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Enhancing heat transfer performance:
A comprehensive review of perforated obstacles
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Heat exchangers (HEs) find application in a variety of industrial processing and thermal management systems in which heat transfer (HT)
is generally the critical requirement for successful operation. This paper reviews the application of perforated obstacles to HT augmentation
in HEs by combining recent findings of numerical simulations and experimental investigations. The numerical evaluation encompasses a
detailed analysis of the various geometric parameters of the perforated obstacles, including perforation shape and size, distribution, and
spacing, along with relevant operating parameters. This study well represents their deep impact on overall HE performance. Our findings
convincingly indicate that the obstacles with perforations were substantially successful at improving HT rates while lowering pressure drop,
which evidences itself by high HT coefficients. Further, different industrial applications of perforated obstacles have been exhibited in HVAC
systems (Heating, ventilation, and air conditioning), automotive cooling and refrigeration, and in process industries, with great versatility
and scalability. This review, therefore, gives insight into the possible use of perforated obstacles in the complete revolution of HT efficiency
within HEs while while paving the way for further researche in thermal engineering and industrial processes.
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1. Introduction

Heat exchangers (HEs) are devices used to transfer heat (HT)
across two or more fluids, or from one solid surface to a fluid
at different temperatures (Rebhiet al. [1]). They are also
used in many fields and applications: HVAC systems (Heat-
ing, ventilation, and air conditioning) (Ahmadet al. [2]; Dj-
effal et al. [3]; Tahrouret al. [4]; and Sakhriet al. [5-7]),
chemical processing (Phillipset al. [8]), power generation
(Orts-Gonzalezet al. [9]), and refrigeration (Zhenget al.
[10]).

This HT is achieved through two ways: passive (Liu and
Sakr [11]; and Sheikholeslamiet al. [12) and active (An-
drzejczyket al. [13]; and Thapaet al. [14]). HEs exist in
various forms, such as shell-and-tube (Abdet al. [15]; and
Rashidiet al. [16]), plate-and-frame (Arsenyevaet al. [17];
and Arsenyevaet al. [18]), finned tube (Geiser and Kottke
[19]; Bhuiyan and Islam [20]; and Basavarajappaet al. [21]),
and compact HEs (Stone [22]; Shah [23]; and Liet al. [24]),
each suitably applicable according to the fluid properties, op-
erating conditions, space constraints, and other variables.

Active techniques of HT augmentation serve with the
help of external energy input or mechanical systems to en-
hance HT rates in a system:

- This involves mechanical devices to apply turbulence
on fluid flow, using pumps, mixers, or agitators among

others. The turbulent flow promotes mixing and dis-
rupts the boundary layer to increase the convective
HT coefficients, hence enhancing HT as justified by
Konopackiet al. [25]; Qi et al. [26]; and Maxsonet al.
[27].

- Techniques of electrohydrodynamics are those meth-
ods attempting to influence fluid flow with the help
of electric fields in order to enhance HT enhancement
(Molki and Damronglerd [28], Laohalertdechaet al.
[29], and Wanget al. [30]). The action of electro-
static or electromagnetic forces induces fluid motion,
reduces boundary layer thickness, enhancing convec-
tive HT rates, especially in the case of micro-channels
and complex geometries.

- As many researchers have realized the fact that the ap-
plication of acoustic or ultrasonic waves to the fluid
can destroy boundary layers, thereby enhancing mix-
ing and improving HT rates, the use of acoustic waves
in improving HT has been studied by Chenet al. [31];
Setarehet al. [32]; and Zhanget al. [33].

- Controlled mechanical vibrations can be imposed to
enhance HT due to fluid mixing and thinning of stag-
nant boundary layers associated with it. In this manner,
vibrational enhancement becomes very effective in mi-
crochannels and low flow rate applications, as shown
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by Shoele and Mittal [34]; Duanet al. [35]; and Fuet
al. [36].

- Nanofluids are engineered suspensions of nanoparti-
cles in a base fluid usually water or oil. With the
high thermal conductivity of nanoparticles, the overall
thermal conductivity of the fluid is augmented, hence
the enhancement in the performance of HT concerned
(Menni et al. [37-39]; Maouedjet al. [40]; Ma-
hammediet al. [41]; and Boursaset al. [42]).

- Magnetic fields may be applied to ferrofluids or param-
agnetic fluids, causing fluid motion and thus enhancing
convective heat transfer. Wanget al. [43]; Bezaatpour
and Goharkhah [44]; and Zhang and Zhang [45] dis-
cuss the enhancement of convective HT by the appli-
cation of magnetic fields. Fluid flow patterns could be
altered by a magnetic field to enhance HT efficiency.
These active methods provide an avenue to achieve a
substantial increase in HT rates in several areas of ap-
plication; and they can be matched to each type of per-
formance need, as well as to operational conditions.

Passive techniques of thermal enhancement do not have
any external energy input and operate on the principle of
fluid dynamics combined with HT. In fact, many passive
techniques require geometrical modification or specially de-
signed material for the enhancement of the process of HT.
Some of the popularly used passive techniques include:

- Special geometries or surface patterns that enhance the
effective surface area and promote fluid mixing for the
augmentation of convective HT: fins, dimples, grooves,
and microchannels (Chamkhaet al., [46]; Djeffal et al.,
[47]; Rebhiet al., [48]; Hammidet al., [49]; Eiamsa-
ard and Promvonge, [50]; Ligraniet al., [51]; and
Menniet al., [52]).

- The application of high thermal conductivity or low
emissivity coatings to HT surfaces so as to enhance
HT rates by reducing thermal resistance (Chatys and
Orman [53]; and Nguyen and Ahn [54]).

