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A non-newtonian approach to geometric phase
through optic fiber via multiplicative quaternions

H. Ceyhan

Department of Mathematics, Science Faculty, Ankara University, 06100 Ankara, Turkey.
e-mail: hazallceyhan@gmail.com

Z. Ozdemir

Department of Mathematics, Arts and Science Faculty, Amasya University, 05189 Amasya, Turkey.
e-mail: zehra.ozdemir@amasya.edu.tr

S. Kaya

Department of Mathematics, Faculty of Engineering and Natural Sciences, Usak University, 64200 Usak, Turkey.
e-mail: semra.kaya@usak.edu.tr

I. Gurgil

Department of Mathematics, Faculty of Engineering and Natural Sciences, Usak University, 64200 Usak, Turkey.
e-mail: ibrahim.gurgil@usak.edu.tr

Received 29 March 2024; accepted 17 June 2024

In this paper, we researched magnetic and electromagnetic curves in multiplicative Euclidean 3-space via multiplicative quaternion algebra.
Firstly, we examined the geometric phase representation of the polarized light wave in the optic fiber by multiplying Frenet frame. Using
the quaternionic approaches, we were able to derive the magnetic curve equations and theorems. Then, three particular instances have be
illustrated with examples of electromagnetic curves and magnetic field equations. Lastly, we provided an interpretation of the findings. With
the help of the results, we were able to present an alternative viewpoint on the construction of trajectories (such as circular or spiral-like ones)
that do not exist uniquely in the realm of physics.
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1. Introduction hensive book was also published that explored multiplicative
differential geometry, which we used as a basis for our pa-

Alternative calculus, sometimes known as non-NewtoniarP€" [13]. Additionally, Georgiev and Zennir produced two
calculus, was developed by Grossman and Katz in Ref, [1]70T€ volumes that dealt with multiplicative differential cal-
This page, which includes definitions for many different cal-Cculus to build on their earlier work [14] and multiplicative
culi (geometric calculus, anageometric calculus, etc.), mad@nalytic geometry [15]. Aslaat al. constructed new quater--
it possible to deal with various calculus. Then, Grossmarflions 0 integrate these findings with quaternion algebra in
researched this new subject comprehensively [2]. Studiekl6]- Outstanding special curves were examined by Aydin
have advanced since the introduction of these new types &t @ using multiplicative differential geometry [17]. Non-
calculus. Works on bigeometric and multiplicative calcu- Néwtonian calculus was used by Nurkan and others to in-

lus were written by Grossman and Stanley, respectively, iYestigate vector characteristics [18]. Ceyhan &milemir
Refs. [3,4]. This article makes use of multiplicative differ- researched the generalized tube surfaces according to multi-

ential geometry. Multiplicative calculus was first studied by Plicative calculus [19]. Then, hyperbolic quaternion, one of
several mathematical specialties [5]. After that, authors exghe quaternionic structures, and its motion were investigated
amined multiplicative calculi in different systems in Ref. [6]. Vi non-Newtonian approach [20].

At the same time, important methods for mathematics were A key topic in the study of physics is electromagnetic the-
studied to understand the relationship with multiplicative cal-ory. It is the first paper on topological phase study in this
culi [7]. Bashirov and the others researched multiplicativefield, which made it possible for mathematicians to pursue
calculi and their interpretations in Ref. [8]. In the light of this topic as a research area [21]. After the seminal work
these papers, this subject was researched in various fieldsy Krastov and Oblov [22], it was believed that this topic
for example, physics and biomedical concerning mathemateould be studied from a geometric perspective. Ross exam-
ical approach [9, 10]. At the same time, Boruah and Hazined the motions of the polarization plane in a highly sig-
arika produced two significant works on non-Newtonian cal-nificant paper, which the author prepared in light of these
culus [11,12]. Apart from all these publications, a compre-events [23]. The geometric phase, or Berry’s phase, has since



2 H. CEYHAN, Z. OZDEMIR, S. K. NURKAN, ANDIi. GURGIL

been used in numerous studies on a wide range of topicsyhereu = (u1,us2,u3), v = (v1,v2,v3) € R2 andc € R,
this is our research area for the advancement of electromaghatR, is the set of all the positive real numbers.
netic theory [24-26]. Geometry’s foundational topic, Rie-  Moreover,R? has a metric defined as follows;
mannian surfaces, has also been explored concerning this o
topic [27]. Moreover, two important areas of geometry re- (u,v)s : REZRS — RZ
search, complex projective space, and Kahler magnetic field
have been studied [28, 29]. With all of the advancements and
the cap:_zlcity to study magne_tic trajectories, res_earch on thgnerey — (u1, us, us) andv = (vy, ve, v3) € R3.
connection betweep magnetic curves and sp_eual curves.has In 3-D multiplicative Euclidean spadg®, the multiplica-
started [30]. Studying charged particle mobility along opticjye product of two 3-D multiplicative vectors are defined as;
fiber has also been done [31]. Barros released two significant
works that expanded our viewpoint at the same time [32,33].4; x, v=(elo8 v2losva—logvzlogus ploguilogus—loguilogvs
Cabrerizo has published two works demonstrating that elec-
tromagnetic theory can be examined in other significant ge- ¢
ometric spaces [34, 35]. Mathematical researchers have pub- 3
lished from many perspectives on geometric phase, whicly"€"€t = (u1,u2, us) andv = (Ul’v2’v372 €E.
has become one of the most interesting topics of recent times _On the other hand, we take € [0, e"].Then, it can be
[36—41]. Bozkurt and her colleagues used mathematical proV-Vrltten as follows,
grams to visualize the motion of magnetic curves [42, 43].
This topic is still being published on and can be developed
further in many other fields of study [44—48]. arccos, ¢ = e*recos(log¥)

