

)
·∗ = 0∗.

Namely,

sin∗ θ ·∗
(

cos∗(
∫ ∗

0∗ ·∗ d∗(s)

)
·∗ κ(s))

+∗ sin∗

( ∫ ∗
0∗ ·∗ d∗(s)

)
·∗ k(s) = 0∗

So, we getκ(s)/k(s)∗ = const. We can say that, the
trajectory is a multiplicative general helix.

(iii). If 〈E, B〉∗ = const., then

sin∗ θ ·∗ cos∗

(∫ ∗
0∗ ·∗ d∗(s)

)
·∗ κ(s)−∗ ψ∗ ·∗ cos∗ θ

+∗ k(s) ·∗ sin∗ θ ·∗ sin∗

( ∫ ∗
0∗ ·∗ d∗(s)

)
·∗ = const.,

Namely,

sin∗ θ ·∗ cos∗

(∫ ∗
0∗ ·∗ d∗(s)

)
·∗ κ(s))

+∗ sin∗

(∫ ∗
0∗ ·∗ d∗(s)

)
·∗ k(s) = const.

So, we getκ(s) = sin∗(
∫ ∗ 0∗ ·∗ d∗(s)) andk(s) =

cos∗(
∫ ∗ 0∗ ·∗ d∗(s)). We can say that, the trajectory is

a multiplicative general helix.

Case 3.Assume that the multiplicative unit tangent vectorβ
and the polarization vectorE form a constant angle. Next,
we calculate the magnetic fieldB and the polarization vector
E in the following manner:

E = −∗ sin∗ θ ·∗ cos∗

(∫ ∗
k(s) ·∗ d∗(s)

)
·∗ τ(s)

−∗ sin∗ θ ·∗ sin∗

(∫ ∗
k(s) ·∗ d∗(s)

)
·∗ ν(s)

+∗ cos∗ θ ·∗ β(s),

B(s) = κ(s) ·∗ τ(s) +∗ (ψ∗ +∗ k(s)) ·∗ β(s).

Therefore, in the following three situations, we can ana-
lyze the behavior of a charged particle in the Killing magnetic
field B:

(i). The charged particle moves parallel to the magnetic
field if E is parallel to the magnetic fieldB.

(ii). If 〈E, B〉∗ = 0∗, then

−∗ sin∗ θ ·∗ cos∗

(∫ ∗
k(s) ·∗ d∗(s)

)
·∗ κ(s))

+∗ (ψ∗ +∗ k(s)) ·∗ cos∗ θ = 0∗.

Namely,sin∗ θ ·∗ cos∗(
∫ ∗

k(s) ·∗ d∗(s)) ·∗ κ(s)) = 0∗.
Thus, we can say thatκ(s) = 0∗ and the trajectory is
multiplicative planar curve orcos∗(

∫ ∗
k(s) ·∗d∗(s)) =

0∗, i.e. k(s) = π/2∗ where the angleπ/2∗ is a mul-
tiplicative right angle, namely in Euclidean sense it is
equal toecos(log [π/2]).

(iii). If 〈E, B〉∗ = const., then−∗ sin∗ θ ·∗ cos∗(
∫ ∗

k(s) ·∗
d∗(s))) ·∗ κ(s)) +∗ (ψ∗ +∗ k(s)) ·∗ cos∗ θ = const.
Then, we obtain thatθ∗ = earcsin(logcos

∫
k(s)ds).
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FIGURE 1. Three cases of propagation of the polarized light along the multiplicative circular fiber optic.

FIGURE 2. Three cases of propagation of the polarized light along the multiplicative helical fiber optic.

FIGURE 3. a) Propogation of the polarized light along the helical optic fiber and b) circular fiber in Euclidean space.

6. Example

Let us take the multiplicative circle β1(s) =
(ecos (log s), esin (log s)), we can say thatβ1 is an electromag-
netic curve. The charged particle motion along the curveβ1

in the related magnetic field and the three cases of propaga-
tion of the linearly polarized light in the optic fiber along the

curveβ1 obtained as in Fig. 1.

Next, if we take the multiplicative helixβ2(s) =
(elog s, ecos (log s), esin (log s)), we can say thatβ2 is an elec-
tromagnetic curve. The charged particle motion along the
curveβ2 in the related magnetic field and the three cases of
propagation of the linearly polarized light in the optic fiber
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along the curveβ2 obtained as in Fig. 2.

7. Discussion and conclusion

Behavior of the linearly polarized light wave’s geometric
phase interactions throughout this effective optical fiber.
In geometry, non-Newtonian calculus is advancing quite
quickly. In this work, quaternion algebra has been used to
simplify and make more comprehensible equations that were
previously generated in a convoluted manner. The trajec-
tories were obtained in a different way than the Euclidean
since the work was done in a different space with a differ-
ent metric, meaning that the mathematical tools were differ-
ent. In order to understand the trajectories-which are not pre-
cisely circular-it is crucial to examine various space forma-
tions. With the new analysis approach and in this new en-
vironment, a different visualization may be obtained thanks
to the trajectories we found when using the Newtonian ap-
proach [47,48]. The recognized helix curve and the equation

that was computed as a helix curve are not the same [47,48].
This is because there is a difference in the circle picture de-
fined in this space [45,47].

The case for Euclidean space when the tangent vector of
the curve associated with the polarized light waves along the
optical fiber is perpendicular to the electric field is shown vi-
sually in Fig. 3. It was obtained for the circular and helix
curves visualized in Sec. 6. In this way, it is seen how the
change in metric and space changes the propagation of the
light wave. The Rytov curve, the path taken by the linearly
polarized light wave as it moves along the optical fiber, can be
described quaternionically and as homothetic motion thanks
to recently defined multiplicative quaternions.
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