- Optimization of the HE geometry by increasing the
number of tube passes, improving tube layouts maxi-
mizes the HT effectiveness while minimizing pressure
drop (Kortiet al. [55]; and Youcefet al. [56]).

- The methodology of passive device investigation: tur-
bulators or vortex generators (VGs) are placed in the
fluid flow path with an intention to induce turbu-
lence, aiming at enhancing convective HT (Menniet
al. [57,58]; and Salmiet al. [59]).

- Using passive means, such as surface roughening or
even placing baffles at strategic locations to enhance
convection and, hence, HT in systems where buoyancy
effects are of leading importance (Menni and Azzi

[60,61]; Menniet al. [62-64]; Ameuret al. [65,66];
Chamkha and Menni [67]; Salmiet al. [68]; Medjahed
et al. [69]; and Afif et al. [70]).

- Besides, passive methods based on magnetic fields
have appeared as promising tools for efficient HT
enhancement. Of special interest are heterogeneous
magnetic-field-based techniques interacting with elec-
trically conducting fluids. This interaction gener-
ates Lorentz forces, which can be utilized to destabi-
lize the flow by altering the mean-flow velocity dis-
tribution with a corresponding augmentation of HT
[71]. The use of electrically conducting fluids in
these passive techniques precludes any external energy
or mechanical-related systems to alter flow patterns,
hence, these are promising alternatives to enhance ther-
mal performance [72-74].

These passive methods are cost-effective and environ-
mentally benign ways of enhancing HT in applications that
range from a simple HE to electronic cooling systems with
little maintenance and energy consumption.

Some of the devices employed to enhance HT in vari-
ous engineering applications include perforated VGs, turbu-
lators, deflectors, baffles, fins, and ribs. Each of them works
on different principles and is employed for specific require-
ments and conditions. They have small perforations or holes
at strategic locations over obstacles or surfaces that come
into direct contact with fluid flow. The perforations, when
fluid flows over such surfaces, induce vortices that disturb
the boundary layers and thus help in enhancing HT through
mixing and a reduction in thermal resistance. Perforated ob-
structions are quite effective in increasing HT coefficients
and hence find wide applications in HE design and cooling
systems where space and efficiency are the prime factors of
concern.

The present review analysis, therefore, tries to capture the
essence of the enhancement in HT brought about by perfo-
rated obstacles in HEs using numerical simulations and ex-
perimental studies. It goes into critical analysis through vari-
ous geometric dimensions of perforated obstacles along with
operational parameters that can provide the effects on the per-
formance of HEs. It also explores the vast application of
perforated obstacles that ranges from HVAC systems, auto-
motive cooling, refrigeration, and process industries showing
that this method can be versatile as well as scalable. Basi-
cally, the present review aims at an in-depth understanding of
how perforated obstacles can change the course of heat trans-
fer efficiency inside HEs and thus advancements in thermal
engineering and also industrial processes.

2. Assessing numerical investigations

The use of perforated obstacles represents a promising
method for performance enhancement of HEs. Such obsta-
cles are inserted into the HE system in order to disrupt bound-
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TABLE I. Significant HEs analyzed through numerical simulations with perforated obstacles.

Authors Computational configuration

Eiamsa-Ardet al. [75]

Liu et al. [76]

Wanget al. [83] [76]
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Authors Computational configuration

Li et al. [89]

Biçer et al. [93] ] [76]

Nakhchiet al. [96]

Ghanbari and Javaherdeh [103]
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Authors Computational configuration

Gautamet al. [108]

Shaeri and Jen [113]

Rostane and Abboudi [118]
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ary layers, enhance HT rates, and optimize fluid flow charac-
teristics. A great number of different numerical studies con-
sidered performance of such configurations. For instance, the
following Eiamsa-Ardet al. [75]; Liu et al. [76,77]; Tuncer
et al. [78]; Sahelet al. [79]; Chamoli [80]; Chamoli and
Thakur [81]; Kandukuriet al. [82]; Wang et al. [83-85];
Songet al. [86]; Boukhadiaet al. [87]; Ismail et al. [88]; Li
et al. [89]; Ganieet al. [90]; Ameur and Menni [91]; Zhao
et al. [92]; Biçer et al. [93]; Pérezet al. [94]; Tavakoli
and Soufivand [95]; Nakhchiet al. [96]; Javanmard and
Ashrafizadeh [97]; Hedau and Saini [98]; Zouet al. [99]; Sun
et al. [100]; Dastbelarakiet al. [101]; Razaviet al. [102];
Ghanbari and Javaherdeh [103]; Xueet al. [104]; Qi and
Yuan [105]; Godi [106]; Godi and Petinrin [107]; Gautamet
al. [108]; Van Hapet al. [109]; Lertnuwat [110]; Esmaeili
and Rashidi [111]; Jainet al. [112]; Shaeri and Jen [113];
Shaeri and Yaghoubi [114,115]; Huanget al. [116]; Bar-
zoki et al. [117]; and Rostane and Abboudi [118] are thus
capable of adding meaningful insights. On the other hand,
Table 1 summarizes some of the key works that are deemed
necessary to be taken into consideration for a fully informed
state-of-the-art overview.

