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Enhancing heat transfer performance:
A comprehensive review of perforated obstacles
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Heat exchangers (HEs) find application in a variety of industrial processing and thermal management systems in which heat transfer (HT)
is generally the critical requirement for successful operation. This paper reviews the application of perforated obstacles to HT augmentation
in HEs by combining recent findings of humerical simulations and experimental investigations. The numerical evaluation encompasses a
detailed analysis of the various geometric parameters of the perforated obstacles, including perforation shape and size, distribution, anc
spacing, along with relevant operating parameters. This study well represents their deep impact on overall HE performance. Our findings
convincingly indicate that the obstacles with perforations were substantially successful at improving HT rates while lowering pressure drop,
which evidences itself by high HT coefficients. Further, different industrial applications of perforated obstacles have been exhibited in HVAC
systems (Heating, ventilation, and air conditioning), automotive cooling and refrigeration, and in process industries, with great versatility
and scalability. This review, therefore, gives insight into the possible use of perforated obstacles in the complete revolution of HT efficiency
within HEs while while paving the way for further researche in thermal engineering and industrial processes.
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1. Introduction

Heat exchangers (HESs) are devices used to transfer heat (HT)
across two or more fluids, or from one solid surface to a fluid
at different temperatures (Rebéf al. [1]). They are also
used in many fields and applications: HVAC systems (Heat-
ing, ventilation, and air conditioning) (Ahmaa al. [2]; Dj-

effal et al. [3]; Tahrouret al. [4]; and Sakhriet al. [5-7]),
chemical processing (Phillipst al. [8]), power generation
(Orts-Gonzalezt al. [9]), and refrigeration (Zhengt al.
[10]).

This HT is achieved through two ways: passive (Liu and
Sakr [11]; and Sheikholeslanet al. [12) and active (An-
drzejczyket al. [13]; and Thapeet al. [14]). HEs exist in
various forms, such as shell-and-tube (Adtdal. [15]; and
Rashidiet al. [16]), plate-and-frame (Arsenyew al. [17];
and Arsenyevat al. [18]), finned tube (Geiser and Kottke
[19]; Bhuiyan and Islam [20]; and Basavarajampal. [21]),
and compact HEs (Stone [22]; Shah [23]; ancetal. [24]),
each suitably applicable according to the fluid properties, op-
erating conditions, space constraints, and other variables.

Active techniques of HT augmentation serve with the
help of external energy input or mechanical systems to en-
hance HT rates in a system:

- This involves mechanical devices to apply turbulence
on fluid flow, using pumps, mixers, or agitators among

others. The turbulent flow promotes mixing and dis-
rupts the boundary layer to increase the convective
HT coefficients, hence enhancing HT as justified by
Konopackiet al. [25]; Qi et al. [26]; and Maxsoret al.
[27].

Techniques of electrohydrodynamics are those meth-
ods attempting to influence fluid flow with the help
of electric fields in order to enhance HT enhancement
(Molki and Damronglerd [28], Laohalertdeclea al.
[29], and Wanget al. [30]). The action of electro-
static or electromagnetic forces induces fluid motion,
reduces boundary layer thickness, enhancing convec-
tive HT rates, especially in the case of micro-channels
and complex geometries.

- As many researchers have realized the fact that the ap-

plication of acoustic or ultrasonic waves to the fluid
can destroy boundary layers, thereby enhancing mix-
ing and improving HT rates, the use of acoustic waves
in improving HT has been studied by Chetal. [31];
Setaretlet al. [32]; and Zhanget al. [33].

Controlled mechanical vibrations can be imposed to
enhance HT due to fluid mixing and thinning of stag-
nant boundary layers associated with it. In this manner,
vibrational enhancement becomes very effective in mi-
crochannels and low flow rate applications, as shown
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by Shoele and Mittal [34]; Duaat al. [35]; and Fuet
al. [36].

Nanofluids are engineered suspensions of nanoparti-
cles in a base fluid usually water or oil. With the
high thermal conductivity of nanopatrticles, the overall
thermal conductivity of the fluid is augmented, hence
the enhancement in the performance of HT concerned
(Menni et al. [37-39]; Maouedjet al. [40]; Ma-
hammedeet al. [41]; and Boursast al. [42]).

Magnetic fields may be applied to ferrofluids or param-
agnetic fluids, causing fluid motion and thus enhancing

[60,61]; Menniet al. [62-64]; Ameuret al. [65,66];
Chamkha and Menni [67]; Salret al. [68]; Medjahed
et al. [69]; and Afif et al. [70]).

Besides, passive methods based on magnetic fields
have appeared as promising tools for efficient HT
enhancement. Of special interest are heterogeneous
magnetic-field-based techniques interacting with elec-
trically conducting fluids. This interaction gener-
ates Lorentz forces, which can be utilized to destabi-
lize the flow by altering the mean-flow velocity dis-
tribution with a corresponding augmentation of HT
[71]. The use of electrically conducting fluids in

convective heat transfer. Wamgal. [43]; Bezaatpour
and Goharkhah [44]; and Zhang and Zhang [45] dis-
cuss the enhancement of convective HT by the appli-
cation of magnetic fields. Fluid flow patterns could be
altered by a magnetic field to enhance HT efficiency.
These active methods provide an avenue to achieve a These passive methods are cost-effective and environ-
substantial increase in HT rates in several areas of agmentally benign ways of enhancing HT in applications that
plication; and they can be matched to each type of perrange from a simple HE to electronic cooling systems with
formance need, as well as to operational conditions. |ittle maintenance and energy consumption.

