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In this article, we introduce a methodology based on an analytical model of a damped harmonic oscillator subject to random forcing to
generate transient gravitational wave signals. Such a model incorporates a simulated linear high-frequency component that mirrors the
growing characteristic frequency over time observed in numerical simulations of core-collapse supernova gravitational wave signals. Unlike
traditional numerical simulations, the method proposed in this study requires minimal computational resources, which makes it particularly
advantageous for tasks such as data analysis, detection, and reconstruction of gravitational wave transients. To verify the physical accuracy
of the generated signals, they are compared against the amplitude spectral of current LIGO interferometers and a 3D numerical simulation
of a core-collapse supernova gravitational wave signal from the Andresenet al. 2017 model s15.nr. The results indicate that this approach
is effective in generating scalable signals that align with LIGO interferometric data, offering potential utility in various gravitational wave
transient investigations.
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1. Introduction

Since Einstein predicted the existence of gravitational waves
(GW) in 1916 [1], their search was a challenge that lasted for
a century. Throughout this period of time, extensive research
efforts have been dedicated to their discovery. In 2015, the
first experimental confirmation of a GW signal, associated
with a black hole compact binary coalescence (CBC) system,
known as GW150914 [2], was achieved through the efforts of
the LIGO (L1, H1) [3] and VIRGO [4] collaborations; later,
KAGRA [5] joined the search for GW, and together they are
called the LVK collaboration. Today, the LVK Collaboration
has successfully detected more than one hundred GW events,
making this remarkable achievement the result of dedicated
efforts in theoretical [6], observational [7], computational [8]
and experimental research [9]. After the first detection of a
GW from a CBC, new feasible sources of GW are expected
to be detected, such as GW signals from core collapse su-
pernovae (CCSN) [10-12]. The first detection of a GW from
CCSN will become the next great achievement in the his-
tory of GW research. CCSN are complex stellar explosions
produced in the final stages of life of massive stars, whose
masses are beyond 8 M̄, characterized by a large emission
of energy through photons [7], neutrinos [11], and GW [13].
They are exceptional systems that involve several physical
phenomena in a single event, which occurs at an extremely
low rate in our Galaxy (approximately two occurrences per
century [14]. CCSN are more complex systems than CBC
due to their inherent physical complexity, which involves the-

oretical and experimental aspects that remain unknown today,
such as the physical interactions that lead to such explosions,
in particular microphysics beyond the nuclear mass limit [15-
17]. Thanks to advanced numerical simulations [6,18], work-
ing together with computational data [19], and laser interfer-
ometric advances, it is currently accepted in the GW astron-
omy community that; the GW signal emitted by a CCSN is
(1) essentially stochastic [10,13,15,20], (2) has a strain am-
plitude,h(t), in the order of10−21m to 10−23m [16,19,21],
and (3) exhibit distinct physical components, features, incor-
porated in their signal, which describe the interactions that
take place in different regions of the source [9,12,22,23].
These characteristics can be regarded as deterministic and
can be calculated to acquire physical data from the source
of GW radiation.

In recent years, several computational codes have been
implemented to classify, determine, and characterize the dif-
ferent features incorporated in a GW CCSN signal. Their
characteristics are given by specific physical interactions
within the GW source, including hydrodynamic instabili-
ties in the convection zone [20,23], buoyancy forces caused
by gravity [7] and stellar overshooting [14], among oth-
ers. All these components and characteristics associated
with CCSN GW signals could be classified as deterministic
along their time-frequency evolution signal, as demonstrated
in Ref. [15,17,18]. An ongoing challenge within the study
of CCSN is the quantification of these characteristics based
on their physical behavior and the establishment of connec-
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tions with the source parameters. This endeavor aims to re-
construct the essential properties of the GW progenitor. Due
to the high computational cost of numerical simulations of
CCSN GW signals, we are motivated to implement a method
that generates CCSN GW signals using an analytical method,
whose numerical solution simulates a GW signal with a con-
tinuous, linear, and strictly increasing High Frequency Fea-
ture (HFF) evolution [22]. We develop a simple but power-
ful computational model with low computational cost, mak-
ing use of a theoretical model based on a second-order, non-
homogeneous, differential equation with random forcing to
simulate the physical properties contained in the GW CCSN
signal with presence of HFF, and a computational pipeline,
based on the theoretical model [22], to emulate the time-
frequency evolution of a GW CCSN signal. Once the model
has been computationally adapted, we perform variations in
the parameters that define the theoretical model, producing
signals with time-frequency evolution spectrograms with dif-
ferent HFF. Finally, we compared the generated GW strain
signals with a 3D CCSN GW [8] signal to contrast our re-
sults with the sensitivity curves associated with the LIGO in-
terferometric data. One of the potential applications of this
study includes the use of data analysis methods, the estima-
tion of the HFF, and the interaction of computational physics
to gain insight into the general physical attributes of this fea-
ture, which introduces a classical mechanical system.