Eiamsa-ardet al. [75] performed the HT performance of
a square wings case (SW-PB) using the modified perforation-
baffle configuration in a channel. Unlike the classical
transversal solid baffle (TB), impinging jets and recircula-
tion flows were produced. In contrast, the perforated baffle
yielded smaller recirculation but lower HT rates compared to
TB and SW-PB, resulting in the reduction of friction losses.
In this direction, Liu et al. [76] proposed a new micro-
channel heat sink with perforated baffles/walls, MSPBPW,
which was proposed to enhance the temperature of the heat-
ing sink lower surface distribution. They numerically inves-
tigated two parameters: L1, the width of the rectangular hole
on the baffle, while L2 represents the distance from the chan-
nel wall perforation to the baffle hole center. Their observa-
tions revealed that this geometry greatly improved the per-
formance of HT despite the resultant pressure drop. Further,
both the Nu number and the f coefficient reduced with L1

improvement and increased upon rising L2.
Liu et al. [77] investigated the enhancement of perforated

ribs in a cooling channel with added inclined holes. They
showed that for larger inclined angles, the averaged Nusselt
(Nu) in the inclined scenarios was higher than that for the
straight ones due to the fact that flows were directed toward
the incline. Tunceret al. [78] enhanced a solar drying sys-
tem with an advanced improved absorber coating with ZnO
nanoparticles and an infrared heating system; it was also con-
cluded that vertical solar heater cases with perforated baffles
presented optimum performance.

On the other hand, Sahelet al. [79] conducted a com-
putational performance evaluation of a new baffle geometry
inside the channel and reported that there was a remarkable
enhancement of HT for the perforated baffle rather than the
plain baffle geometry. Chamoli [80] explored the effects of
V-downward-facing perforated baffle-roughened channels on

HT and friction loss, and the optimal geometric parameters
obtained by using Response Surface Methodology (RSM)
and artificial neural network (ANN). Further, Chamoli and
Thakur [81], by using the exergy method, estimated the exer-
getic efficiency of these ducts in a solar air heater (SAH) and
showed an improved heat absorption and dissipating capabil-
ity over conventional systems, and hence developed design
plots to predict optimum roughness parameters. The research
proposed by Kandukuriet al. [82] related to the two varieties
of the distributive mode active solar dryers and the dynamic
response of the phase change material (PCM) in both melt-
ing and solidification phases. Numerical investigations were
conducted for finned annular passages with different geome-
tries and perforation numbers using nanofluid by Wanget al.
[83], and they suggested a curved fin passage with eight per-
forations for the maximum value of the HT coefficient.

Numerical investigations by Wanget al. [84] focused
on the influence of implementing a perforated helical tube
disrupter on thermal and exergetic performance of a solar-
thermal photovoltaic hybrid system and demonstrated bet-
ter performance with the perforated turbulator configuration
compared to non-perforated and no turbulator configurations,
and a boosted regression tree-BRT-ensemble machine learn-
ing model was developed for the efficiency prediction. Fur-
thermore, an investigation concerning different shapes and
situations of VGs on a dual-tube HE was carried out by Wang
et al. [85] and some views were presented which are of great
importance for their optimization design with the purpose of
enhancing the efficiency of a system.

Songet al. [86] proposed a new HE with an annular re-
gion perforated helical fin and presented the significant en-
hancement in its thermal performance: for example, the max-
imum Nu value increased by 20.2% and was recommended
for optimization studies in double-tube HE designs. More-
over, Boukhadiaet al. [87] conducted three-dimensional nu-
merical studies to investigate the performance of VGs in a
plate fin HE. Rectangular and perforated wings were utilized
as the VGs to enhance the HT rates within this study. In addi-
tion, new correlations have been developed to predict the fric-
tion factor (f) and Nusselt number (Nu) based on Reynolds
number (Re) and on the shape of the perforations in baffles.
Ismail et al. [88], in turn, investigated the solid and perfo-
rated fin array installed on a flat surface on the influences of
HT enhancement and friction loss, finding that the arrange-
ment of circular perforation increased the enhancement of HT
and decreased friction loss. On the other hand, Liet al. [89]
proposed a unique triangular perforated design for fins; the
authors conducted a numerical simulation to see its convec-
tive HT behavior and found that it offered superior perfor-
mance over serrated fins through analyzing the Colburn fac-
tor, friction factor, and field synergy principle. Meanwhile,
Ganieet al. [90] investigated the thermal field of fluid flow
in a duct with a perforated barrier by computational simula-
tions. The investigations have been performed regarding the
temperature-velocity variations across different angles of the
plate; the linear increases of HT were pointed out and the

Rev. Mex. Fis.71030601



ENHANCING HEAT TRANSFER PERFORMANCE: A COMPREHENSIVE REVIEW OF PERFORATED OBSTACLES 7

optimal angles which assure an optimum in the velocity field
and downstream temperature together with friction factor and
pressure distribution were underlined.

Ameur and Menni [91] introduced circular perforations in
the baffle structure of a HE to reduce friction losses, and sub-
stantial improvements in HT for different perforation config-
urations and Re numbers were reported. On the other hand, a
mathematical model was developed by Zhaoet al. [92] which
analyzed the effect of inserting a perforated plate on the oper-
ational efficiency of the exhaust thermoelectric generator. It
showed that an optimal positioning of the plate could eventu-
ally realize an increase in output power by as much as 73.4%
and improvement in the voltage evenness coefficients with
no significant effect that may be caused by the mass flow rate
and temperature variations. Along the same direction, Biçer
et al. [93] have proposed a new baffle geometry to decrease
the pressure drop through the shell side of shell-and-tube THs
without compromising thermal performance. The three-zonal
superior baffle geometry was identified by the CFD analysis
which attained 49% reduction in shell side pressure loss and
slight enhancement in thermal performance.