) ) Some of the devices employed to enhance HT in vari-
Passive techniques of thermal enhancement do not haygg engineering applications include perforated VGs, turbu-
any external energy input and operate on the principle Of,tors deflectors, baffles, fins, and ribs. Each of them works
fluid dynamics combined with HT. In fact, many passive o gifferent principles and is employed for specific require-
techniques require geometrical modification or specially degents and conditions. They have small perforations or holes
signed material for the enhancement of the process of HTy; girateqic locations over obstacles or surfaces that come
Some of the popularly used passive techniques include:  in direct contact with fluid flow. The perforations, when

. . fluid flows over such surfaces, induce vortices that disturb

- Special geometries or surface patterns that enhance th : )

. L the boundary layers and thus help in enhancing HT through
effective surface area and promote fluid mixing for the

augmentation of convective HT: fins, dimples, grooves mixing and a reduction in thermal resistance. Perforated ob-
: ‘ e ' 'structions are quite effective in increasing HT coefficients
and microchannels (Chamkhbaal,, [46]; Djeffal et al,, d g

7] Rebiet l. 45 Hammidst . (9] Eamsac 275275 17 0 36picatons 1t 1 coson and cooi
ard and Promvonge, [50]; Ligrarét al, [51]; and y P y P

Menniet al,, [52]) concern.
“ . The present review analysis, therefore, tries to capture the

- The application of high thermal conductivity or low €ssence of the enhancement in HT brought about by perfo-
emissivity coatings to HT surfaces so as to enhancéated obstacles in HEs using numerical simulations and ex-

HT rates by reducing thermal resistance (Chatys andPerimental studies. It goes into critical analysis through vari-
Orman [53]; and Nguyen and Ahn [54]). ous geometric dimensions of perforated obstacles along with
operational parameters that can provide the effects on the per-

- Optimization of the HE geometry by increasing the formance of HEs. It also explores the vast application of

number of tube passes, improving tube layouts maxiperforated obstacles that ranges from HVAC systems, auto-

mizes the HT effectiveness while minimizing pressuremotive cooling, refrigeration, and process industries showing

drop (Kortiet al. [55]; and Youcetet al. [56]). that this method can be versatile as well as scalable. Basi-
cally, the present review aims at an in-depth understanding of
how perforated obstacles can change the course of heat trans-
Ser efficiency inside HEs and thus advancements in thermal
engineering and also industrial processes.

these passive techniques precludes any external energy
or mechanical-related systems to alter flow patterns,
hence, these are promising alternatives to enhance ther-
mal performance [72-74].

- The methodology of passive device investigation: tur-
bulators or vortex generators (VGs) are placed in th
fluid flow path with an intention to induce turbu-
lence, aiming at enhancing convective HT (Meei

al. [57,58]; and Salmet al. [59]). . . . o
_ _ ~ 2. Assessing numerical investigations
- Using passive means, such as surface roughening or

even placing baffles at strategic locations to enhanc&he use of perforated obstacles represents a promising
convection and, hence, HT in systems where buoyancynethod for performance enhancement of HEs. Such obsta-
effects are of leading importance (Menni and Azzicles are inserted into the HE system in order to disrupt bound-
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TaBLE |. Significant HEs analyzed through numerical simulations with perforated obstacles.
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nlet and outlet
(Periodic condition)

Heaed wafl Transverse solid baflle
(600 Wm*)
Eiamsa-Ardet al. [75] (a) computational domain (b) transverse solid baffle (TB)
af . I 0
" Ny
! ¢ l ¢
1 1
(c) perforated-baffle (PB) (d) perforated-baffle with square wings (SW-PB)

Perforated-baffles

(a) the conventional micro-channel heat sink

Onrter ! 22

~

Liu et al. [76] "

Inlter

7

- s w oy 7
(b) MSPBPW.

Perforated baffles/walls

Wanget al. [83] [76]

(a) Annular conduit with curve fins

& @
(¥ ‘\ "

(b) Curve fins with various hole numbers

Perforated curve fins

Rev. Mex. Fis71 030601



Y. MENNI, N. KAID, M. A. ALKHAFAJI, M. BAYRAM, O. M. IKUMAPAYI, AND A.J. CHAMKHA

Authors Computational configuration
[
. T T { I ‘6 M’v
L [ANEAN AV A
XL == | .
: (a)
Li etal [89] : ;

VAV
AV A

A-1/2

A AVAY

I
I
I
1 rows '
I
I
I
[

V. AVAV

A-1/4

Triangular perforated fin

Biceret al [93]][76]

Conventional and three-zonal baffle

Nakhchiet al. [96]

Heated Wall

€

PAARE

n

/ Connecting Rod

Perforated Cylindrical
Turbulent Turbulators

Outflow -
m

Perforated cylindrical turbulators

Ghanbari and Javaherdeh [103]

D, = 30 mm

E}fomted-bafﬂ es

Rev. Mex. Fis71 030601



ENHANCING HEAT TRANSFER PERFORMANCE: A COMPREHENSIVE REVIEW OF PERFORATED OBSTACLES

Authors

Computational configuration

Gautamet al. [108]

Perforated holes
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Perforated triple wing VGs

Shaeri and Jen [113]

Rostane and Abboudi [118]