In this paper, we investigate Berry’s phase concern-
ing multiplicative differential geometry in multiplicative 3D for ¢ € [e~!,1,],for more details see [13,17]. The multi-
space. Firstly, we gave some fundamental background abogticative angle is represented Byn this entire study.
multiplicative calculi and electromagnetic theory. The defi-  Moreover,s — p(s) € R, is the multiplicative derivative
nition of multiplicative quaternion algebra and the basic def-of p ats defined by rule of L'Hospital as follow;
initions and theorems of mathematics that we used to create
this publication are provided in the second section. In the
third section, we demonstrate the Berry phase model for mul- s I
tiplicative curves concerning three cases about constant muY\-'here is the usual derlvat|ve.3 . s .
tiplicative angles between multiplicative Frenet frame vector Let (I, fo), fu : R. _)*R* 'S a n:ijltlphcatlvg t_mregu-
fields and E. In the same section, we gave valuable theorenl%r curve, namely nowherﬁ (s) and f** are multiplicative
for the aims and relationships of multiplicative quaternionco"mear’ (see mo're.det'alls [17D. :
algebras. We showed electromagnetic multiplicative curves Then the multiplicative Fre.net frame equations concern-
and calculated the multiplicative magnetic field in the follow- Ing f are calculated as follows;

__logui log v1+log us log vo+log us log v:
<u,1}>*—6g1g1 g u2 log vz gsgs’

log u; log va—log v1 log usz )
)

log 0
Ccos, 0 = ecos(log ),

p*(s) = esosP())",

ing section. After that, we organized physical interpretations 7*(s) = k(s) - v(s)
by finding theorems and calculating equations. To make what * ’
we accomplished more apparent, we provided examples in V*(s) = —uk(s) -« 7(8) +4« k(8) -« B(s),

the next section and used mathematical tools to display them.

B7(s) = —«hils) -« v(s),

2. Basic materials wherek(s) andx(s) are called the multiplicative curvature
5 o and multiplicative torsion of the multiplicative curve, respec-
RY = {(u1,u2,u3) : uy,uz,us € R.} be a multiplicative tively. Moreover,r(s),v(s), andj3(s) are called the multi-

3-space which has following operations, plicative unit tangent, unit principal normal, and binormal at
+, :R3R3 - R® the point(sy), respectively. Then the binormal satisfies that;
U 44 v = (ugv1, ugve, uzvs3), B(s) = 7(s) X« v(s).
— : RI2R — R? Definition 1. Let (I, f) be a multiplicative parameterized
u Uz Us curve. We can say the curve is the multiplicative generalized
U—x V= (U, P U) helix if its multiplicative tangents make a constant angle with
R a fixed multiplicative vector in the pacg? [13].
and The definition of H,, the set of multiplicative quater-
-t RaR3 — R3, nions, is:
Cx U= (elogClOQU1 3 elogCZOQU2 5 elogClOgu;;% H*:{qe:(QIv q2, 43, q4) - 41,492,943, q4) HS R*} C R:&
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One way to express a multiplicative quaternigris as ConsequentlyE’s direction can be represented as the linear
’ _ combination of{r, v, 3} multiplicative Frenet frame fields.
qe=(q1 "« €x)F4(q2 » 1)+ (g3 s Ju) 4 (qa -« ki), After that, we get as follows:
wherel, = ¢, and0, = 1. E* = A1 7(8) 44 A2 u () 4 Az i B(s),
ex = (14,04, 04,04), where)\;, i = 1,2, 3 are differentiable functions according to
i = (0,,1,,0,,0,) multiplicative calculus.
* o Next, for three distinct scenarios, the direction of the po-
Jx = (04,04, 14, 04), larized light's state was investigated, considering the planes
on whichE lies.
k* = (0*70*70*7 1*)7

Case 1.Assuming the first scenario, there is a constant mul-
tiplicative angle betweet’(s) and7(s). We know that the

abide by the norms of multiplication ) TAs) &
expression for an electric field is as follows:

i) = e O ()2 =e 0, (k)2 = e 0.
(i) (3:) (k) E* =X o 7(8) +4 A2 5 v(8) +4 Az i B(5).
Theorem 1. Letxz, = (21 -« €x) ++« (T2 "« ix) ++ (T3 -«