This paper is organized as follows. In Sec. 2 we describe
the physics of CCSN. Section 3 we explain the model of gen-
eration of GW through the damped harmonic oscillator. Sec-
tion 4 focuses on the parameters that control the HFF of the
simulations and the numerical scheme to solve the differen-
tial equation. The results of the GW simulation for CCSN are
described in Sec. 5. In Sec. 6 we discuss the detectability of
our GW simulations in the LIGO range. Finally, in Sec. 7 we
present our conclusions.

2. The physics of the core collapse supernova
high frequency feature

After the CCSN an extremely compact and dense astrophys-
ical object is born, a Proto-Neutron-Star (PNS). These stars,
modeled by the laws of hydrodynamics, can be analytically
described as a continuous and compressible mixture of gas
and radiation. Its physical properties are induced by different
interactions such as rotation, mass, magnetic fields, and tidal
forces [7,14,19]. Over time, PNS show dynamic pulsations,
which are seen as areas that contract and expand on their
photospheres, the external layer from which light is emitted
[7]. These pulsations result from standing waves propagating
inside the star that constructively interfere with themselves,
generating resonant modes [20]. In essence, a star resem-
bles a musical instrument, playing a unique tune composed
of various modes dictated by its physical composition. The
“music” emitted by these astrophysical objects helps us to
estimate the properties of the GW sources by detecting pe-

riodic surface movements. It is widely accepted in the cur-
rent state of the art of GW astronomy that the main source
of CCSN GW signals is the excitation of PNS modes during
post-bounce evolution, which displays prominent stochastic
behavior [6,8,10,18]. The frequencies of PNS oscillations de-
pend on several factors within the stellar structure, including
density, temperature, and gas motion [19,23], the amplitude
is determined by the magnitude of the excitation and damping
processes, which can involve convection-induced turbulence
and magnetic fields.

Pressure-driven oscillations, known as p-modes, are es-
sentially acoustic waves. These modes are characterized by
their restoring mechanism, which arises from pressure gra-
dients within the stellar medium; p-modes are commonly
observed in stars such as the Sun and solar-like stars [7].
They tend to exhibit relatively high frequencies, with solar
p-modes, for instance, falling within the frequency range of
1000 to 5000µHz, corresponding to periods ranging from
17 to 3 minutes, [14]. However, gravity-driven oscillations,
known as g-modes, are associated with buoyancy as the pri-
mary restoring force. In this case, gravity acts as the domi-
nant force, restoring motion through buoyancy forces acting
on variations in density across horizontal surfaces within the
star [20,22]. The resulting g-modes manifest themselves as
standing internal gravity waves. Notably, some of the most
extensively studied examples of g-modes are found in white
dwarf stars [14].

Three main CCSN features have been discussed in cur-
rent GW astronomy state-of-the-art: the Standing accelera-
tion shock instability (SASI), the HFF, also known in modal
analysis as g-mode, and memory [13]. Each feature is in
correlation with a particular physical mechanism that occurs
during the emission of GW, given a specific response in the
time-frequency evolution [21], in particular: (1) the HFF is
related to physical properties located in the star core, and it
is present in all GW CCSN simulations [8,10,15-17,23]. It
can be identified in a spectrogram as a progressively rising
parabolic pattern starting around150 Hz and extends up to
700 Hz [24]; (2) SASI is a feature related to neutrino emis-
sion, which can be recognized in a spectrogram as a horizon-
tal pattern around120 Hz to 200 Hz, starting right after the
HFF ends [6]; (3) memory is a low-frequency feature related
to neutrino emission, can be recognized in a spectrogram as
a bump starting around1 Hz growing up to10 Hz [11].

