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In this paper, the dynamical properties of the nonlinear &tihger equation with anti-cubic law nonlinearity is studied. By using the trial
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1. Introduction In this paper, we research the nonlinear &dimger
equation with anti-cubic law nonlinearity [24]

Z(_(S(bw + ¢t> + a1¢zw + 51@5@1
The nonlinear Sclidinger equation (NLSE) is a very classi-
cal physical model, which plays an important role in physics + AF[(|9])%]o + NYleid _ 0 1)
and other related fields. It is also considered as the pulse |1 7
propagation equation in optical communication [1-6]. Underwhere¢ is a complex-valued function and represents the pro-
certain conditions, optical solitons can be transmitted in opfile of a complex wave) and~ are the coefficients of non-
tical fibers over long distances, which completely gets rid oflinear termsy is the coefficient of inter-modal dispersiam;
the limitation of optical fiber dispersion on transmission rateand 3, denote the group velocity dispersion coefficient and
and communication capacity [7-9]. And it can achieve all-the spatio-temporal dispersion coefficieft;is a real func-
optical communication, without the conversion between lighttion. And F'(|¢|) has a lot of laws, such as anti-cubic law
and electricity, playing a huge role in the new generation ofonlinearity, kerr law nonlinearity and parabolic law nonlin-
research communication technology [10,11]. With the develearitya. Here, we only discuss the anti-cubic law nonlinearity,

opment of research, a growing number of researchers begin b
to research optical solitons. In order to extract these optical F(|¢]) = — + ba|¢| + bs|o|?, 2
solitons, the unified solver method [12], F-expansion method |l

[13, 14], and extended hyperbolic function method [15] arewhereb; b, andbs are constants.
applied to obtain dark, bright, periodic singular and periodic  The nonlinear Sclirdinger equation with anti-cubic law
soliton solutions, which enrich the understanding of opticalnonlinearity is a commonly used mathematical model in the
solitons. field of nonlinear optics. In quantum optics, it can be used to
study the dynamics of optical pulse propagation in nonlinear
In the NLSE, the chirped soliton is a special solitary wavemedia such as optical fibers or waveguides [25, 26]. The use
solution. A soliton is a wave packet that propagates througlof optical fiber as a nonlinear medium began in 1970, when
a medium and maintains its shape and velocity without attenKapronet al. [27] found that the loss of optical fiber could be
uation. Then the chirp describes the frequency modulatiomeduced to less than 20 dB/km. In 1972, Stoétral. [28]
of the soliton in time [16-18]. Specifically, the frequency of observed stimulated Raman radiation of visible optical in
solitons can vary with time. This frequency change can balass fiber waveguides, and subsequently investigated other
linear or non-linear. Chirped solitons are formed when thenonlinear effects. The anti-cubic nonlinearity in the equa-
frequency change is nonlinear and very fast [19, 20]. Chirpedion explains the interaction between the optical pulse and its
solitons have important applications in nonlinear optics angropagating medium, and this nonlinearity can lead to inter-
ultrafast optics. For example, in the optical communicationesting phenomena such as soliton formation, self-focusing,
and optical storage, chirped solitons can enable informatioand self-phase modulation [29-31]. In fiber and laser com-
transmission and processing. At the same time, there amaunications, optical signals can be disturbed by randomness
many other nonlinear effects and interactions in nonlineaand noise, and the nonlinear Schrodinger equation with in-
media [21-23]. However, it is difficult to obtain the chirped verse cubic law nonlinearity can help us build mathemati-
solution in mathematics. cal models to reduce the influence of interference [32—34].
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The exact solution of this equation can simulate and anaand

lyze the behavior of quantum systems under the influence of , 9 .,
randomness, and plays an important role in explaining com-  (#0 + 1+ 2paik — kB )P+ (2p7an = 2ufi)X'p
plex dynamic phenomena [35—39]. In addition, there are a + (2o — pBr)X"p = 0. (6)
lot of useful methods and theories to solve exact solutions, o _ _
including Riemann-Hilbert formulation [40], Exp-function Multiplying both sides of Eq.(6) by and then integrate
method [41-43], semi-inverse variational principle [44] andp 10 get