Pérezet al. [94] carried out a numerical study on the
effect of a delta winglet pair of perforated VGs on thermohy-
draulic performance of a channel for different geometries and
configurations. The model was validated through comparison
with correlations available in the literature. Another work,
Tavakoli and Soufivand [95], performed the numerical anal-
ysis of a parabolic solar collector using a hybrid nanofluid of
water, Al2O3, and MWCNT. They have investigated twisted
tape turbulators that are finned and perforated, and their con-
clusion was that the use of perforated tape gave better HT
and overall performance improvement. Proceeding further,
Nakhchi et al. [96] attempted to study HT in double-pipe
HEs with turbulent nanofluids and turbulators of perforated
cylindrical geometry. They found that the new proposed
model remarkably augment the thermal performance up to
1.931 in terms of factor of thermal performance. Javanmard
and Ashrafizadeh [97] studied a set of perforated ribs. They
found that the Case #212 rib significantly enhanced perfor-
mance. The hole inclination angle played a key role in this
enhancement.

Hedau and Saini [98] conducted a computational study
of a double pass SAH. The author’s introduced transversely
disposed semi-circular tubes along with rectangular perfo-
rated blocks to introduce artificial roughness. They found
that the optimum thermo hydraulic performance would occur
for a particular open area ratio and reduced relative blockage-
height ratio. Zouet al. [99] discussed the use of perforated-
serrated fins in cryogenic helium systems. They reported a
better HT performance for these fins compared to conven-
tional serrated ones for low Re numbers. Such geometrical
changes can be adopted in designing plate-fin HEs below
80K. Sunet al. [100] carried out a numerical study on pa-
rameters that influence the cooling effectiveness of perforated
flat plates. They have proposed a new optimization technique
that will help in giving a better performance in transpiration

cooling with less coolant consumption, using a nonuniform
allocation strategy.

Meanwhile, other researchers, such as Dastbelarakiet
al. [101], studied the thermal performance of perforated
fins in comparison to solid fins and surfaces without fins,
concluding that three-opening configurations exhibited better
thermo-hydraulic performance. Razaviet al. [102] numeri-
cally performed an evaluation of the effect of inclined baffles
with perforations in a channel under laminar conditions. It
was found that such baffles improved Nu and reduced f over
solid baffles. An optimal angle of 135◦ gave the best HT
with a minimum of friction. In another work, Ghanbari and
Javaherdeh [103] studied the hydrodynamic convection and
variation in pressure of a non-Newtonian fluid flow within
a heated annulus tube. They also obtained that the addition
of nanoporous graphene to the base fluid increased the aver-
age Nu up to 32% and increased pressure drop up to 75%.
They also estimated that for annular tubes having specific
baffle configurations, the addition of nanoporous graphene
increased the system efficiency by up to 11.9%.

In another field, the work of Xueet al. [104] presented
liquid sloshing in a rectangular tank with perforated baffles.
They did analysis on the free surface fluctuation as well as
the pressure distribution for a variety of excitation frequen-
cies, and good comparisons among experimental and compu-
tational results and spectral analysis for free surface elevation
were obtained. Qi and Yuan [105] conducted an investigation
into the performance of multi-layered porous covers for dis-
crete solid block cooling inside a 2D duct. Of the different
configurations tested, the two most superior configurations
involved those that had maximum permeability in all lay-
ers (Case A) and a configuration where the permeability de-
creased towards the outside (Case D). Godi [106] conducted
a numerical analysis for micro-channels fitted with fins for
both solid and perforated configurations, and while search-
ing for global thermal conductance maximization, had also
showed that for 20% increase in Re number of coolant min-
imum temperatures were reduced. Godi and Petinrin [107]
conducted a 3-D numerical optimization study on fin geome-
tries, solid and perforated, in a cooling system.

Besides, Gautamet al. [108] tested, in circular tube
HEs at various Re numbers, the enhancement of HT by us-
ing a perforated triple-wing VG with several twist ratios and
porosities. Very positive enhancements in HT and overall
performance were obtained when compared to arrangements
that included the use of smooth tubes. Van Hapet al. [109]
proposed hybrid turbulators using perforated circular seg-
ments as VGs in the air collector ducts. Numerically, it was
presented in 3D with experimental validation that segment
arrangements, angles of attack, and Re numbers have a great
influence; optimal performance was recorded at the angle of
attack equal to 30◦ and Nu number as well as friction fac-
tor in a staggers arrangement was better when compared with
an in-line arrangement. Lertnuwat [110] also explored how
hole positions can affect the performance of the trapezoidal
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winglet VG in a SAH for a duct configuration in the rectan-
gular case.

Entropy generation in the HT process and flow of
nanofluids within a 3D duct with transverse twisted VGs
punctured with holes were investigated by Esmaeili and
Rashidi [111]. They found that the coefficient of HT in-
creases with an increase in the number of holes, while the
pressure loss decreases. The optimal performance is obtained
when the baffles have four holes and a 540-degree pitch. In
another similar attempt, Jainet al. [112] numerically ex-
plored the thermal performance of a SAH fitted with differ-
ent perforated V-shaped VGs and presented outstanding im-
provements in Nu number and friction coefficient. The tur-
bulent HT characteristics of perforated fins were investigated
by Shaeri and Jen [113], and their results showed that more
numbers of perforations for the given value of porosity pro-
mote the HT effectively. Also, the perforated fins have much
lower total drag, which is reduced with fewer perforations.

Then, Shaeri and Yaghoubi [114] investigated numeri-
cally the laminar hydrodynamics characteristics and HT over
heated arrays of rectangular perforated and solid fins on a flat
surface. They reported that perforated fins offer enhanced
performance and weight reduction. They suggested a corre-
lation to predict the effectiveness of perforated fins in their
computed range. Further, Shaeri and Yaghoubi [115], in their
numerical investigation, showed flow and HT behaviors of
solid and perforated fins. The results reflected an efficient
enhancement of HT and a reduction in weight in the fins with
longitudinal pores compared to solid ones.