3. Generating core collapse supernovae grav-
itational waves signals: The damped har-
monic oscillator

In this section, we introduce an analytical approach devel-
oped for producing CCSN GW signals [20]. The time-
frequency plots of these signals demonstrate a linear increase
in frequency over time, unlike those from numerical simu-
lations. This analytical method can generate time-frequency
responses that closely match their numerical counterparts in

Rev. Mex. Fis.70060702



GENERATING TAILORED HIGH FREQUENCY FEATURES IN CORE COLLAPSE SUPERNOVA GRAVITATIONAL. . . 3

the CCSN GW signal and can be adjusted to accommodate
the LIGO interferometric noise level. This flexibility makes
it suitable for various GW studies that involve data analy-
sis, parameter estimation, detection, and reconstruction with
a low computational cost compared to CCSN numerical sim-
ulations.

We extract the physical characteristics of an oscillatory
system described through a second-order, linear, nonhomo-
geneous differential equation that incorporates random forc-
ing [25]. Subsequently, we adapt these properties computa-
tionally to simulate the generation of GW signals. The main
property of these generated signals is the presence of the HFF
in its time-frequency spectrogram that describes a clear lin-
ear rise in time. As we expect, using this generated model, we
can study the physical properties of the HFF, controlling its
evolution at the first-order approximation. Once the model
has been defined, we describe its numerical solution using
the semi-implicit Euler method and all the properties induced
from the solution.

A second-order linear differential equation with constant
coefficients [25] has found widespread application in physics,
particularly in the modeling, vibrating, oscillatory, and reso-
nant systems. These systems encompass mechanical, wave-
based and electrical phenomena, ranging from the funda-
mental simple harmonic oscillator to more intricate variants
that incorporate damping and external influences introduced
by driving forces. In its homogeneous form, the linear and
second-order differential equation with constant coefficients,
which describes an oscillating system, can be expressed as
follows [22]:

d2h(t)
dt2

+
ω0

Q

dh(t)
dt

+ ω2
0h(t) = 0 , (1)

whereh(t) denotes the time dependent solution, beingt the
time duration of the signal.ω0 denotes the natural,i.e., un-
damped, angular frequency of the system; andQ the quality
factor associated with the energy content of the system. It
is widely recognized that the solution to such a differential
equation serves to elucidate three distinct types of mechan-
ical oscillations induced by damping in physics. These os-
cillations are commonly termed underdamped, overdamped,
and critically damped, and their categorization is based on
the characteristics of their respective polynomials. Unlike
the underdamped oscillations, in both overdamped and crit-
ically damped cases, the system evolves under the effect of
a higher disruptive force, avoiding any oscillation in the pro-
cess. In all three different scenarios, the equation has an an-
alytical solution that can be found by implementing classi-
cal differential equation methods. Underdamped oscillations
are distinguished by their gradual decrease in amplitude over
time, a behavior influenced by the presence of a relatively
lighter external force acting on the system. However, as pre-
viously mentioned, a GW CCSN signal is a stochastic pro-
cess. Therefore, this characteristic must be taken into ac-
count within the analytical model. To accomplish this, we
will utilize an extended version of Eq. (1), which incorpo-

rates an additional stochastic component known asDriving
Force, denoteds(t). This inclusion is essential to reproduce
the stochastic property of the GW CCSN signal. The force is
mathematically modeled by a Dirac delta function as follows:

s(t) = snδ(t− tn), (2)

in which tn with n = 1, 2, . . . , N are N times instants
where the driving force is applied to the system, andsn is
the random amplitude of the force which is in the interval
[smin, smax].

The physical system that we will model from a mechan-
ical point of view as a damped harmonic oscillator with a
random forces(t), is represented by the equation:

d2h(t)
dt2

+
ω(t)
Q

dh(t)
dt

+ ω(t)2h(t) = s(t), (3)

where the force is responsible for driving the evolution of
the system as an external agent that controls the dynamical
evolution. For example, its solution can take the form of a
continuous periodic function of time, which is a common
occurrence in resonance frequency problems. This theoret-
ical approach makes use of fundamental building blocks to
model the nature of the signals, enclosing: (1) the quality
factorQ, which plays a pivotal role in regulating the energy
stored within the system and its subsequent dissipation over
time due to damping. This factor will be employed to man-
age the linear growth observed in the spectrogram of the GW
signal; (2) the driving force, which model the stochastic com-
ponent present in this radiation. By modifying the parameters
included in the differential equation, we can create generated
spectrograms that mimic the GW signals, each characterized
by distinct linear evolutions of the HFF. The characteristics
that were previously established come together in a manner
that functions as a mechanical representation of a PNS that
expands and contracts in a repetitive manner, resembling the
oscillations of the mechanical system and dissipating energy