‘ (a)
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Arrangement of cubes with perforations in tandem
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ary layers, enhance HT rates, and optimize fluid flow characHT and friction loss, and the optimal geometric parameters
teristics. A great number of different numerical studies con-obtained by using Response Surface Methodology (RSM)
sidered performance of such configurations. For instance, thend artificial neural network (ANN). Further, Chamoli and
following Eiamsa-Ardet al. [75]; Liu et al. [76,77]; Tuncer  Thakur [81], by using the exergy method, estimated the exer-
et al. [78]; Sahelet al. [79]; Chamoli [80]; Chamoli and getic efficiency of these ducts in a solar air heater (SAH) and
Thakur [81]; Kandukuriet al. [82]; Wanget al. [83-85]; showed an improved heat absorption and dissipating capabil-
Songet al. [86]; Boukhadiaet al. [87]; Ismail et al. [88]; Li ity over conventional systems, and hence developed design
et al. [89]; Ganieet al. [90]; Ameur and Menni [91]; Zhao plots to predict optimum roughness parameters. The research
et al. [92]; Bicer et al. [93]; Pérezet al. [94]; Tavakoli  proposed by Kandukugt al. [82] related to the two varieties
and Soufivand [95]; Nakhchet al. [96]; Javanmard and of the distributive mode active solar dryers and the dynamic
Ashrafizadeh [97]; Hedau and Saini [98]; Zetal. [99]; Sun  response of the phase change material (PCM) in both melt-
et al. [100]; Dastbelaraket al. [101]; Razaviet al. [102]; ing and solidification phases. Numerical investigations were
Ghanbari and Javaherdeh [103]; Xeeal. [104]; Qi and conducted for finned annular passages with different geome-
Yuan [105]; Godi [106]; Godi and Petinrin [107]; Gautanh tries and perforation numbers using nanofluid by Wanhal.
al. [108]; Van Hapet al. [109]; Lertnuwat [110]; Esmaeili [83], and they suggested a curved fin passage with eight per-
and Rashidi [111]; Jaiet al. [112]; Shaeri and Jen [113]; forations for the maximum value of the HT coefficient.
Shaeri and Yaghoubi [114,115]; Huaeg al. [116]; Bar- Numerical investigations by Wanet al. [84] focused
zoki et al. [117]; and Rostane and Abboudi [118] are thuson the influence of implementing a perforated helical tube
capable of adding meaningful insights. On the other handgisrupter on thermal and exergetic performance of a solar-
Table 1 summarizes some of the key works that are deemeatiermal photovoltaic hybrid system and demonstrated bet-
necessary to be taken into consideration for a fully informeder performance with the perforated turbulator configuration
state-of-the-art overview. compared to non-perforated and no turbulator configurations,
Eiamsa-arcet al. [75] performed the HT performance of and a boosted regression tree-BRT-ensemble machine learn-
a square wings case (SW-PB) using the modified perforationng model was developed for the efficiency prediction. Fur-
baffle configuration in a channel. Unlike the classicalthermore, an investigation concerning different shapes and
transversal solid baffle (TB), impinging jets and recircula-situations of VGs on a dual-tube HE was carried out by Wang
tion flows were produced. In contrast, the perforated baffleet al. [85] and some views were presented which are of great
yielded smaller recirculation but lower HT rates compared tamportance for their optimization design with the purpose of
TB and SW-PB, resulting in the reduction of friction losses.enhancing the efficiency of a system.
In this direction, Liuet al. [76] proposed a new micro- Songet al. [86] proposed a new HE with an annular re-
channel heat sink with perforated baffles/walls, MSPBPWgion perforated helical fin and presented the significant en-
which was proposed to enhance the temperature of the heatancement in its thermal performance: for example, the max-
ing sink lower surface distribution. They numerically inves-imum Nu value increased by 20.2% and was recommended
tigated two parameters:;|-the width of the rectangular hole for optimization studies in double-tube HE designs. More-
on the baffle, while L represents the distance from the chan-over, Boukhadiat al. [87] conducted three-dimensional nu-
nel wall perforation to the baffle hole center. Their observamerical studies to investigate the performance of VGs in a
tions revealed that this geometry greatly improved the perplate fin HE. Rectangular and perforated wings were utilized
formance of HT despite the resultant pressure drop. Furthegs the VGs to enhance the HT rates within this study. In addi-
both the Nu number and the f coefficient reduced with L tion, new correlations have been developed to predict the fric-
improvement and increased upon rising L tion factor (f) and Nusselt number (Nu) based on Reynolds
Liu et al. [77] investigated the enhancement of perforatednumber (Re) and on the shape of the perforations in baffles.
ribs in a cooling channel with added inclined holes. Theylsmail et al. [88], in turn, investigated the solid and perfo-
showed that for larger inclined angles, the averaged Nussetaited fin array installed on a flat surface on the influences of
(Nu) in the inclined scenarios was higher than that for theHT enhancement and friction loss, finding that the arrange-
straight ones due to the fact that flows were directed towarehent of circular perforation increased the enhancement of HT
the incline. Tunceet al. [78] enhanced a solar drying sys- and decreased friction loss. On the other handktlal. [89]
tem with an advanced improved absorber coating with ZnCproposed a unique triangular perforated design for fins; the
nanoparticles and an infrared heating system; it was also comuthors conducted a numerical simulation to see its convec-
cluded that vertical solar heater cases with perforated bafflegse HT behavior and found that it offered superior perfor-
presented optimum performance. mance over serrated fins through analyzing the Colburn fac-
On the other hand, Sahet al. [79] conducted a com- tor, friction factor, and field synergy principle. Meanwhile,
putational performance evaluation of a new baffle geometryGanieet al. [90] investigated the thermal field of fluid flow
inside the channel and reported that there was a remarkabile a duct with a perforated barrier by computational simula-
enhancement of HT for the perforated baffle rather than théions. The investigations have been performed regarding the
plain baffle geometry. Chamoli [80] explored the effects oftemperature-velocity variations across different angles of the
V-downward-facing perforated baffle-roughened channels oplate; the linear increases of HT were pointed out and the
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optimal angles which assure an optimum in the velocity fieldcooling with less coolant consumption, using a nonuniform
and downstream temperature together with friction factor an@llocation strategy.