. . . o . . After that, if we consider this case’s sufficiency, we get,
Jx) ++ (x4 -« ki) is unit multiplicative quaternion and is Y g

a pure multiplicative quatern_mn. Then, thie linear map- (E,7(s))s = cos, 0, 6= const
ping represented as a matrix is given as the matrix form
M = [My, M>, M3] has the following columns; Generally, we know, examining the optic fiber allows us to
A B elog z3+log x5 —log x5 —log x5 write,
_ 1 2x l T 1 2x l o
M = elog2zy log z4+log 22 log z3 , <E,E>* — const
e~ log 2x1 log z3+log 2z2 log x4
- o log 201 logzuHlog2as logzs T On the other hand) and are the multiplicative angles, so
A ) ) ) ) we get as follows,
]\42 — elogmljtloga:gflog r5—logxy ,
i elog 2z log za+log 224 log 23 ] E = cos, 0 -, 7—(5) 4+, sin, 0 -, sin, 1/1 . 1/(5)
r log 2z log x3+log 222 log x .
N [t s - o 6.
]\43 — e~ log 2z, log zz+log 2z4 log z3 , ' . .
elog 21 +log zf—log 23 —log 23 If we take a derivative of last equation, we get;

A A A A E* = (—,k(s) -4 sin, 0 -, sin, V) -, 7(s
where(M)'M = I and@(%) = M. (Zek(s) V) ()

We give a multiplicative quaternion, = (21 - €.) +« +. (k(s) - co8y 0 —y K(5) -4 8iny 8 - cOSy ¢
(T2 & x) 4 (T3 4 Ju) +4 (24 -« ki) and then conjugate, X e )
norm, modulus, and inverse of multiplicative quaternion, re- +i V" s €OSy Y -y sing ) -, v(s)

spectively, given by +. (K(8) s sin 6 -, sin,
SL';* = (1'1) T (x2 T Z*) T (1‘3 T ]*) Tk (1'4 x k*)» Tx w* x SiN ’(/} “x SiTL 0) x B(S)
N, (z,) = ellos=1)* +(log z2)* +(log z5)*+(log z4)* Generally, we can write electric field with the help of multi-

plicative Frenet frame elements as follows,

2 )2 2)2 2
| Te ‘* _ e\/(logarl) +(log x2)2+(log x3)2+(log x4) ,

E = (E,7(8))s -2 7(8) - (B, 0(8))s -« v(s)
o (B, B(8))e -4 B(s).

We can get the following equation by matching and correct-
ing the appropriate values.

and

meil* = xei*/*N*(l'e)-

3. A geometric phase representation of the po-

larized light wave in the optic fiber through E* = ((B,7(8))% =+ k(8) « (B, v(8))x) - 7(3)
multiplicative Frenet frame o (B 0(5)) 4 k(5) s (B, 7(5)s

In multiplicative Euclidean 3-space, we can write an optic — 5(5) - (B, B(5))s) - v(5)

fiber as a multiplicative biregular curve . We can de- .

scribe polarized light's state’s direction as the directiofiEof +i ((E, B(8))s ++ £(8) « (B, v(8))«) -+ B(s).
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After making the required modifications, we can write it like and
this:

E oy = f(8) +4c08,0 -, 7(8) +4sin, 0 -, R% -, v(s),
B = (o b(s) (B u(s)2) 4 (3 S ) b

thaty = const
(k(5) o (B, 7(3))) -4 () Corollary 1.  Suppose thaf(s) is a multiplicative curve
+u (B, 8(5)) s (—sh(8) +4 ) - v(5) defined as optic fiber concernidg (s), v(s), 3(s)} andr(s)
N has a right angle between polarization vecfor So, we can
o (B, 1(8) wa (5(8) =0 7)o (). S o

examine the motion of this curve in two ways with the help of
When we contrast the top equation with the general equatiothe multiplicative quaternion. Firstly, through the agency of

of the electric field, we can get as follows; a(s,v) = cos, 1 +. sin, ¥ . 7(s) the polarization vector’s
. homothetic motion is calculated and thg ) multiplicative
V" = k(s). Rytov curve acquired two parametric perspectives;

We can display all of these in matrix form as follows. The

polarization plane’s rotational motion is displayed in this ma- i) by the multiplicative quaternion approach

trix.
(B (0 o) (B Frte) = £(5) +2 a® v(),
<E75(8)>: —*FL(S) 0* <Ea/8(8>>* ’
* i) by the multiplicative quaternion approach
05) = [ 5l d' (o)
Theorem 2. Suppose thaf (s) is a multiplicative curve de- Ers) = f(s) +« RY.

fined as optic fiber concerning the multiplicative Frenet frame ) ) o )
{7(s),v(s), B(s)} andr(s) has a constant angle between po- whereRy is a rotation multiplicative matrix and
larization vectorE. So, we can examine the motion of this .