FIGURE 1. Random forcing modeled in terms of the amplitude
distributionsn = [−1, 1] in a time intervalt = [0.0, 0.8] with 100
elements. Each parameter dictates the amplitudes reached by the
waveform during the time window and its distribution.
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with each cycle. The damping component symbolizes the re-
sistance against the surface as it attempts to alter its volume
during each expansion and contraction cycle [23]. The forc-
ing is modeled with an amplitude intervalsn that is uniformly
distributed, including the Dirac delta function positioned at
values oftn, see Fig. 1. These valuestn correspond to in-
stantaneous accelerations, driven by a frequency associated
with the rate of triggers per unit of time.

4. Parameters that controls the generated core
collapse supernova high Frequency feature
over time

The arch produced by the evolution of the HFF in CCSN GW
sinals is modeled by the angular frequencyw(t) = 2πf(t),
to determine an analytical model that fits these needs for the
functionf(t) following [22], for this we introduce a second-
degree polynomial model that satisfies:

f(t) = f0 + f1(t− tini) + f2(t− tini)2,

t ∈ [tini , tend], (4)

wheref0 is a constant value,f1 andf2 are time functions
which control the frequency evolution. The time interval will
be from the initial timetini to the final timetend. The appro-
priate ramp-up function according to the simulations given
by [20], is expressed by:

f(t) = f0 +
2(f1s − f0)(t2 − tini)

(2t2 − tini − 1)(1− tini)
(t− tini)

− f1s − f0

(2t2 − tini − 1)(1− tini)
(t− tini)2,

wheref1s is defined as the frequency evolution at one second
f(t = 1), t2 influences the concavity of the frequency curve
and represents the maximal point of the polynomial where
t2 ≥ tend. The values oft2 ¿ tend alter the orientation of
the curvature so that the maximum value off(t) increases
faster than expected in the simulations. Finally, the driven
frequency is defined through the number of accelerationsN ,
given by Eq. (2) as:

fdriven≡ N

tend− tini
, (5)

this frequency characterize the number of triggers per unit
time introduced by the forcing. In Fig. 2 we plot the fre-
quency function Eq. (4) with a starting point of0 to 0.5 s
with a frequency from−50 to 1200 Hz. The change int2
represents how this variable controls the concavity of the fre-
quency functionf(t). Whent2 À tend approaches the left,
nearly totend, we will start to have negative values that are
not allowed by the HFF. When the value oft2 is greater than
tend, we will observe the rising arch estimated to obtain the
HFF behavior.

The analysis of generated CCSN GW signals is carried
out using the analytical model detailed in Sec. 3. This model

FIGURE 2. Examples of the evolution of the frequencyf(t) for
different values oft2 with t2 > tend and t2 < tend. The change
in t2 represents how this variable controls the concavity of our fre-
quency function. When the value oft2 is higher thantend, the rising
arch is obtained for the HFF (green, blue, and orange lines).

allows for the customization of various characteristics of the
signal, such as the density of amplitude points, duration, and
the linear increase of frequency pixels over time. However,
the behavior of the signal in the last milliseconds of its du-
ration, particularly its smoothness during the last phase of
evolution, cannot be directly controlled. This lack of con-
trol introduces significant complexities in signal analysis. To
address this issue, we propose the incorporation of the lo-
gistic function, a smooth, continuous,S shaped curve [26]
that gradually decreases during the final moments of the gen-
erated signals. At this stage, the amplitude signal becomes
zero, which means that the absence of oscillations generated
in the PNS is responsible for the emission of GW. This logis-
tic function is represented by the following equation:

S(x) =
1

1 + e−k(x−x0)
=

ek(x−x0)

1 + ek(x−x0)
, (6)

wherex0 denotes the middle point of theS curve andk indi-
cates the steepness of the function. Thus, to achieve a smooth
transition of the signal at the final time of the waveform, it is
essential to modify the functionS(x) in Eq. (6) by incorpo-
rating a negative sign to enable the desired inversion of the
function. This subtraction will then be used to create a “mis-
aligned” logistic functionT (x) in the following manner:

T (x) = 1− S(x). (7)

The modified logistic regression function in Eq. (7) is used
to multiply the generated waveform and allow smoothing of
the final part of the signal; the function form can be seen in
Fig. 3, where the middle point is reached inx0 = 0.8 using a
steepness with a value equal tok = 40.