pressure distribution were underlined. o Meanwhile, other researchers, such as Dastbelaaki
Ameur and Menni [91] introduced circular perforationsin 5, [101], studied the thermal performance of perforated
the baffle structure of a HE to reduce friction losses, and subﬁnS in comparison to solid fins and surfaces without fins

stantial improvements in HT for different perforation config- ¢ c|yding that three-opening configurations exhibited better
urations and Re numbers were reported. On the other hand’tﬁermo-hydraulic performance. Razatial. [102] numeri-

mathematical model was developed by Zegal. [92] which .oy performed an evaluation of the effect of inclined baffles
analyzed the effect of inserting a perforated plate on the Ope(3ith perforations in a channel under laminar conditions. It

ational efficiency of the exhaust thermoelectric generator. I, o< found that such baffles improved Nu and reduced f over
showed that an optimal positioning of the plate could eventugqiq paffles. An optimal angle of 135gave the best HT

ally realize an increase in output power by as much as 73.4%i 4 minimum of friction. In another work, Ghanbari and

and improvement in the voltage evenness coefficients withy,\,anerden [103] studied the hydrodynamic convection and

no significant effect that may be caused by the mass flow ratg, iation in pressure of a non-Newtonian fluid flow within

and temperature variations. Along the same direction, Bi¢ef, heated annulus tube. They also obtained that the addition
et al. [93] have proposed a new baffle geometry to decreasgs nanoporous graphene to the base fluid increased the aver-

the pressure drop through the shell side of shell-and-tube THége Nu up to 32% and increased pressure drop up to 75%.
without compromising thermal performance. The three—zona!l—hey also estimated that for annular tubes having specific

superior baffle geometry was identified by the CFD analysigafiie configurations, the addition of nanoporous graphene
which attained 49% reduction in shell side pressure loss anl -reased the system efficiency by up to 11.9%.

slight enhancement in thermal performance. )

Perezet al. [94] carried out a numerical study on the !N another field, the work of Xuet al. [104] presented
effect of a delta winglet pair of perforated VGs on thermohy-l'qu'd s_loshlng ina rectangular tank with perfo_rated baffles.
draulic performance of a channel for different geometries and N€Y did analysis on the free surface fluctuation as well as

configurations. The model was validated through comparisof!® Pressure distribution for a variety of excitation frequen-
with correlations available in the literature. Another work, €i€S: @hd good comparisons among experimental and compu-

Tavakoli and Soufivand [95], performed the numerical analfational results and spectral analysis for free surface elevation
ysis of a parabolic solar collector using a hybrid nanofluid ofVere obtained. Qi and Yuan [105] conducted an investigation

water, AbOs, and MWCNT. They have investigated twisted into the performance of multi-layered porous covers for dis-
tape turbulators that are finned and perforated, and their cof¢€t€ solid block cooling inside a 2D duct. Of the different
clusion was that the use of perforated tape gave better HfoNfigurations tested, the two most superior configurations
and overall performance improvement. Proceeding furthedNvolved those that had maximum permeability in all lay-
Nakhchiet al. [96] attempted to study HT in double-pipe €'S (Case A) and a conflguratlon where the_permeablhty de-
HEs with turbulent nanofluids and turbulators of perforatedcréased towards the outside (Case D). Godi [106] conducted
cylindrical geometry. They found that the new proposed® numerical analysis for micro-channels fitted with fins for
model remarkably augment the thermal performance up thoth solid and perforated configurations., a_nd yvhile search-
1.931 in terms of factor of thermal performance. Javanmardd for global therryal' conductance maximization, had also
and Ashrafizadeh [97] studied a set of perforated ribs. TheynoWwed that for 20% increase in Re number of coolant min-

found that the Case #212 rib significantly enhanced perforMum temperatures were reduced. Godi and Petinrin [107]

mance. The hole inclination angle played a key role in thisconducted a 3-D numerical optimization study on fin geome-
enhancement. tries, solid and perforated, in a cooling system.