curve in two ways with the help of the multiplicative quater- U(s) = / K(s) - d*(s).

nion. Firstly, through the agency of the unit multiplicative

quaterniona(s, 1) = cos,  +. sin -, 7(s) the polariza- Corollary 2. Suppose thaf(s) is a multiplicative curve de-

tion vector's homothetic motion is calculated and thg X T :
multiplicative Rytov curve acquired two parametric perspec—flned as optic fiber concernlngr.(s),'u(s), Bls)} and r(s)
has a right angle between polarization vecir So, we can

tives; examine the motion of this curve in two ways with the help of
i) by the multiplicative quaternionic approach the multiplicative quaternion. Firstly, through the agency of
a(s,1) = cos, ¥ +, sin, ¥ -, 7(s) the polarization vector’s
Br()=1(5) +4 €084 0 -, T(8) +4 8i, 0 -1 0 ® v(s). homothetic motion is calculated and thg ) multiplicative

B Rytov curve acquired two parametric perspectives;
i) by the multiplicative homotetic motion

i) by the multiplicative quaternion approach
Er(sy=1(8) +x €084 0 -x 7(8) +s sin, 0 - Ry, -« v(5).

Proof.  Assuming that the optic fiber has a definite
definition via the multiplicative curvef(s) concerning
{7(s),v(s),B(s)}. So, the polarization vectdt, , respect
to multiplicative calculus can be described as follows:

E s = f(s) +ea®v(s),

i) by the multiplicative homotetic motion

E =08, 0 -, 7(8) 44 sing 0 -, sin, ¥ -, v(s) By = £(s) +. R
T(s) — # LTy

+4 8iny 0 -4 cos, ¥ - B(s),
Case 2. Assuming the second scenario, there is a constant
wherey) = const If we make the necessary calculations, we multiplicative angle betwee (s) andv(s). We know that
compute as follows: the following can be written as an electric field:

a(s,1) ® v(s) = cos, ¥ -, V(8) +4 sing ¥ -« B(s).

Thus, we can writé, ) multiplicative Rytov curve two ) _ ) o
forms: After that, if we consider this case’s sufficiency, we get,

E* = X1 - 7(8) 4 A2 - v(8) 44 A3 - B(9).

Ers) = [(5) 440840 -, 7(8) 44 sin, 0 - a ® v(s), (E,v(s))« =cos. 6, 6= const

Rev. Mex. Fis70061301
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Generally, we know that when inspecting the optic fiber, wehas a constant angle between polarization vedforSo, we
can write, can examine the motion of this curve in two ways with the
help of the multiplicative quaternion. Firstly, through the
(E, E). = const agency ofa(s,v) = sin, ¥ +, cos, 1 -, v(s) the polariza-
tion vector’s homothetic motion is calculated and thig,,

On the other handy and( are the multiplicative angles, so multiplicative Rytov curve is acquired two perspectives;

we get as follows,

E = sin, 0 -, cos, ¥ -, 7(8) +4 cos, 0 -, v(s) i) by the multiplicative quaternionic approach

+. siny 0 -, sing, ¥ -, G(s)

Next, by taking the last equation’s multiplicative derivative, E sy = f(5) +4 €08, 0 -, 7(5) + sin. 0 - a ® v(s),

we may get the following result: i) by the multiplicative homotetic motion

Ef=(—40" -y sin, 1 - sin, 0 —, k(8) 4 cosy 0) -, 7(8)
+y (siny 0 -4 cos, ¥ -4 k(s) Er() = f(5) +u o8y 0 i T(5) 4 s8I0y 0 - Ry, - v(5).

—x £(5) -4 810, 6 1y i 1)) -4 1(5) Proof. We suppose that(s) is a muItipIicative curve defined
+i (K(S) 5 €084 0 44 Y™ -4 cOS, P -, 8in, 0) -4 B(s). as optic fiber concerningr(s),v(s), 3(s)}. So, the polar-
ization vectorE, ) respect to multiplicative calculus can be
Generally, we can write electric field with the help of multi- described as follows:
plicative Frenet frame elements as follows,
B = (B.r(s))s -2 7(s) E =sin, 6 -, co8. ¥ -5 7(8) 44 €084 0 -, ()

+ (B, v(8))w x v(5) +u (B, B(5))s -« B(s)-

When we take the last equation’s multiplicative derivative,

+y 8iny 6 - sing Y - B(s),

wherey = const If we make the necessary calculations, we

we obtain; compute as ;
E* = ((B,7(8))% =« k(8) “« (B, v(8))x) -+ 7(8) a(s,¥) ® B(s) = sin, ¥ -, B(5) 4 sin, ¢ -, 7(s).
e (B v(8))5 A k() - (B, 7(8))s Thus, we can writév, ;) multiplicative Rytov curve two
—x k() (B, B(5))«) -+ v(5) forms;
e (B B(8))5 +s 8(8) - (B, v(5))+) -+ B(s)- Ey(s) = f(8) +x o8, 04 v(s) +u 810, 0 - a ® B(s),