4.1. The semi-implicit Euler method

To derive a solutionh(t) from the Eq. (3) due to the lack
of an analytical solution, we employ a basic numerical tech-
nique known as the semi-implicit Euler method. This method
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FIGURE 3. Logistic Regression function with a middle point in
x0 = 0.8 and a steepness ofk = 40. Using Eq. (7) we plot the dot
lines that show the modified logistic regression function that allows
smoothing the final part of the signal.

relies on a finite difference approximation, enabling the trans-
formation of the differential equation into a linear recurrence.
To solve the equation, the order is initially reduced by re-
defining the variables in the following way:

x1(t) = h(t) and x2(t) =
dh(t)

dt
, (8)

by differentiatingx2 we obtain a first order equation to solve,

dx2(t)
dt

= s(t)− w(t)
Q

x2 − w(t)2x1(t). (9)

Then, using this finite differential method to solve numeri-
cally our equation, we describe the variables and derivatives
in terms of recurrence relations,

x2(i + 1) = x2(i) +
(

s(i)− w(i)
Q

x2 − w(i)2x1(i)
)

∆t,

x1(i + 1) = x1(i) + x2(i + 1)∆t, (10)

wherei = 0...a is a constant that determines the next step of
the simulation. The following Eqs. (11) describe the semi-
implicit Euler method used in the simulation.

dh[i + 1] = dh[i] + (s[i]− (w[i]/Q)(dh[i])

− w[i]2(h[i]))dt),

h[i + 1] = h[i] + (dh[i + 1])dt. (11)

The accurate determination of the parameters that govern
the differential equation Eq. (2), significantly influences the
modeling of the generated signals. The parameters imple-
mented to generate different responses are shown in Table I.
With these parameters, we obtain different linear growth pat-
terns over time; equivalently, this defines different slopes of
the HFF.

Besides the basic parameters, it is essential to establish
the following: the quantity of triggersN using the Eq. (5),

the highest magnitudesn as indicated in Eq. (2), and the pa-
rameters for the logistic function, specifically, the midpoint
x0 = 0.8 and the slopek = 40 from Eq. (7). Once these val-
ues are determined, we can proceed with the computational
simulations of the waveforms, which will be applied in the
subsequent section.

5. Results

In this section, we provide the outcomes of applying this ap-
proach to reconstruct simulated CCSN GW signals. In ad-
dition, we determined the effectiveness of the reconstructed
signals compared to the LIGO noise.

5.1. Algorithm Implementation: CCSN GW spectro-
gram production

To derive the frequency functionf(t) as described in Eq. (5)
and to replicate the linear growth in the HFF, the coefficient
values specified in Table I were used. Subsequently, through
a comprehensive implementation of the different steps intro-
duced in the algorithm outlined in Eq. (11), the waveform
h(t) was generated, ensuring its compatibility with the LIGO
interferometer detection range. This waveform was then nor-
malized to accommodate any desired amplitude and resam-
pled at the sample rate of the LIGO detector (fs = 16384)
[27], as shown on the left side of Fig. 4. The signal spectro-
gram is shown on the right side of Fig. 4, we can observe the
linear and continuous increase in frequency, aligned with the
expected HFF behavior of the signal discussed. The signal
has a duration of0.8s with a maximum frequency of 600 Hz.
To align the modeled signals with the sensitivity range of
L1 and H1 interferometers, the Amplitude Spectral Density
(ASD) is computed for a specific waveform model [12]. By
applying a scaling factor to the normalized amplitude of the
waveform, different ASD profiles are derived, each corre-

TABLE I. Parameters that rule our generated waveforms and com-
pose the parameterized frequency function. The table shows in the
first column, the parameter space of the generated templates, the
second and third columns indicate the range (minimum and maxi-
mum, respectively) for each parameter.