Huang et al. [116] proposed a new perforated baffle-
based collector aiming to improve the performance of SAHs.
Some desired features such as pressure loss, increased col-
lection efficiency, and improvement of HT coefficients were
observed from the CFD simulations for these collectors.
Optimal dimensions of the holes and opening ratios that
yield good performance have been pointed out. Barzoki
et al. [117] performed a study of turbulent water flow
through a rectangular duct with chevron plat-fin configura-
tions punched with perforations. Different shapes of VGs
were incorporated into the study, and it showed better perfor-
mance indices for the models with VGs. Among them, the
half-circle VG had the highest thermohydraulic efficiency,
while the square and forward triangular VGs were better in
their categories. While, Rostane and Abboudi [118] also re-
ported that HT from sequential cubes, which were placed on
a flat surface with holes, was enhanced for cube diameters
greater than D/H = 0.62, with the enhancement increasing
with the increase in the cubes’ perforation diameter.

3. Assessing experimental investigations

Complementing the above numerical investigations, various
experimental methods have also been explored in literature,
yielding quite useful information for enhancement of HT
with perforated obstacles. Significant contributions by El Ha-
betet al. [119]; Skullonget al. [120]; Khanlariet al. [121];

Liu et al. [122]; Varol et al. [123]; Vaisi et al. [124]; Chin
et al. [125]; Awasarmolet al. [126]; Tandel and Modi [127];
Chamoli [128] ; Chamoli and Thakur [129]; Changet al.
[130]; Ghanbariet al. [131]; Salemet al. [132]; Khoshvaght-
Aliabadi et al. [133, 134]; Pankajet al. [135]; Hassanet
al. [136]; Pandey and Kumar [137]; Saravananet al. [138];
Karabacak and Yakar [139]; Promvongeet al. [140]; Khar-
gotraet al. [141, 142]; Huang and Liu [143]; El Habetet
al. [144]; Molki and Hashemi-Esfahanian [145]; Singhet al.
[146,147]; Nakhchiet al. [148]; Fanet al. [149]; Sheik-
holeslami and Ganji [150]; Buchlin [151]; Nuntadusitet al.
[152]; Saraet al. [153]; Eiamsa-Ardet al. [154,155]; Bhat-
tacharyyaet al. [156]; Gel’Fandet al. [157]; and Rahman
[158] are made about HT phenomena. Some of the funda-
mental experimental models through which perforated obsta-
cles have been studied are highlighted in Table 2.

El Habetet al. [119] investigated the performances of
new baffle designs experimentally in a rectangular HE. They
have tested partial tilting with different angles whereas per-
foration ratios were also different. They obtained consider-
ably high HT enhancement values compared to the smooth
HE and developed new correlations for the estimation of Nu
number and f factor. Skullonget al. [120] conducted an ex-
perimental investigation to provide an improved thermal per-
formance of a channel using a SAH with wavy-groove and
delta-wing VGs configurations integrated together on the ab-
sorber. Their results clearly indicated that the maximum en-
hancement in thermal performance for specific porosity and
distance ratios existed for integrated devices, which provided
significant improvements compared to individual configura-
tions. In the research work, for drying, Khanlariet al. [121]
developed parallel-pass solar collectors (SCs) with different
baffling configurations, whereas for the enhancement they
studied plus-type VGs in the presence of holes. Their re-
sults showed that thermal efficiencies were in the range be-
tween 62.10% and 75.11%, with the highest efficiency of
about 84.30% in the case of double VGs at higher rate of
mass flow, with maximum deviation of prediction against the
experimental data as 9.5%.

Meanwhile, Liu et al. [122] have experimentally ad-
dressed the performance of perforated 90◦ ribs in augment-
ing HT inside a cooling channel; it was found that HT en-
hancement improved behind the ribs, the recirculation flow
reduced and there is a slight disturbance in the reattachment
region of flow, which is promising for turbine blade cooling
applications. Further, Varolet al. [123] studied experimen-
tally and numerically the convective HT and fluid dynamics
of two parallel streams with different thermal profiles, using
perforated passive obstructions with the purpose of control-
ling fluid flow and the convective mixing patterns, showing
increased thermal mixing by increasing temperature differ-
ences, while positive effects of higher values of porosity upon
mixing performance were also presented. On the other hand,
Vaisi et al. [124] conducted studies on influences of twisted
tape VGs, continuous and discontinuous, with and without
perforations, on flow and HT in double HEs. Their results
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TABLE II. Experimental investigations of HEs with perforated obstacles.

Authors Computational configuration

Skullonget al. [120]

Khanlariet al. [121]

Liu et al. [122]
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Authors Computational configuration

Salemet al. [132]

Khoshvaght-Aliabadiet al. [133]

Pandey and Kumar [137]
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Authors Computational configuration

Nakhchiet al. [148]

Eiamsa-Ardet al. [154]

showed that the discontinuous VG improved HT by 8.2%,
with a reduction in pressure drop of 9.8% compared to its
continuous counterpart.