We can get the following equation by matching and cor-zng
recting the appropriate values

B* = () o (B, B(3)) — k(s) - (E,v(s)).) - 7(s)
o (k(s) - (B, 7(s)) < B(s)) - 5ls)) ww(s)  thaty = const
)

Eysy = f(8) 44 €084 0 -, 1(8) 44 sin, 0 - Ry, -« B(s),

Corollary 3 Suppose thaf(s) is a multiplicative curve de-
e (R(s) -« (B v(s))x + e (B 7(8))4) - (). fined as optic fiber concerningr(s),v(s), 3(s)} and 7(s)
has a right angle between polarization vecior So, we can
examine the motion of this curve in two ways with the help of
the multiplicative quaternion. Firstly, through the agency of
v* = 0,. a(s, 1)) = cos, 1 +. sin, ¥ -, 7(s) the polarization vector’s
homothetic motion is calculated and thg .,y multiplicative
We can display all of these in matrix form as follows:. The Rytov curve acquired two perspectives;
polarization plane’s rotational motion is displayed in this ma-
trix. i) by the multiplicative quaternionic representation

<<E,V(s)>i> _ ( 0. 0. ) (<E,V(8)>*)
(B,B(s))x 0« 0 (E,B(s))+)
Theorem 3. Suppose thaf(s) is a multiplicative curve de-
fined as optic fiber concerningr(s), v(s), 8(s)} and v(s) i) by the multiplicative homotetic motion

When we contrast the top equation with the general equation
of the electric field, we can get as follows

ET(S) = f(S) +Tra® V(5)7

Rev. Mex. Fis70061301
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By = f(s) +« Ry, We can get the_following equation by matching and correct-
ing the appropriate value
Corollary 4 Suppose thaf(s) is a multiplicative curve de-

fined as optic fiber concerningr(s), v(s), 5(s)} and 7(s) E" = (=" o (E,v(s))x —« k(s) w (B, v(8))e) 4 T(5)

has a right angle between polarization vector So, we can i E
examine the motion of this curve in two ways with the help of o (B(8) o (B, 7(8))) e 07 o (B 7(5))
the multiplicative quaternion. Firstly, through the agency of — K(8) =« (E,B(8))x) -« u( )

a(s,1)) = cos, P +, sin, ¥ -, 7(s) the polarization vector’s

homothetic motion is calculated and thg ) multiplicative i (B, v(5)) -« 5(5)) -« B(s)-

Rytov curve acquired two parametric perspectives; When we contrast the top equation with the general equation

of the electric field, we can get as follows

U = — k().

E s = f(s) +ea®v(s), We can display all of these in matrix form as follows. The po-
larization plane’s rotational motion is displayed in this matrix

() = (o 7o) (o)
o) = = [ K)o (0)

Theorem 4. Suppose thaf(s) is a multiplicative curve de-

fined as optic fiber concerningr(s),v(s), 8(s)} and 7(s)

has a constant angle between polarization vedforSo, we

can examine the motion of this curve in two ways with the

help of the multiplicative quaternion. Firstly, through the

agency ofa(s,v) = cos, ¥ +. sin, ¥ -, 7(s) the polariza-
(E,B(s)), = cos, 0, 0= const. tion vector's homothetic motion is calculated and thig )

multiplicative Rytov curve is acquired from two parametric
Generally, we know, that when inspecting the optic fiber, wePerspectives;
can write,

i) by the multiplicative quaternionic approach

ii) by the multiplicative homotetic motion

ET(S) = f(S) +x Ri.

Case 3.Assuming the third scenario, there is a constant mul-
tiplicative angle betweet(s) and3(s). We know that the
expression for an electric field is as follows:

E* =X o 7(8) +4 Ao s v(8) +4 A3 4 B(8)

After that, if we consider this case’s sufficiency, we get,

i) by the multiplicative quaternionic approach
(E,E), = const

S Er(s) = f(5) +4 €08, 0 -, T(5) 44 s8I0, 0 -1 a ® v(5),
On the other hand) and are the multiplicative angles, so

we get as follows, i) by the multiplicative homotetic motion
E =5in, 0 -, cos, ¥ -« 7(8) 44 sin, 0 -, sin, ¥ -, v(s)
+. cos, 0 -, B(s).

By = f(5) +u o8y 0 i T(5) + sins 0 - Ry, - v(s).