Kudryashov's method [45] and so on. ) 50 Ly kOt 1+ 2ua1k — kB

. . — 7

Akram et al. [24] used traveling wave transfora’Flon and X 12ag — Mﬁ1p 2u2aq — 2uBh )
the proposed method [46, 47] to extract many soliton solu- ) )
tions of Eq. (1), including periodic soliton, bell shaped soli- ThUsS, the chirp takes the following form
ton, dark soliton, and singular soliton solutions. Compared B S0 _o  po+ 1+ 2park — kB ®)
wi_th them, we use the more general compilex envelope trav- °“ ~ T W2aq — pp 2p2ay — 2ub ‘
eling wave transformation, namely the chirped wave transbenote
formation, and the trial equation method advanced by Liu
[48-58] to study Eq. (1). Then, we obtain a variety of solu- 4 _ S0 _pé A+ 1+ 2pank — kB O

tions including periodic solutions, elliptic function solutions, CopPon —pB 2p2a1 — 2pf:

rational solutions, and trigonometric function solutions. In - gypstituting Eq. (7) into Eq. (5), we get

this paper, we use the trial equation method to analyze the ‘

equation qualitatively, give the dynamical properties of the (a1p® — B — pN)pp” + (B A? — a1 p®A?)
NLSE, and prove the existence of soliton solutions and peri- 9
odic solutions. We can use the complete discrimination sys- + (- A= 0pA =200 pk A+ BikA+ 2007 AB

tem for polynomial method to judge the type of solution in — 2uB1AB 4 \by)p? + (B + 0uB + 20 uk B
advance according to the measured physical parameters. We ) 5o o 4
also show the chaotic behaviors of the NLSE by adjusting its = BikB + 0k — a1k” — ayp”B” + pf BT)p
disturbance term [59-64]. - Abop® + Absp® = 0. (10)

In this paper, the general structure is as follows. In Sec. 2,
we obtained the standard form of the equation by mathematMVe adopt the trial equation method [55] to solve Eq.(10)
cal method. In Sec. 3, we predict the solution of the equation
by qualitative analysis. In Sec. 4, we obtain the exact solu-
tions and chirps of the NLSE, and analyze the stability of the n o1 2

n—1 n—
. . . == —1a,_
parameters. In Sec. 5, we obtain the exact chirped solutions P 2[m"p +(n = Dan-ap

(Pl)2:am0n+an—1pn71+ s +(12P2+alp =+ ao, (11)

with specific parameters.lln Sec;. 6, we use three perturbation F e+ 2a0p + ail. (12)
terms to represent chaotic motion. In Sec. 7, a summary of
the article is given. Inserting Eq. (12) into Eg. (10), we notiee= 6 in the light

of the balance algorithm. And Eg. (11) becomes

2. Mathematical analysis of Eq. (1) (¢)? = agp’ + asp® + azp” + ao, (13)

) ) whereq is constant and
We choose the chirp wave transformation [18] to solve Eq.(1)

Abs
ag = — ,
O(z,t) = p(E)e! ™I e=t—pr, @) " B =3By =3
B Aby
wherep(§) andx(€) are real functions, and = 1/v is the a4 = T 20042 — 2810 — 2y
inverse velocity. The chirp is as follows [23] 5
g — (w6 + 1 4 2a1 ke — kBy)
0 Ao p? = Prp)(ap? = Bip — yp
Sty r) = — (M) —ke) = —X(©). (@) (et = Guaoense = =10
. OélkiQ + ok (14)
Substituting Eqg. (2) and Eg. (3) into Eqg. (1) to separate the a1 p? — Bup =y
real and imaginary part, we get Replacingy? with y, we get
(=1 = 6p — 201 pk + Brk)x'p — (6k + 1 k?)p ) = cay* + esy” + 2y + 1y, (15)
+ (onp® — pbr — pA)p” + (B — eap®) (X')?p where
+ /\blp_l + )\bgpg + /\b3p5 =0, (5) cy = 4dag, c3=4ay4, co=4as, c1=4ag. (16)
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A