On the other hand, Vaisiet al. [124] conducted studies
on influences of twisted tape VGs, continuous and discon-
tinuous, with and without perforations, on flow and HT in
double HEs. Their results showed that the discontinuous VG
improved HT by 8.2%, with a reduction in pressure drop of
9.8% compared to its continuous counterpart. Also, the study
of Chin et al. [125] on the effect of staggered pin fins with
perforations to enhance HT rates indicates that an increase in

the number and diameter of holes on each pin gives a 45%
rise in Nu number compared with solid pins. Awasarmol
et al. [126], in their investigation, studied HT enhancement
with the help of an experimental study in perforated fin ar-
rays at different perforation ratios, inclination angles, and fin
configurations under forced convection. Significant enhance-
ments were noted when the findings were compared to solid
fins. Tandel and Modi [127] presented a solar combi-system
with double-pass SAHs, where significant enhancement in
thermal performance was noted with perforated baffles.
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Chamoli [128] conducted an experimental optimization
technique to enhance the geometry of a duct system with
perforated V-shaped VGs. Whereas, Chamoli and Thakur
[129] experimentally analyzed that a duct system with perfo-
rated V-baffles roughened surface for SAH was better com-
pared to a smooth duct showing enhancements of 2.57 times
in Nu number and 5.96 times in frottement. In particular,
the highest thermohydraulic performance was obtained for
an open area ratio of 24% and roughness pitch of 2.5. Re-
cently, Changet al. [130] also proposed a HT enhancement
approach for plate inserts with periodic oblique VGs together
with perforated slots to improve the HT of a HE with in-
creased resulting Nu numbers across the system and mini-
mized flow resistance.

Ghanbari et al. [131] conducted an experiment on
the convective HT and flow characteristics of nanoporous
graphene-reinforced nanofluids. It was demonstrated that 0.2
wt% addition of nanoporous graphene increased the ther-
mal conductivity by 12.4% and the average coefficient of
HT by 39.4%. Besides that, the use of such non-Newtonian
nanofluids with perforated circular VGs gave rise to an in-
crease in the value of average thermal performance factor by
29% throughout the tested turbulence regime, hence advanc-
ing recommendations for the design of more efficient ther-
mal systems. In another related study, Salemet al. [132]
have conducted experimental studies on water flow within
the annular zone of dual tube HEs using both no perforation
and segmented perforated VG configurations. Based on their
measurements, they identified that the change in design pa-
rameters in the latter resulted in a considerable difference in
the characteristics of both convective HT and friction loss and
provided the correlations for a concentric tube HE fitted with
such VGs. Khoshvaght-Aliabadiet al. [133] conducted an
experimental performance evaluation of perforated wavy fins
in plate HEs, while the results indicated that these provided
a higher HT rate as well as lower f factors when compared
to conventional fins. Their study also highlighted the use of
Al2O3/water nanofluids.

Further, Khoshvaght-Aliabadiet al. [134] investigated
the performance of twisted-VGs mounted inside a duct under
various aperture designs, different aerodynamic attachments,
and their interactive effects. Their study showed that while
solid models had some advantages in 0◦ twisted-VGs, the
aerodynamic attachments enhanced performance quite dras-
tically in 90◦ and 180◦ twisted-VGs, realizing maximum per-
formance indices at Re number 1643. Pankajet al. [135] did
experimental work on natural convection HT enhancement
with perforated fin arrays and, among other things, estab-
lished optimal configurations such as 4 mm diameter perfora-
tions at 45◦ with constant pitch performing well in horizontal
rectangular arrays with 10 mm spacing. In another direction,
Hassanet al. [136] conducted an experimental performance
test of flat plate SAHs using double pass (DP) configuration
arrangement. They tested heaters fitted with V-corrugated-
perforated absorbers. The obtained results showed that the
corrugated-perforated SAH gave better daily energy and ex-

ergy efficiencies and the minimum energy cost, particularly
at the 2/3 DP case.

In the experimental investigation performed by Pandey
and Kumar [137], an attempt was made to enhance the perfor-
mance of a SAH channel using perforated V-VGs. Based on
the results, they found that among the V-down VGs studied,
the best thermohydraulic performance factor and the high-
est thermal and effective efficiencies under turbulent airflow
were for V-up VGs. The work carried out by Saravananet
al. [138] focused on a SAH featuring staggered multiple C-
shape finned absorber plates through an experimental perfor-
mance evaluation of various flow and geometric parameters
for the optimization in thermal performance. The enhance-
ments in HT with fins over the absorbers with smooth plates
were observed to be very significant. Karabacak and Yakar
[139] studied the effect of perforations strategically placed on
finned HEs to enhance convective HT. They concluded that
the perforations, which they arranged in a specific pattern on
each of the circular fins, served to induce turbulence close
to the tube surface; thus, a considerable enhancement of Nu
numbers about 12% was reported in the range above critical
Re values compared to imperforate fin. Besides that, correla-
tions for the Re and Nu numbers, above and below the critical
values, were established and those referring to pressure drops
in flow areas.

Promvongeet al. [140] performed an experimental test
of louver-punched V-VGs in a SAH duct. It was reported
that this type of VGs reduced the pressure drag and improved
thermal efficiency. Their optimum value of performance was
1.5, and for a louver angle was 45◦. Numerical simulation
results agreed well with the experimental ones. The investi-
gations by Khargotraet al. [141] involved very extensive test-
ing and evaluation of the effect of various design parameters
of perforated V-VGs on airflow dynamics and thermal per-
formance inside a rectangular channel. In these studies, they
found that indeed the hybrid BWM-CODAS architecture was
the best decision-making framework for determining an op-
timum SAH design alternative. Along the same lines, Khar-
gotra et al. [142] designed and optimized a water heating
setup with delta VGs having perforations, chosen as the most
suitable configuration that meets the preset performance cri-
teria; sensitivity analysis was also performed, in this respect,
ensuring the effectiveness of the proposed framework.