Proof. Let us suppose that(s) is a multiplicative curve de-

Generally, we can write electric field with the help of multi- fined as optic fiber concerning (s), v(s), 5(s)}. So, the po-
plicative Frenet frame elements as follows, larization vectorE.(,y respect to multiplicative calculus can

be described as follows;
E = (B, 7())s s 7(5) 4 (E,0(8))s s (5)

+e (E, 8(s))x -« B(s)-

Next, by taking the last equation’s multiplicative derivative
we may get the following result

E = o8, 0 -, 7(8) 4+ sin, 6 -, sin, ¢ -, v(s)
+ 8Ny 0 - cos, Y - B(8),

*wherey = const. If we make the necessary calculations, we

compute as;
E* = ((E,7(5))s =« k(s) -« (E,v(s))«) -+ 7(s) a(s,9) ® v(s) = cos, Y -y v(8) +4 sin, ¢ - B(s).
e (B, v ()% +o k(s) -+ (E, 7(5))« Thus, we can write?, () multiplicative Rytov curve two
—« K(8) x (B, B(8))s) =« v(s) forms;
i (B, B(8))x 4 £(8) -« (B, v(8))s) ~« B(s). Er(s) = [(s) +ucos, 0, 7(s) +u sin, 0 - a ® v(s),

Rev. Mex. Fis70061301
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and Then, we used the Lorentz force equation and matched ob-

taining the conclusion in the first case, we get as follows
Er(s) = f(8) 44 cos, 0 - T(8) +u sin, 6 -, Rf,} - v(s),

thatz/h: const et () ol . (B(E), 7(s))x = —«k(s) -« (E,v(8))x = —+(&(7(5)), E)«
Corollary 5 Suppose thaf(s) is a multiplicative curve de-

fined as optic fiber conceringr(s), v(s), 3(s)} and 7(s) (A(E), v(s))s = k(s) -« (B, 7(s))

has a right angle between polarization vectér So, we can o (—uh(8) 44 V%) - (B, B(5))

examine the motion of this curve in two ways with the help of

the multiplicative quaternion. Firstly, through the agency of (?(E),3(s))« = (E,v(s)) -« (k(s) =« ).

a(s, 1)) = cos, P +, sin, ¥ -, 7(s) the polarization vector’s
homothetic motion is calculated and thg ) multiplicative

_ - ! We can write the results obtained from the last equation in
Rytov curve acquired two parametric perspectives;

the following matrix form

i) by the multiplicative quaternionic approach

¢(7(s))
E s = f(s) tea®v(s), ( Z((;Ei))g )
ii) by the multiplicative homotetic motion 0., k(s) 0, 7(s)
( —k(s) 0. K(s) —x ¥* ) ( v(s) ) .
Er(s) = f(S) +x Ri 0. _*/9(5) +a P 0x ﬁ(s)

Corollary 6 Suppose thaf(s) is a multiplicative curve de-

fined as optic fiber concerningr(s), v(s), A(s)} and (s) On the other hand, we know that if we can make the neces-

: e ry calculations on the light of the Lorentz force, wi n
has a right angle between polarization vector So, we can sary calculations on the light of the Lorentz force, we can get

i . . : . magnetic field equation. So we assume & a magnetic
examine the motion of this curve in two ways with the help of. _—
L ; ) ield and then we get the following;
the multiplicative quaternion. Firstly, through the agency of
a(s, 1) = cos, 1 +, sin, ¥ -, 7(s) the polarization vector’s
homothetic motion is calculated and thg ) multiplicative B(s) = (k(8) —« ") & 7(8) +« k() -« B(5).
Rytov curve acquired two parametric perspectives;

i) by the multiplicative quaternionic approach Theorem 5. Assumef has a multiplicative constant angle
with 7(s). Thus, the multiplicative magnetic field of the
By = f(5) +va® v(s), E. () trajectories according ta” implies;

ii) by the multiplicative homotetic motion B(s) = (K(8) —s ) -4 7(5) 4+ k(s) - B(s).

ET(S) = f(S) +x i}' . T .
Proof. Generally, we can write the multiplicative magnetic

: : o t follows;
4. EM-trajectories through multiplicative vector as JoTows:

Frenet frame in an optic fiber in 3D Mul-

tiplicative space B = a1 7(s) +x az =« v(5) +x az -« B(s)-

4.1. Electromagnetic trajectories following a light i )
wave’s polarization plane as it passes through an _ With the h_elp of the Lorentz force equation, we can ob-
optic fiber if £, tain the following;

In section third, first case, the following is how we deter-
mined the electric field’s multiplicative derivative:

E" = (=uk(s) -« (B, v(5))) - 7(s)
+a (k(s) -« (E,7(8))4) -« v(s) +« (E, B(s))

x (_*K(S) + w*) % V(S) Then, we can ﬁn@l — H(S) . 1/}*7 as = k‘(S)
o (B, v(s)) - ((s) =« ") - B(s). The proof is completed:]