Taking the transformation

c
2=yt (17)
464
we get
()2 = F(2) = caz* + hoz® + hiz+ho,  (18)
where
3c2 a cocs
ho = Co — =3 By = 32
2= 8cy’ 1=t 82 2c4’
3¢t a2 e
ho=——23. 4+ =3 ==, 19
07 T 256¢3 T 16¢2 dey (19)

We only consider the case of > 0 in the Eq. (18),

and the case of; < 0 is similar and not be discussed
here. Eqg. (18) can be written as the following dynamical sys-

tem [62]
2 =Y,
, 3 1 (20)
Y'=2e2" + hoz + Sha,
the Hamiltonian is
Yy o1, )
H(z,Y)= b _5(042 + haz® 4+ hiz + ho). (22)
Thus, the potential energy is
1
Uy) = —5(0424 + haz® + hiz + ho). (22)

3. Qualitative analysis

>Z

FIGURELl.cy =1,p= —48,q = —128.

We analyze the dynamical the system Eq.(20), and need to

compute the zeros @f’ (")
U'Y) = —2¢c4(2* + pz + q), (23)

wherep = ha/2c¢4, ¢ = h1/4cq, we apply the complete dis-
crimination system for the third degree polynomial [52]

(e
A——(4+W>. (24)
Case 1A =0,p <0, we have
U'(Y) = —2¢c4(z —a)*(z — B)(2a+3=0). (25)

Thus,(«,0) and (g, 0) are the two equilibrium points of
the dynamical system. For instancegjf= 1, p = —48 and
q = —128, thena = —4, § = 8, we can know that—4, 0) is

FIGURE2.cs =1,p=0,q=0.

We find that the dynamical system has only one cuspidal
point (0,0). And whene, = 1, p = 0 andq = 0, we give the
global phase of system Eq. (20) as shown in Fig. 2.

From the figure above, we can see that Eq. (20) has tor-
sional wave solutions.

Case3A > 0,p < 0, we have

UY)=—2ca(z— f1)(z — f2)(z — f3),
(fi+ fa+ f3=0),

wheref; > fo > f3, (f1,0), (f2,0) and(fs,0) are the three
equilibrium points of the dynamical system. For instance, if
cg =1, p = —-9andq = 0, thenf; = 3, fo = 0 and

(27)

a cuspidal point an¢B, 0) is a saddle point. The global phase f3 = —3, we can know thaff;,0) and(f3,0) are two saddle

of system Eq. (20) as shown in Fig. 1.

points, and( f2,0) is the center point. The global phase of

From the figure above, we can see that Eqg. (20) hasystem Eq. (20) as shown in Fig. 3.

twisted wave solutions and lone wave solutions.
Case2 A =0, p =0, we have

U'(Y) = —2c42%. (26)

From the figure above, we can see that Eq. (20) has kink,
periodic and anti-kink solutions. We find that the figure
above is symmetric, so let's discuss the asymmetric case. For
instance, wherey, =1, p = —28 and ¢ = —48, we have

Rev. Mex. Fis71011303
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AY
fi =6, fo, = —2andf; = —4, and the global phase of

system Eq. (20) as shown in Fig. 4.
From the figure above, we can that the existence of soli-
tary wave solutions.

(2fa+ f1=0). (28)

We find that the dynamical system has only one saddle
point (f1,0). This case is similar to case 2, which we not
discuss here.