Model Parameters

Parameters Minimum Maximum

tini [s] 0.0 0.35

tend [s] 0.3 1.0

f0 [Hz] 100 650

f1s [Hz] 450 2000

t2 [s] 0.35 1.5

Q 0.5 100

fdriver [Hz] 200 400

fs [KHz] 4 16
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FIGURE 4. The left panel displays the strain signal of GW CCSN, it is highlighting stochastic nature throughout its duration. The right panel
shows the spectrogram with the HFF evolution, demonstrating a linear and continuous increase in frequency, aligning with the expected
behavior. The signal has a duration of0.8 s with a maximum frequency of600 Hz.

TABLE II. Parameters associated to generate CCSN GW signals and how different configurations of these parameters combines to produce
differnt linear responses in the HFF. We compute such responses in the spectrogram of the signal estimating the slope of the HFF using the
simple relation HFFslope = f1s − f0/t2 − fini .

Initial Values

WF tini [s] tend [s] f0 [Hz] f1s [Hz] t2 [s] Q− factor fdriver [Hz] HFF Slope

WF1 0.0 0.5 100 600 1.5 10 400 750.17

WF2 0.0 0.8 300 900 1.5 10 400 675.05

WF3 0.0 0.9 500 1000 1.5 10 400 527.83

WF4 0.0 1.2 480 1500 1.5 10 400 935.08

FIGURE 5. Noise amplitude curve obtained during the scientific
run O3b of LIGO interferometers L1 and H1. The plot shows how
two different generated CCSN GW signals (he1, he2) respond to
the sensitivity of laser interferometric detectors.

sponding to a different range of sensitivity. Two of these
ASD profiles for the generated signals (he1, he2) are com-
pared with the ASD data from the LIGO observation run
(O3b) illustrated in Fig. 5, demonstrating how this scalable
model can operate effectively within the detection thresholds
of these interferometers.

5.2. Generation of CCSN GW signals

We have generated 1000 waveforms with varying HFF ranges
between1600, 3500 Hz. These waveforms differ in strain du-

ration, initial frequency, and the driven frequency, which are
restricted by the limits specified in Table I. Table II displays
four waveform samples (WF1, WF2, WF3, WF4) with dif-
ferent representative parameters.

The fluctuations in the HFF slope’s reaction demonstrate
the model’s capability to produce CCSN GW signals similar
to those shown in Fig. 6, and how the slope can vary across
all spectrograms.

6. LIGO response associated to CCSN GW
signals from generated and numerical sim-
ulations

To investigate the physical features of our generated CCSN
GW signals, we compare the strain signals, time-frequency
evolution spectrograms, and GW-sensitive curves related
with a 3D CCSN GW numerical signals. We aim to eval-
uate the appropriateness and consistency of different physi-
cal characteristics in signal generation for use in LIGO inter-
ferometric research, including differences in duration, peak
frequency, and amplitude spectral density. To make such a
comparison, we use the 3D CCSN GW signals from An-
dresenet al., 2019 [8] model s15.nr. These GW signals
are extracted from three different models based on approx-
imately 3D general relativistic radiation (neutrino) hydrody-
namic simulations with a single progenitor with a zero-age
main-sequence mass (ZAMS) of 15 M̄, solar metallicity,
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FIGURE 6. The upper panel displays the strain data for WF1, WF2, WF3, and WF4 as detailed in Table II. These graphs demonstrate a
significant random element, influenced by the stochastic forcing elucidated in the analytical model presented in Sec. 4. The lower panel
illustrates the time-frequency evolution plot for each signal generated. Within each spectrogram, the rising slope of the high-frequency
content is observable, showcasing how this slope fluctuates due to adjustments made to the parameters governing the high-frequency content
evolution.

FIGURE 7. Left panel Strain signal for Andresenet al. (2017), models15.nr. Right panel Strain of a generated CCSN GW signal.

and with different rotation rates0 rad/s, 0.2 rad/s, and
0.5 rad/s. We select this model because it represents the pro-
totype of 3D CCSN numerical simulation, which contains the
most studied progenitor mass, with physical properties such
as angular momentum and HFF presence, which cover some
of the basic elements in the numerical simulation analysis.
In continuation of the previous approach, a randomly gener-
ated waveform is chosen to analyze the strain of the generated
CCSN GW signal against the models15.nr. The comparison
was carried out considering the following features:

1. GW Strain: The GW strain signal from Andresen
model s15.nr is characterized by a stochastic behav-
ior, similar in form to those obtained for the generated
model as is illustrated in Fig. 7. These strain signals
and the generated CCSN GW share the characteristic

of stochastic behavior in this type of emission.