B X, 7(s) = —xaz -» B(s) +x a3 -« v(s) = ¢(7(s)),
B x,v(s) = a1« B(s) —« a3 -« 7(s5) = ¢(v(s)),
B %, B(5) = —a1 4 ¥(5) 2 a3 - 7(5) = (6(5).
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4.2. Electromagnetic trajectories following a light Then, we used the Lorentz force equation and matched ob-
wave’s polarization plane as it passes through an taining the conclusion in the third case, we get as follows

optic fiberit Fus (G(E), () = =" o (B3~ b(s) o B, w(s).
In section third, second case, the following is how we deter-(¢(E), v(s)). = k(s) -« (E,7(5))x) +« 1" -« (E,7(5))«
mined the electric field’s multiplicative derivative:
—s () -« (B, B(s))x
= (=" (B, B(8))s —x k(5) -+ (E,v(5))x) -+ 7(5) (O(E), B(5))s = (B, v(s)) -x k().
s (E(8) « (B, 7(5))s — ( B(s)) « K(8)) -« V() We can write the results obtained from the last equation in
b (5(3) -0 (B, 0(s))s + o (B, 7(5))a) - B(s). the following matrix form

o(7(s))
Then, we used the Lorentz force equation and matched ob- ( p(v(s) | =
taining the conclusion in the second case, we get as follows o(B(s))

" 4y k(s " T(s
(G(B),7(8))e = =" oo (B, B(5))s — k(5) o (B, v(s)). (ngw@ v ﬁ@)(i$>.
—(9(7(s)), E)« 0. —«i(s) O, B(s)

On the other hand, we know that if we can make the neces-

V2]

(O(B), v(8))e = K(s) -x (By7(s)) - < Bls)) -« rls) sary calculations on the light of the Lorentz force, we can get

(P(E), B(8))s = K(S) 4« (E,V(8))s +4 ™ s (E,7(5)) . amagnetic field equation. So we assume fha a magnetic
field and then we get the following;

We can write the results obtained from the last equation in B(8) = (K(5) —s %) s 7(8) +4 k(5) - B(5).

the following matrix form
Theorem 7. AssumeF has a multiplicative constant angle

o(7(s)) 0, k(s) P 7(s) with 7(s). Thus, the multiplicative magnetic field of the
( o(v(s)) ) = ( —.k(s) 0. K(s) ) ( ) E. () trajectories according ta” implies;
$(5(s))

On the other hand, we know that if we can make the neces- S )
sary calculations on the light of the Lorentz force, we can geb.  Physical interpretations
a magnetic field equation. So we assume fha a magnetic
field and then we get the following;

B(s) = (k(8) =« ¢7) - 7(5) +4 k(s) -« B(s)-

Case 1.Assume that the multiplicative unit tangent vector
and the polarization vectat form a constant angle. Next,
. ok we calculate the magnetic fielsl and the polarization vector
Bls) = rls) -u 7(s) =« 97 -2 v(5) 4 k(s) -+ (5)- E in the following manner:

Theorem 6. AssumeF has a multiplicative constant angle o . . * «
with v(s). Thus, the multiplicative magnetic field of the E =008, . 7(s) . sin. 6 -, sin, </ ri(s) -« d (8))
E.(s) trajectories according td” implies;

B(s) = £(5)  7(5) =4 " -« 1(5) 2 k(5) -+ B(5). '”@+”““”%</”@*f@>”@’
B(s) = (5(s) —+ 6°) 0 7(5) . (s) -, B(s),

4.3. Electromagnetic trajectories following a light . ) o
Therefore, in the following three situations, we can ana-

wave’s polarization plane as it passes through an

optic fiber if Ey.) Iyze the behavior of a charged particle in the Killing magnetic
field B:
In section third, third case, The following is how we deter- (). The charged particle moves parallel to the magnetic
mined the electric field’s multiplicative derivative: field if £ is parallel to the magnetic field.
E* = (—00* o (B, 0(8))s —s k() s (B, 0(3))s) -+ 7(5) (. If (£, B), = 04, then
o (B(8) 4 (E,7(5))s) 44 " - (E, 7(5))4 (k(s) —x ™) -4 cos, 0

= 1(8) w (B, B(8))x) -« v(s)

« Siny 0 -, cos, *ms w d¥(s) ]| -« k(s) = 04,
o (B, (s) - 5(5)) - A(s). ' </ *) ”) )
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This givesk(s) = 0. andx(s) = 0., the electromag-
netic curve is a multiplicative line. As a result, we may
state that the charged particle follows a multiplicative
line trajectory in the Killing magnetic field.

(. If (E, B), = const, then
(K(8) —x ¥™) -4 cOS, 6 +, sin, 6
-4 COS, </* K(S) -« d*(s)) -« k(s) = const,

This givesk(s) = const. andk(s) = const, namely the
electromagnetic curve is a multiplicative helix (see, Fig. 2).

sin, 0 -, cos, (/ 0y -4 d*(s)) w K(8) —x " s cos. 0

+i k(8) -x siny 0 -, sin, (/ O s d*(s)> -« = const,

Namely,

sin. 0 -, cos, (/ 0, - d*(s)) o K(s))
+. sin, (/* Oy s d*(s)) -« k(s) = const

Therefore, we can say that the charged particle follows a mul-

tiplicative helical trajectory in the Killing magnetic field.
Case 2.Assume that the multiplicative unit normal vecior
and the polarization vectaf form a constant angle. Next,
we calculate the magnetic field and the polarization vector
E in the following manner:

FE = sin, 0 -, cos, (/ 0x d*(s)) o« T(8) +4 cos, 0

“x V(S) +. sin, 6 -, sin, </* 04 -« d*(S) Tk ﬁ(s),

B(3) = K(s) -4 7(5) = 0" -2 0(s) ++ k(s) -+ B(3).