Hedau and Saini [98] conducted a computational study Besides, Gautanet al. [108] tested, in circular tube
of a double pass SAH. The author’s introduced transverselflEs at various Re numbers, the enhancement of HT by us-
disposed semi-circular tubes along with rectangular perfoing a perforated triple-wing VG with several twist ratios and
rated blocks to introduce artificial roughness. They foundporosities. Very positive enhancements in HT and overall
that the optimum thermo hydraulic performance would occumperformance were obtained when compared to arrangements
for a particular open area ratio and reduced relative blockagehat included the use of smooth tubes. Van léapl. [109]
height ratio. Zowet al. [99] discussed the use of perforated- proposed hybrid turbulators using perforated circular seg-
serrated fins in cryogenic helium systems. They reported anents as VGs in the air collector ducts. Numerically, it was
better HT performance for these fins compared to convenpresented in 3D with experimental validation that segment
tional serrated ones for low Re numbers. Such geometricarrangements, angles of attack, and Re numbers have a great
changes can be adopted in designing plate-fin HEs belownfluence; optimal performance was recorded at the angle of
80K. Sunet al. [100] carried out a numerical study on pa- attack equal to 30and Nu number as well as friction fac-
rameters that influence the cooling effectiveness of perforatetbr in a staggers arrangement was better when compared with
flat plates. They have proposed a new optimization techniquan in-line arrangement. Lertnuwat [110] also explored how
that will help in giving a better performance in transpiration hole positions can affect the performance of the trapezoidal
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winglet VG in a SAH for a duct configuration in the rectan- Liu et al. [122]; Varol et al. [123]; Vaisi et al. [124]; Chin
gular case. et al. [125]; Awasarmokt al. [126]; Tandel and Modi [127];
Entropy generation in the HT process and flow of Chamoli [128] ; Chamoli and Thakur [129]; Charmg al.
nanofluids within a 3D duct with transverse twisted VGs[130]; Ghanbaret al. [131]; Salemet al. [132]; Khoshvaght-
punctured with holes were investigated by Esmaeili andAliabadi et al. [133, 134]; Pankagt al. [135]; Hassaret
Rashidi [111]. They found that the coefficient of HT in- al. [136]; Pandey and Kumar [137]; Saravaretral. [138];
creases with an increase in the number of holes, while th&arabacak and Yakar [139]; Promvongeal. [140]; Khar-
pressure loss decreases. The optimal performance is obtaingdtraet al. [141, 142]; Huang and Liu [143]; El Habet
when the baffles have four holes and a 540-degree pitch. lal. [144]; Molki and Hashemi-Esfahanian [145]; Singhal.
another similar attempt, Jaiet al. [112] numerically ex- [146,147]; Nakhchiet al. [148]; Fanet al. [149]; Sheik-
plored the thermal performance of a SAH fitted with differ- holeslami and Ganiji [150]; Buchlin [151]; Nuntadusit al.
ent perforated V-shaped VGs and presented outstanding init52]; Saraet al. [153]; Eiamsa-Ardet al. [154,155]; Bhat-
provements in Nu number and friction coefficient. The tur-tacharyyaet al. [156]; Gel'Fandet al. [157]; and Rahman
bulent HT characteristics of perforated fins were investigated158] are made about HT phenomena. Some of the funda-
by Shaeri and Jen [113], and their results showed that mommental experimental models through which perforated obsta-
numbers of perforations for the given value of porosity pro-cles have been studied are highlighted in Table 2.
mote the HT effectively. Also, the perforated fins have much  El Habetet al. [119] investigated the performances of
lower total drag, which is reduced with fewer perforations. new baffle designs experimentally in a rectangular HE. They
Then, Shaeri and Yaghoubi [114] investigated numeri-have tested partial tilting with different angles whereas per-
cally the laminar hydrodynamics characteristics and HT oveforation ratios were also different. They obtained consider-
heated arrays of rectangular perforated and solid fins on a flatbly high HT enhancement values compared to the smooth
surface. They reported that perforated fins offer enhanceHE and developed new correlations for the estimation of Nu
performance and weight reduction. They suggested a corresumber and f factor. Skullongt al. [120] conducted an ex-
lation to predict the effectiveness of perforated fins in theirperimental investigation to provide an improved thermal per-
computed range. Further, Shaeri and Yaghoubi [115], in theiformance of a channel using a SAH with wavy-groove and
numerical investigation, showed flow and HT behaviors ofdelta-wing VGs configurations integrated together on the ab-
solid and perforated fins. The results reflected an efficiensorber. Their results clearly indicated that the maximum en-
enhancement of HT and a reduction in weight in the fins withhancement in thermal performance for specific porosity and
longitudinal pores compared to solid ones. distance ratios existed for integrated devices, which provided
Huanget al. [116] proposed a new perforated baffle- significant improvements compared to individual configura-
based collector aiming to improve the performance of SAHstions. In the research work, for drying, Khanlatial. [121]
Some desired features such as pressure loss, increased abdveloped parallel-pass solar collectors (SCs) with different
lection efficiency, and improvement of HT coefficients werebaffling configurations, whereas for the enhancement they
observed from the CFD simulations for these collectorsstudied plus-type VGs in the presence of holes. Their re-
Optimal dimensions of the holes and opening ratios thasults showed that thermal efficiencies were in the range be-
yield good performance have been pointed out. Barzokiween 62.10% and 75.11%, with the highest efficiency of
et al. [117] performed a study of turbulent water flow about 84.30% in the case of double VGs at higher rate of
through a rectangular duct with chevron plat-fin configura-mass flow, with maximum deviation of prediction against the
tions punched with perforations. Different shapes of VGsexperimental data as 9.5%.
were incorporated into the study, and it showed better perfor- Meanwhile, Liuet al. [122] have experimentally ad-
mance indices for the models with VGs. Among them, thedressed the performance of perforated €8s in augment-
half-circle VG had the highest thermohydraulic efficiency,ing HT inside a cooling channel; it was found that HT en-
while the square and forward triangular VGs were better irhancement improved behind the ribs, the recirculation flow
their categories. While, Rostane and Abboudi [118] also rereduced and there is a slight disturbance in the reattachment
ported that HT from sequential cubes, which were placed omegion of flow, which is promising for turbine blade cooling
a flat surface with holes, was enhanced for cube diametempplications. Further, Varadt al. [123] studied experimen-
greater than D/H = 0.62, with the enhancement increasingally and numerically the convective HT and fluid dynamics

with the increase in the cubes’ perforation diameter. of two parallel streams with different thermal profiles, using
perforated passive obstructions with the purpose of control-
3. Assessing experimental investigations ling fluid flow and the convective mixing patterns, showing

increased thermal mixing by increasing temperature differ-
Complementing the above numerical investigations, varioug€nces, while positive effects of higher values of porosity upon
experimental methods have also been explored in literaturdhixing performance were also presented. On the other hand,
yielding quite useful information for enhancement of HT Vaisi et al. [124] conducted studies on influences of twisted
with perforated obstacles. Significant contributions by El Ha-tape VGs, continuous and discontinuous, with and without
betet al. [119]; Skullonget al. [120]; Khanlariet al. [121]; perforations, on flow and HT in double HEs. Their results
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TaBLE Il. Experimental investigations of HEs with perforated obstacles.

Authors Computational configuration

Skullonget al. [120]

Khanlariet al. [121]

Flow
Case 1: Traditional ribs Case 2: Round holes with larger interval
v k\
I el
N ~

%\ S

Liu et al. [122] y\

Case 3: Square holes

Fed

Perforated ribs
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Authors

Computational configuration

Salemet al. [132]

- H=6.71 mm
t
SSPB 2 (N. =25) SSPB 3 (N- =37) SSPB 4 (N. =218)
5= 10 mm
d, =4 mm
o
[+] (o]
O
SSPB5S(N =8) SSPB 6 (N, =97) SSPB 9 (N, = 26)

S=6.28 S=6.25

SSPB 10 (N, =51) SSPB 11 (N, =42) SSPB 12 (N, = 39)

Segmental perforated baffles

Khoshvaght-Aliabadét al. [133]

Corrugatediperforated fins

Pandey and Kumar [137]

AIR FLOW

V-baffle with staggered hole arrays

Rev. Mex. Fis71 030601



ENHANCING HEAT TRANSFER PERFORMANCE: A COMPREHENSIVE REVIEW OF PERFORATED OBSTACLES 11

Authors Computational configuration

Connecting
rod

Perforations (d)

a) a = 25", d = 1.5mm, PI=4.68% b) a=15,d = 1.5mm. PI-4.68%

Nakhchiet al. [148]

¢ a=25.d=1lmm. PI-2.08% dy a=15".d = 1lmm. PI=2.08%

Perforated elliptic turbulators

Alﬂov.