2. GW Spectrogram:The time-frequency evolution for
these two signals exhibits a random distribution of fre-
quencies over time, the characteristic arch that defines
the slope evolution can be identified. In the generated
model, this feature is consistent with the properties de-
scribed in Sec. 3, producing a linear increase in time
see Fig. 8.

3. GW sensitivity: The sensitivity curves presented in
Fig. 9 reflect similar noise amplitudes for generated
and 3D CCSN GW signals. Some differences can be
found near102 Hz; however, the response of the sig-
nals is quite similar.
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FIGURE 8. GW signal associated with a generated CCSN GW signal obtained using the methodology described in Sec. 3.

FIGURE 9. In the figure, we compare the ASD of the Andresen sig-
nal (green), and a generatedwaveform (purple) with respect to the
L1 and H1 LIGO interferometers highlighted in yellow and blue
respectively. The maximal peak for Andersen and Synt WF are
indicated with a star.

As we can see, the CCSN GW signals replicate the stochas-
tic component during its temporal evolution, as required for
these signals.

Finally, the comparison of ASD between the Andersen
model s15.nr (shown in green) and the corresponding gener-
ated CCSN GW signal (depicted in purple) is illustrated in
Fig. 9. This comparison serves to demonstrate that, by ad-
justing the parameters that govern the theoretical model, we
are able to scale the waveform response within the sensitivity
range of LIGO interferometers, thus shifting the generated
CCSN GW signals as depicted in Fig. 7. It can be inferred
that both the Andersen and the generated CCSN GW signals
fall within the detection ranges of the H1 and L1 interferom-
eters and can be fine-tuned to meet specific detection criteria.

7. Conclusions

In this study, a computational model was created based on
the physical characteristics of a damped harmonic oscillator
driven by forces(t), to generate CCSN GW signals more
efficiently than traditional numerical simulations. We show
that the temporal development of the signals produced shows

a linear increase in frequency. It can be modified by adjust-
ing the parameters that govern the dynamics of the physi-
cal system by emulating the high-frequency features found
in all simulated CCSN GW signals. This provides an op-
portunity to estimate the slope of the high-frequency features
more accurately, as the linear growth simplifies the calcula-
tion of this parameter compared to the model proposed by
Andresenet al. in 2018. The application of the theoretical
framework suggests that we can replicate the random patterns
of the CCSN GW signals by incorporating a driving force,
represented by a Dirac delta function. Of particular signifi-
cance, the graphs in Fig. 7 show a strong similarity in terms
of detectability and sensitivity in the strain noise curves. This
similarity confirms that the produced signals are suitable for
use in research involving the estimation of high-frequency
features in actual interferometric noise.

As anticipated, this approach paves the way for the esti-
mation of parameters in CCSN GW signals by incorporating
subsequent measurement of the HFF slope, which could be
beneficial for future research efforts, such as refining param-
eter estimation techniques and improving data analysis meth-
ods [28].

The subsequent steps for parameter estimation when a
CCSN signal is detected in real noise involve implement-
ing the generated signals for use in cWB event production
analyses to create, for example, a training data set with es-
timated HFF slope values in a machine learning framework
suitable for LIGO interferometric noise (see Casallas-Lagos
et al. 2023). This research can be expanded to highlight the
influence of specific physical parameters of the source in the
estimation of the slope of the HFF, such as the nuclear equa-
tion of state. This extension will be addressed in a subsequent
paper, scheduled for publication in spring 2024, continuing
the work of Casallas-Lagoset al., (2023). By comparing the
signals simulated in this research with the detector sensitivity
curve during the LIGO run O3b (refer to Fig. 7), it can be
deduced that the generated signals reach the same detection
threshold as the numerical model, thus validating the useful-
ness of using the generated CCSN GW signals in investiga-
tions that explicitly consider interferometric noise.
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The results achieved through the application of the
methodology suggested in this study demonstrate the feasi-
bility of identifying particular deterministic elements within
a CCSN GW signal, such as the HFF. The signals generated
by CCSN GW possess the capability to serve as a versatile
and cost-effective tool that could complement LVK interfero-
metric data for extracting the physical information embedded
in the deterministic characteristics included in the stochastic
CCSN GW emission. As a next step, it would be intrigu-
ing to replicate waveforms that encompass a broader range
of physical parameters found in a GW produced by CCSN.
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