Huang and Liu [143] studied the effect of the optimal de-
sign parameters on the thermal management in a heat sink
with the introduction of a delta winglet VG to improve its
effectiveness, and they proved by experimental verification
that it may be improved by an increase in Re numbers. El
Habetet al. [144] examined the hydrothermal characteris-
tics influenced by VGs in a rectangular channel. Different
baffle perforation ratios have been considered for both inline
and staggered arrangements. Maximum performance extrac-
tion has been considered in the case of a staggered arrange-
ment with solid baffles at Re = 12,000. Molki and Hashemi-
Esfahanian [145] measured HT by convection behind a perfo-
rated obstruction in a rectangular conduit using a mass trans-
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fer technique to obtain local transfer rates. Further, Singh
et al. [146], in order to investigate thermal and hydraulic
performance of perforated V-VGs inserted in a double pass
SAH, have presented correlation of various parameters with
Nu number and frottement, showing notable enhancement in
thermo-hydraulic performance by the use of perforated V-
VGs compared to plain surfaces.

The other experimental study of Singhet al. [147],
recording the same VGs texture in double pass SAH, also reg-
istered a significant improvement in overall performance over
continuous rib roughness and hence spoke for the effective-
ness of perforation in application to artificial roughness also.
Nakhchiet al. [148] found that dual perforation turbulators in
the inclined elliptic shape inside double-tube HEs increased
the HT by 217.4% and fluid mixing to give the maximum ef-
ficiency value of 1.849 for specific perforation sizes beyond
Re numbers from 5,000 to 18,000. Along the related line, an
exergetic efficiency analysis performance evaluation method
was developed by Fanet al. [149] to study a HE system using
perforated twisted VGs and indicated that variation of perfo-
ration density increases the thermal-fluid performance first,
up to the point where an optimal efficiency can be reached
after which it decreases, while Re and magnetic field inten-
sity have positive influence on system performance, these
changes result in ideal value of perforation ratio and consid-
erable improvement of HT efficiency was revealed using the
exergy efficiency approach. This concept was also realized
by Sheikholeslami and Ganji [150] during their experimental
studies using perforated turbulators in a double-tube HE, op-
timizing geometrical parameters with the aim of enhancing
HT. They determined that heat transfer increases with aper-
ture ratio and temperature difference decreases with the pitch
ratio. Buchlin [151] found that when using perforated rib
structures in a turbulent boundary layer, a three-fold increase
in localised heat improvement was achieved over solid ribs.
Here, the optimum geometric parameters were given as a rib
spacing ratio of 5 and 0.53 open area factor. Overall, it was
noted that these could be applied for a range of duct Re num-
bers from 30,000 to 60,000.

Nuntadusitet al. [152] experimentally conducted studies
on the interactions between thermal processes and fluid mo-
tion over a channel with transverse perforated ribs. The in-
vestigations were made on the variation in perforation angle
and hole location. Saraet al. [153] studied the enhancements
in HT and pressure fluctuations in the flow over a channel
using perforated rectangular VGs, affixed onto a level sur-
face, and reached to the conclusion that whereas the use of
solid blocks led to an increased HT at the expenses of even-
tual losses in energy, the presence of perforations in the VGs
can achieve energy gains around 40%. Studying other ge-
ometries, the influence of wing arrangement on HT and pres-
sure drop in a duct fitted with perforated transverse baffles
with square-wing geometry was analyzed by Eiamsa-Ardet
al. [154]. Their work demonstrated that this kind of wing
arrangement increased the rate of HT while reducing airflow
resistance compared to solid transverse baffles.

Eiamsa-ardet al. [155] investigated the effects of us-
ing perforated V-baffles with delta-wing configurations (DW-
PVBs) inside a duct on HT and friction loss. In their experi-
mentations, they identified that at diminished angles of attack
of the delta-wings,θ, the HT enhanced while flow resistance
diminished. Concretely, DW-PVBs ofθ = 22.5◦ ensured
the best performances with the highest value of performance
equal to 1.91. It was also achievable for the DW-PVBs to re-
duce the friction factors by 13.64–17.26% compared to solid
V-baffles. Bhattacharyyaet al. [156] conducted an exper-
imental study on perforated angular-cut baffles in turbulent
flow; it was observed that among the tested geometries, alter-
nate segmental baffles (ASB) showed the best HT augmen-
tation with an enhanced Nu number as high as 42.18% over
segmental baffles (SB), while proposing correlations between
Nu, friction factor, and the examined parameters that indi-
cated TPFs greater than unity for all cases. In search of more
enhancements, Gel’Fandet al. [157] carried out experiments
to investigate the interaction of plane shock waves with trian-
gular pressure distributions and perforated VGs, and to mea-
sure the parameters of reflected waves, the amplitude and im-
pulse attenuation coefficients versus barrier permeability, and
quenching coefficients for an arrangement of baffles in series.
Rahman [158] experimentally investigated a new axial HE
that utilized perforated circular baffle plates with rectangu-
lar air deflector inserts for enhanced air-side turbulence and
surface HT rates; substantial thermal enhancement at certain
inclination angles and pitch ratios was depicted for the HE
compared to those fitted with segmental baffle plates under
identical conditions.

4. Practical applications

The effective impact of perforated obstacles on the dynamics
of fluid flow makes their role imperative in most applied and
industrial fields. In general, these components are very im-
portant in improving performance, efficiency, and control in
most engineering systems.

Perforated baffles, employed in a wide number of indus-
trial equipment such as HEs, chemical reactors, and distilla-
tion columns (Brunoet al. [159]; Nasyrlayevet al. [160];
Normanet al. [161]; and Ibrahimet al. [162]) improve fluid
mixing, and enhance HT rates. Such baffles cause turbulence,
disturb the laminar flow, and act to enhance convective HT
with improved mass transfer for optimum process efficiency.