Baffle

Airflow

Eiamsa-Ardet al. [154]

Semi-circular perforated baffles

continuous counterpart.

showed that the discontinuous VG improved HT by 8.2%,the number and diameter of holes on each pin gives a 45%
with a reduction in pressure drop of 9.8% compared to itgise in Nu number compared with solid pins. Awasarmol
et al. [126], in their investigation, studied HT enhancement
On the other hand, Vaigit al. [124] conducted studies With the help of an experimental study in perforated fin ar-
on influences of twisted tape VGs, continuous and discontays at different perforation ratios, inclination angles, and fin
tinuous, with and without perforations, on flow and HT in configurations under forced convection. Significant enhance-
double HEs. Their results showed that the discontinuous V@nents were noted when the findings were compared to solid
improved HT by 8.2%, with a reduction in pressure drop offins. Tandel and Modi [127] presented a solar combi-system
9.8% compared to its continuous counterpart. Also, the studyith double-pass SAHs, where significant enhancement in

of Chin et al. [125] on the effect of staggered pin fins with thermal performance was noted with perforated baffles.
perforations to enhance HT rates indicates that an increase in
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Chamoli [128] conducted an experimental optimizationergy efficiencies and the minimum energy cost, particularly
technique to enhance the geometry of a duct system witht the 2/3 DP case.
perforated V-shaped VGs. Whereas, Chamoli and Thakur In the experimental investigation performed by Pandey
[129] experimentally analyzed that a duct system with perfo-and Kumar [137], an attempt was made to enhance the perfor-
rated V-baffles roughened surface for SAH was better commance of a SAH channel using perforated V-VGs. Based on
pared to a smooth duct showing enhancements of 2.57 timehe results, they found that among the V-down VGs studied,
in Nu number and 5.96 times in frottement. In particular,the best thermohydraulic performance factor and the high-
the highest thermohydraulic performance was obtained foest thermal and effective efficiencies under turbulent airflow
an open area ratio of 24% and roughness pitch of 2.5. Rewere for V-up VGs. The work carried out by Saravaren
cently, Changet al. [130] also proposed a HT enhancemental. [138] focused on a SAH featuring staggered multiple C-
approach for plate inserts with periodic oblique VGs togetheshape finned absorber plates through an experimental perfor-
with perforated slots to improve the HT of a HE with in- mance evaluation of various flow and geometric parameters
creased resulting Nu numbers across the system and mirfier the optimization in thermal performance. The enhance-
mized flow resistance. ments in HT with fins over the absorbers with smooth plates

Ghanbariet al. [131] conducted an experiment on were observed to be very significant. Karabacak and Yakar
the convective HT and flow characteristics of nanoporoug139] studied the effect of perforations strategically placed on
graphene-reinforced nanofluids. It was demonstrated that 0fihned HEs to enhance convective HT. They concluded that
wt% addition of nanoporous graphene increased the thethe perforations, which they arranged in a specific pattern on
mal conductivity by 12.4% and the average coefficient ofeach of the circular fins, served to induce turbulence close
HT by 39.4%. Besides that, the use of such non-Newtoniato the tube surface; thus, a considerable enhancement of Nu
nanofluids with perforated circular VGs gave rise to an in-numbers about 12% was reported in the range above critical
crease in the value of average thermal performance factor bige values compared to imperforate fin. Besides that, correla-
29% throughout the tested turbulence regime, hence advantens for the Re and Nu numbers, above and below the critical
ing recommendations for the design of more efficient thervalues, were established and those referring to pressure drops
mal systems. In another related study, Saktmal. [132] in flow areas.
have conducted experimental studies on water flow within  Promvongeet al. [140] performed an experimental test
the annular zone of dual tube HEs using both no perforatiomf louver-punched V-VGs in a SAH duct. It was reported
and segmented perforated VG configurations. Based on thefhat this type of VGs reduced the pressure drag and improved
measurements, they identified that the change in design p#hermal efficiency. Their optimum value of performance was
rameters in the latter resulted in a considerable difference id.5, and for a louver angle was 45Numerical simulation
the characteristics of both convective HT and friction loss andesults agreed well with the experimental ones. The investi-
provided the correlations for a concentric tube HE fitted withgations by Khargotrat al. [141] involved very extensive test-
such VGs. Khoshvaght-Aliabadit al. [133] conducted an ing and evaluation of the effect of various design parameters
experimental performance evaluation of perforated wavy fin®f perforated V-VGs on airflow dynamics and thermal per-
in plate HEs, while the results indicated that these providedormance inside a rectangular channel. In these studies, they
a higher HT rate as well as lower f factors when comparedound that indeed the hybrid BWM-CODAS architecture was
to conventional fins. Their study also highlighted the use otthe best decision-making framework for determining an op-
Al Os/water nanofluids. timum SAH design alternative. Along the same lines, Khar-