\7\\/ Case 4 A < 0, we have
\'/ > 7 U'(Y) = —2ca(z — f1)l(z — f2)* + f3]

4. Classification and parameter stability anal-
FIGURE3.cs=1,p=—9,¢=0. ysis of exact chirped solutions

When we set, = 1, Eq. (18) can be written as

\Y dz . (29)

| He-&) = [
& ( 0) \/(2’4 4+ hoz?2 + hyz + ho)
- We can obtain a classification of all roots conforming to the
equality by the complete discrimination system for the fourth
2
4

\ order polynomial [51]
/ My =1, My=—hy, M;=—2hy>+ 8hohy— 9hi>,

A
0
0
0
o My = —ho®hy2 + 4ho*ho + 36hahy 2ho
0
60

27
_ —32ha%ho” — i + 64ho”,
/ ; Ey = —32hohg + 9hy 2. (30)

Then, we discuss the topological stability in nine differ-
ent modes of light waves. We according to the change of
FIGURE4.cy =1,p=—28,¢g = —48. parameters to study the stability of topology. The form of the

solution does not change when the parameters are disturbed,
| itis stable. Or else, it is unstable or semi-stable [58].

Case 1 My = M3 = My = 0, thenF(z) = 2*.

We obtain
dz
£ -6)= | & (31)
The exact solution and chirp are
_1 3b2 3
= |4(6 = L= 32
p1 [ (£ —¢o) SbJ ) (32)
—1
So 1 3b2:| wo + 14 20k — B1k
dwy = ————— [ H(E— e - . 33
YT = B [ (€= %) 8b3 20042 — 2611 (33)
This singular rational solution has an unstable topology.
Case 2 M, < 0, M3 = My = 0, thenF(z) = ((z — a)? + 3%)?, wherea = 0, 3 > 0.
We obtain
dz
+l-&)= | ———. 34
€-&)= [ — (34)

Rev. Mex. Fis71011303
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The exact solution and chirp are

o= (Branlple -] +a- 32)
3

3ba

[5mmmg—@n+a—g%]l

S0

- 1o + 14 201 puk — prk
arp? = Pip '

6 =
2 20142 = 2051

This singular periodic solution has a semis-table topology.
Case 3 My >0, M3 = My =0, E5 > 0,thenF(z) = (z — f1)%(z — f2)?, wheref; > fo, fi + f2 = 0.
We obtain

dz
ﬂff@/@—ﬁw—hy

If 2> f1, 2 < fo, we have

P <f2_f1 [coth (1 = f2)(€ = %) _1} . 3b2>5’

2 2 8b3
S0 f2—h (f1 — f2)(§ — &) 3bs\ ' b+ 1+ 20k — Bik
ows = th -1 - — —
s i — B ( 2 {CO 2 12 8b3 200 1% — 201
If fo <z < fi1, the exact solution and chirp are
(LA (= f)(E— &) 3bs ) *
ps = ( 5 tanh 5 1| + f2 Sby )
50 Jo—h [ (fi—f2)(€=&o) } 3bz>_1 po + 1+ 20k — Bk
dwy = tanh =1+ fo— = — .
4 arp? — Bip < 2 2 J2 8bs 2001 2 — 201
These two solitary wave solutions have the semi-stable topology.
Case 4 My > 0, M3 =0, My =0, E5 = 0, thenF(2) = (2 — a)3(z — 3), where3a + 8 = 0.
We obtain
dz
+e-a)= [ .
(z —a)y/(z—a)(z— D)
The exact solution and corresponding chirp are
4o —B) 3b2) :
= +a——1,
re ((ﬁ—a) (€—€)r—4 " " 8b
S0 4(a — ) 30\ ' S+ 1+ 200 pk — Bik
ws = 5 5 3 +a— — — 5 .
arp? = Bip\ (B —a)?(—&)* —4 8b3 2017 — 2B

This singular rational solution has a semis-table topology.
Case 5 My > 0, M3 > 0, My = 0, thenF(2) = (z — f1)%(2 — f2)(z — f3), wherefy > f3,2f1 + fo + f3 = 0.
We obtain

dz

SN EEAN e )

For(fa — f1)(fs — f1) >0,

PGZ(f3+ f2 = Js —3bz>é
L+ 2=Btan?\/(fa = f)(fs — f)(E = &)]  8bs)
S — S0 (f + fa—f3 3112)_1u5+1+2a1uk61k
D =B\ Eb [V~ ) - F(E - €)] Sk 2007 = 2B

Rev. Mex. Fis71011303
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This singular periodic solution has a semi-stable topology.