The application in HEs to aerospace engineering, Bham-
bereet al. [163]; Sakanova [164]; and Al-Damooket al.
[165] highlighted perforated fins as one of the key elements in
improving convective HT rates for thermal dissipation man-
agement. In comparison with non-perforated fins, perforated
obstacles manage to dissipate heat effectively due to an in-
crease in the exposed surface area and also due to an enhance-
ment in the value of the convective HT coefficient, which
helps to avoid overheating and promotes extending the op-
erational lifespan of the component.
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Perforated ribs also play an important role in turboma-
chinery, gas turbine blades, and HEs (Choiet al. [166]; Ye
et al. [167]; and Chunget al. [168]), mainly for bound-
ary layer control and enhancement of HT. The perforated ribs
create streamwise vortices and enhance mixing in boundary
layers that delays the separation and reduces pressure losses,
thereby enhancing the system efficiency as a whole. In ad-
dition, the delay in fouling and sedimentation in fluid sys-
tems enhances operational reliability by stimulation of self-
cleaning mechanisms and hindrance of particle deposition.

Further, perforated VGs applied in aerospace, automo-
tive, and HVAC systems (Hasanet al. [169]; Heriyaniet al.
[170]; and Effendiet al. [171]), regulate flow structures to en-
hance aerodynamic performance while controlling boundary
layer transitions. Their enhancement of convective HT coef-
ficient augmentation in thermal management systems main-
tains temperature uniformity and carries out efficient HT.

Furthermore, perforated turbulators, integral to HEs, boil-
ers, and air ducts (Assariet al. [172]; Srivastavaet al. [173];
Bhattacharyyaet al. [174]; and Sharmaet al. [175]) im-
prove the convective HT rates and enhance fluid mixing, be-
sides fouling reduction. By inducing controlled turbulence
and breaking laminar boundary layers, turbulators enhance
the convective HT coefficient, hence enhancement of ther-
mal performance and efficiency. Also, they allow for uni-
form temperature distribution, thereby preventing local ’hot’
or ’cold’ spots in HT systems and permitting stability of op-
eration.

In other words, it points out that the general application
of perforated obstructions acts to underline the very princi-
ple underlying the optimization of fluid flow, HT, and perfor-
mance of an aerodynamic nature in a large number of indus-
tries and engineering applications. These flexible elements
raise the efficiency and productivity of the system and allow
the development of various sustainable and energy-efficient
technologies.

5. Future research

The exploitation of perforated obstacles for HT enhancement
in HE opens various ways for a multitude of new avenues in
the field of research and innovation. Further directions could
be pursued by the researchers for the advance of the field in
the following ways.

The future work may conduct systematic parametric stud-
ies in the optimization of geometric parameters of perforated
obstacles. Using state-of-the-art computational tools and op-
timization algorithms, one is able to choose an optimal shape
of the perforation, its size, arrangement, and spacing for max-
imum HT enhancement factor with minimum loss of pressure
drop and consumption of material.

The integration of multi-physics modeling and simula-
tion techniques will provide an in-depth understanding of the
complicated fluid flow and HT phenomena associated with
perforated obstacles. This kind of coupling between fluid dy-
namics, HT, and structural mechanics simulations can clar-

ify the interplay among flow behavior, HT enhancement, and
structural integrity-and hence allow the extraction of appro-
priate general design guidelines.

Hybrid approaches that can marry perforated obstacles
with other HT enhancement techniques may yield some syn-
ergistic benefits. Investigations that incorporate perforated
obstacles with surface modifications, secondary flow induc-
ers, and phase change materials are used to explore novel
ways to further enhance HT rates and overall thermal effi-
ciencies in HEs.

Several experimental investigations need to be performed
under real operation conditions to validate the numerical sim-
ulations so that the actual application of perforated obstacles
in HEs is allowed. The collaborations with industrial partners
will allow the technology transfer and faster diffusion of the
solutions of perforated obstacle HT enhancement in HVAC,
automotive, aerospace, and renewable energy systems.

6. Conclusions

We have reviewed in this work the performance enhancement
of HEs using perforated obstacles. In fact, with deeper anal-
ysis of both numerical simulation and experimental investi-
gations, the use of perforated obstacles was found to enhance
HT significantly.

We have reconsidered the spectrum of approaches to HT
enhancement in HEs, from passive to active techniques, un-
derlining the peculiar advantages coming from using perfo-
rated obstacles. In fact, this latter proved to be a promising
avenue thanks to tangible improvements in flow dynamics
and thermal characteristics.

A key feature of our review was the analysis of several
parameters that influence the performance of perforated ob-
structions. Some of the operating and geometrical parameters
related to hole dimensions and shapes were studied in detail
to establish the boundaries of their effects on heat transfer
enhancement. These data provide the basis for an optimum
design for specific applications.

Further, we found critical applications in which HEs with
perforated barriers prove to be very effective. The versatil-
ity of the approach from industrial processes to HVAC sys-
tems testifies to the potential to affect significant changes
across many industries depending on the effectiveness of
heat-exchange mechanisms.

Our review also provides useful recommendations for fur-
ther research studies in this area. Further promising lines of
investigation concern the exploration of new geometrical ar-
rangements, advanced materials, and the detailed investiga-
tion of the fluid flow mechanism.

Numerical analyses presented in the work, combined with
experimental validation, therefore show that perforated ob-
stacles have the potential to cause a revolution in efficiency
in HE performance. In fact, this new approach ushers in a
new frontier in efficiency and sustainability regarding ther-
mal management systems through the reduction of pressure
drop and enhancement of HT coefficients.
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