Further, Khoshvaght-Aliabadit al. [134] investigated gotraet al. [142] designed and optimized a water heating
the performance of twisted-VGs mounted inside a duct undesetup with delta VGs having perforations, chosen as the most
various aperture designs, different aerodynamic attachmentsyitable configuration that meets the preset performance cri-
and their interactive effects. Their study showed that whileteria; sensitivity analysis was also performed, in this respect,
solid models had some advantages it@isted-VGs, the ensuring the effectiveness of the proposed framework.
aerodynamic attachments enhanced performance quite dras- Huang and Liu [143] studied the effect of the optimal de-
tically in 90° and 180 twisted-VGs, realizing maximum per- sign parameters on the thermal management in a heat sink
formance indices at Re number 1643. Pamdtagl. [135] did  with the introduction of a delta winglet VG to improve its
experimental work on natural convection HT enhancemengeffectiveness, and they proved by experimental verification
with perforated fin arrays and, among other things, estabthat it may be improved by an increase in Re numbers. El
lished optimal configurations such as 4 mm diameter perforaHabetet al. [144] examined the hydrothermal characteris-
tions at 45 with constant pitch performing well in horizontal tics influenced by VGs in a rectangular channel. Different
rectangular arrays with 10 mm spacing. In another directionbaffle perforation ratios have been considered for both inline
Hassaret al. [136] conducted an experimental performanceand staggered arrangements. Maximum performance extrac-
test of flat plate SAHs using double pass (DP) configuratiortion has been considered in the case of a staggered arrange-
arrangement. They tested heaters fitted with V-corrugatednent with solid baffles at Re = 12,000. Molki and Hashemi-
perforated absorbers. The obtained results showed that ttesfahanian [145] measured HT by convection behind a perfo-
corrugated-perforated SAH gave better daily energy and ex-ated obstruction in a rectangular conduit using a mass trans-
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fer technique to obtain local transfer rates. Further, Singh Eiamsa-ardet al. [155] investigated the effects of us-
et al. [146], in order to investigate thermal and hydraulic ing perforated V-baffles with delta-wing configurations (DW-
performance of perforated V-VGs inserted in a double pas®VBs) inside a duct on HT and friction loss. In their experi-
SAH, have presented correlation of various parameters witinentations, they identified that at diminished angles of attack
Nu number and frottement, showing notable enhancement iof the delta-wings), the HT enhanced while flow resistance
thermo-hydraulic performance by the use of perforated Vdiminished. Concretely, DW-PVBs &f = 22.5° ensured
VGs compared to plain surfaces. the best performances with the highest value of performance

The other experimental study of Singt al. [147], equalto 1.91. It was also achievable for the DW-PVBs to re-
recording the same VGs texture in double pass SAH, also regiuce the friction factors by 13.64-17.26% compared to solid
istered a significant improvement in overall performance ovel-baffles. Bhattacharyyat al. [156] conducted an exper-
continuous rib roughness and hence spoke for the effectivémental study on perforated angular-cut baffles in turbulent
ness of perforation in application to artificial roughness alsoflow; it was observed that among the tested geometries, alter-
Nakhchiet al. [148] found that dual perforation turbulators in nate segmental baffles (ASB) showed the best HT augmen-
the inclined elliptic shape inside double-tube HEs increasedation with an enhanced Nu number as high as 42.18% over
the HT by 217.4% and fluid mixing to give the maximum ef- segmental baffles (SB), while proposing correlations between
ficiency value of 1.849 for specific perforation sizes beyondNu, friction factor, and the examined parameters that indi-
Re numbers from 5,000 to 18,000. Along the related line, argated TPFs greater than unity for all cases. In search of more
exergetic efficiency analysis performance evaluation methogénhancements, Gel'Famd al. [157] carried out experiments
was developed by Faat al. [149] to study a HE system using to investigate the interaction of plane shock waves with trian-
perforated twisted VGs and indicated that variation of perfo-gular pressure distributions and perforated VGs, and to mea-
ration density increases the thermal-fluid performance firstsure the parameters of reflected waves, the amplitude and im-
up to the point where an optimal efficiency can be reachegpulse attenuation coefficients versus barrier permeability, and
after which it decreases, while Re and magnetic field intenguenching coefficients for an arrangement of baffles in series.
sity have positive influence on system performance, thesBahman [158] experimentally investigated a new axial HE
changes result in ideal value of perforation ratio and considthat utilized perforated circular baffle plates with rectangu-
erable improvement of HT efficiency was revealed using thdar air deflector inserts for enhanced air-side turbulence and
exergy efficiency approach. This concept was also realizegurface HT rates; substantial thermal enhancement at certain
by Sheikholeslami and Ganji [150] during their experimentalinclination angles and pitch ratios was depicted for the HE
studies using perforated turbulators in a double-tube HE, opsompared to those fitted with segmental baffle plates under
timizing geometrical parameters with the aim of enhancingdentical conditions.

HT. They determined that heat transfer increases with aper-

ture ratio and temperature difference decreases with the pitch

ratio. Buchlin [151] found that when using perforated rib 4. Practical applications

structures in a turbulent boundary layer, a three-fold increase

in localised heat improvement was achieved over solid ribsThe effective impact of perforated obstacles on the dynamics
Here, the optimum geometric parameters were given as a rif fluid flow makes their role imperative in most applied and
spacing ratio of 5 and 0.53 open area factor. Overall, it waghdustrial fields. In general, these components are very im-
noted that these could be applied for a range of duct Re nunfportant in improving performance, efficiency, and control in
bers from 30,000 to 60,000. most engineering systems.