So, we gets(s) = sin. ([ 0, - d*(s)) andk(s) =
cos, (" 0. -« d*(s)). We can say that, the trajectory is
a multiplicative general helix.

Case 3.Assume that the multiplicative unit tangent vector
and the polarization vectar form a constant angle. Next,
we calculate the magnetic field and the polarization vector

FE in the following manner:
/ k(s) -» d*(s)) o (s)

— sin, 0 -, sin, </ E(s) -« d*(s)) « v(8)

FE = —,sin, 0 -, cos, <

Therefore, in the following three situations, we can ana-

lyze the behavior of a charged particle in the Killing magnetic

field B:

(). The charged particle moves parallel to the magnetic

field if E is parallel to the magnetic fiel8.

(i). If (£, B), = 04, then
Sin, 0 - cos, (/ 0x *x d*(s)) w K(8) —x W™ -4 cos, 0

+u k(s) -« 8in, 0 -, sin, (/ 04 - d*(S)) x

Namely,

sin, 6 -, (cos*(/* 0y d*(s)) « K(8))
+, sin, (/* (. d*(8)> + k(s)

So, we gets(s)/k(s)* = const We can say that, the
trajectory is a multiplicative general helix.

0.

0.

(ii). If (£, B). = const, then

s cosy 0 - 6(5)a
B(s) = £(s) -« 7(5) +u (V7 +4 K(5)) - B(s)-

Therefore, in the following three situations, we can ana-
lyze the behavior of a charged particle in the Killing magnetic
field B:

(). The charged particle moves parallel to the magnetic
field if £ is parallel to the magnetic fielB.

(ii). If (E, B), = 0,, then

— . 8in, 6 -, cos, </* k(s) -« d*(3)> « k(8))

Fu (V" +4 K(8)) - cosy 0 = 0,.

Namely,sin. 6 . cos, ([ k(s) - d*(5)) -« £(5)) = Os.
Thus, we can say that(s) = 0, and the trajectory is
multiplicative planar curve atos, ([~ k(s) . d*(s))
0., i.e. k(s) = w/2x where the angler/2x is a mul-
tiplicative right angle, namely in Euclidean sense it is
equal togcos(log [7r/2])

If (E,B), = const, then—, sin, 0 - cos*(f* k(s) -
d*(s))) -« k(5)) +« (V" ++« k(s)) -« cos, 0 = const
Then, we obtain that, = earesin(logeos/ k(s)ds)

(i)
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c) (E*, 3*)« = const.

a) (E,t) = const. b) (E,t) = const.

FIGURE 3. a) Propogation of the polarized light along the helical optic fiber and b) circular fiber in Euclidean space.

6. Example curve3; obtained as in Fig. 1.

Let us take the multiplicative circle 5i(s) = Next, if we take the multiplicative helix3z(s) =
(ecos (logs) esin(logs))y e can say thaf, is an electromag- (el°8#, ecos (108 5) ¢sin(logs)) e can say thaB, is an elec-
netic curve. The charged particle motion along the cutve tromagnetic curve. The charged particle motion along the
in the related magnetic field and the three cases of propagaurve 3; in the related magnetic field and the three cases of
tion of the linearly polarized light in the optic fiber along the propagation of the linearly polarized light in the optic fiber
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that was computed as a helix curve are not the same [47,48].
This is because there is a difference in the circle picture de-
7 fined in this space [45,47].

) The case for Euclidean space when the tangent vector of
Behavior of the linearly polarized light wave's geometric the curve associated with the polarized light waves along the
phase interactions throughout this effective optical fiberOptical fiberis perpendicular to the electric field is shown vi-
In geometry, non-Newtonian calculus is advancing quiteSually in Fig. 3. It was obtained for the circular and helix
quickly. In this work, quaternion algebra has been used t&urves visualized in Sec. 6. In this way, it is seen how the
simplify and make more comprehensible equations that werghange in metric and space changes the propagation of the
previously generated in a convoluted manner. The trajecight wave. The Rytov curve, the path taken by the linearly
tories were obtained in a different way than the EuclidearPolarized light wave as it moves along the optical fiber, can be
since the work was done in a different space with a differ-described quaternionically and as homothetic motion thanks

along the curves, obtained as in Fig. 2.

Discussion and conclusion

ent metric, meaning that the mathematical tools were differf0 recently defined multiplicative quaternions.
ent. In order to understand the trajectories-which are not pre-
cisely circular-it is crucial to examine various space fOVma'Acknowledgment
tions. With the new analysis approach and in this new en-
vironment, a different visualization may be obtained thanksThe authors would like to express their sincere gratitude to
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