Nuntadusitet al. [152] experimentally conducted studies ~ Perforated baffles, employed in a wide number of indus-
on the interactions between thermal processes and fluid maé-al equipment such as HEs, chemical reactors, and distilla-
tion over a channel with transverse perforated ribs. The intion columns (Bruncet al. [159]; Nasyrlayewet al. [160];
vestigations were made on the variation in perforation anglélormanet al. [161]; and Ibrahimet al. [162]) improve fluid
and hole location. Saet al. [153] studied the enhancements mixing, and enhance HT rates. Such baffles cause turbulence,
in HT and pressure fluctuations in the flow over a channeflisturb the laminar flow, and act to enhance convective HT
using perforated rectangular VGs, affixed onto a level surwith improved mass transfer for optimum process efficiency.
face, and reached to the conclusion that whereas the use of The application in HEs to aerospace engineering, Bham-
solid blocks led to an increased HT at the expenses of everbereet al. [163]; Sakanova [164]; and Al-Damoodt al.
tual losses in energy, the presence of perforations in the VG4.65] highlighted perforated fins as one of the key elements in
can achieve energy gains around 40%. Studying other gémproving convective HT rates for thermal dissipation man-
ometries, the influence of wing arrangement on HT and presagement. In comparison with non-perforated fins, perforated
sure drop in a duct fitted with perforated transverse baffle®bstacles manage to dissipate heat effectively due to an in-
with square-wing geometry was analyzed by Eiamsa-#rd crease in the exposed surface area and also due to an enhance-
al. [154]. Their work demonstrated that this kind of wing ment in the value of the convective HT coefficient, which
arrangement increased the rate of HT while reducing airflovhelps to avoid overheating and promotes extending the op-
resistance compared to solid transverse baffles. erational lifespan of the component.
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Perforated ribs also play an important role in turboma-ify the interplay among flow behavior, HT enhancement, and
chinery, gas turbine blades, and HEs (Chbal. [166]; Ye  structural integrity-and hence allow the extraction of appro-
et al [167]; and Chunget al. [168]), mainly for bound- priate general design guidelines.
ary layer control and enhancement of HT. The perforated ribs Hybrid approaches that can marry perforated obstacles
create streamwise vortices and enhance mixing in boundanyith other HT enhancement techniques may yield some syn-
layers that delays the separation and reduces pressure lossegjistic benefits. Investigations that incorporate perforated
thereby enhancing the system efficiency as a whole. In adbbstacles with surface modifications, secondary flow induc-
dition, the delay in fouling and sedimentation in fluid sys- ers, and phase change materials are used to explore novel
tems enhances operational reliability by stimulation of self-ways to further enhance HT rates and overall thermal effi-
cleaning mechanisms and hindrance of particle deposition. ciencies in HEs.

Further, perforated VGs applied in aerospace, automo- Several experimental investigations need to be performed
tive, and HVAC systems (Hasaat al. [169]; Heriyaniet al under real operation conditions to validate the numerical sim-
[170]; and Effendet al. [171]), regulate flow structures to en- ulations so that the actual application of perforated obstacles
hance aerodynamic performance while controlling boundaryn HEs is allowed. The collaborations with industrial partners
layer transitions. Their enhancement of convective HT coefwill allow the technology transfer and faster diffusion of the
ficient augmentation in thermal management systems mairsolutions of perforated obstacle HT enhancement in HVAC,
tains temperature uniformity and carries out efficient HT.  automotive, aerospace, and renewable energy systems.

Furthermore, perforated turbulators, integral to HEs, boil-
ers, and air ducts (Assaat al. [172]; Srivastavat al. [173];
Bhattacharyyaet al. [174]; and Sharmat al. [175]) im-

prove the convective HT rates and enhance fluid mixing, bewe have reviewed in this work the performance enhancement
sides fouling reduction. By inducing controlled turbulence of HEs using perforated obstacles. In fact, with deeper anal-
and breaking laminar boundary layers, turbulators enhancgsis of both numerical simulation and experimental investi-
the convective HT coefficient, hence enhancement of thergations, the use of perforated obstacles was found to enhance
mal performance and efficiency. Also, they allow for uni- HT significantly.
form temperature distribution, thereby preventing local "hot’ e have reconsidered the spectrum of approaches to HT
or 'cold’ spots in HT systems and permitting stability of op- enhancement in HEs, from passive to active techniques, un-
eration. derlining the peculiar advantages coming from using perfo-
In other words, it points out that the general applicationrated obstacles. In fact, this latter proved to be a promising
of perforated obstructions acts to underline the very prinCiavenue thanks to tangible improvements in flow dynamics
ple underlying the optimization of fluid flow, HT, and perfor- and thermal characteristics.
mance of an aerodynamic nature in a large number of indus- A key feature of our review was the analysis of several
tries and engineering applications. These flexible elementsarameters that influence the performance of perforated ob-
raise the efficiency and productivity of the system and allowstructions. Some of the operating and geometrical parameters
the development of various sustainable and energy-efficientlated to hole dimensions and shapes were studied in detail

6. Conclusions

technologies. to establish the boundaries of their effects on heat transfer
enhancement. These data provide the basis for an optimum
5. Future research design for specific applications.

Further, we found critical applications in which HEs with
The exploitation of perforated obstacles for HT enhancemerperforated barriers prove to be very effective. The versatil-
in HE opens various ways for a multitude of new avenues irity of the approach from industrial processes to HVAC sys-
the field of research and innovation. Further directions couldems testifies to the potential to affect significant changes
be pursued by the researchers for the advance of the field scross many industries depending on the effectiveness of
the following ways. heat-exchange mechanisms.

The future work may conduct systematic parametric stud-  Our review also provides useful recommendations for fur-
ies in the optimization of geometric parameters of perforatedher research studies in this area. Further promising lines of
obstacles. Using state-of-the-art computational tools and opravestigation concern the exploration of new geometrical ar-
timization algorithms, one is able to choose an optimal shapeangements, advanced materials, and the detailed investiga-
of the perforation, its size, arrangement, and spacing for maxtion of the fluid flow mechanism.
imum HT enhancement factor with minimum loss of pressure  Numerical analyses presented in the work, combined with
drop and consumption of material. experimental validation, therefore show that perforated ob-

The integration of multi-physics modeling and simula- stacles have the potential to cause a revolution in efficiency
tion techniques will provide an in-depth understanding of thein HE performance. In fact, this new approach ushers in a
complicated fluid flow and HT phenomena associated wittmew frontier in efficiency and sustainability regarding ther-
perforated obstacles. This kind of coupling between fluid dy-mal management systems through the reduction of pressure
namics, HT, and structural mechanics simulations can clardrop and enhancement of HT coefficients.
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