For (fa — f1)(f3s — f1) <0,

p7<f3+ fo— s - 3b2>%
L+ 2=l tanb®(\/(fa — f1)(fL = fo)(€ — &) 8bs)
dwy = 50 ( fo— f3 3y
T — B st + L=l tanh®[/(fa — A1) (i — f3)(€ —&)]  8bs
psz(f3+ fo— fs _3b2>%
1 228 coth®[V/(fs = f1)(fr = f5) (€ — &) 8bs/)
8 %0 f2— fs
ws

These two solitary wave solutions have the semi-stable topology.

- a1p? — Bip <f3 + 1+ %cothﬁ\/(fz = f1)(f1 = f3)(€ = &o)] -

3ba

3by

8

X

X

b+ 1+ 201k — Bik

20142 = 2B1p

)

b+ 1+ 201k — Bik

200 12 — 201

Case 6 MyMs < 0, My =0, thenF(z) = (z — f1)%((z — f2)?> + f3%), wheref; + f, = 0.

We obtain

dz

+(€—&) = ~
’ /(Z—fl) (Z—f2)2+f32

The exact solution and corresponding chirp are written as

etV (fi—f2)*+fs%(€=%0) _ N 4 (fi — f2)2 + f32(2 = N) 3by 1
P = ( - de) )

(etV (fr—f2)?+f32(—60) _ N)2 -1

dwg =
T a - B (V-T2 (6~60) _ NY2 _ 1
B wo + 14 207 uk — B1k
200112 — 2611
where
-2
N - J1—=2f2

(fi—f2)? + f32.

This exponential solution has a semi-stable topology.

s <ei (Fi=f2)*+fs2 (%) _ N 4 (fi — f2)2+ f32(2= N) B 3b2>—1
8bs

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

Case 7 My > 0, M3 > 0, My > 0,thenF(z) = (z — f1)(z — f2)(z — f3)(z — f4), Wherefi + fo + fs + f4 = 0,

fi> fo> f3> fa
We obtain

dz

(6 — %

Rev. Mex. Fis71011303
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The exact solution and corresponding chirp are given by

fo(f1 = fa)sr? [ i fg)(h 1) ] fi(f2 = fa) 3b ’
pro= (=1 872 ’ 57)
(f1f4)5r\2[ L ] (f2 — fa) 3
-1
s fo(f1 — fa)sT? [W(f—&%]\ﬁ} = fi(f2 = fa) 3by
dwip = 7 -
Qi ﬁllu (fl _ f4)Sn{2 |:\/ (f1— f3 (f2—fa) (£ 5 ) :| _ (f2 . f4) 8b3
o + 14 201 pk — Bk
i (58)
f4(f2 _ f3)Sf]2 |: (fl f&)(f2 4 :| f3 2
o1 = 2% , (59)
(f2 o fg)sn? [ (fi— f3)(f2 ] f2 o f4 3
-1
o [ a2 fe)s [V”“f {6~ ), N } ~flh=f) g
dwi = 3 - S
o1 B (f2 . f3)sn2 |:\/ (f1i— fs (fa—fa) (5 & ) :| _ (f2 _ f4) 8bs3
wd + 1+ 20k — Bik
2% — 2B (50)
where
2= (2= ) = fo) -

(i f) (2= fa)

These two elliptic function double periodic solutions have the stable topology.
Case 8 There are three different situations, namedyl M, > 0, My < 0 (8.2 My < 0, M3 < 0, My < 0, and 8.3
My =0,M3 <0, My < OthenF(Z) = (Z — fl)(z — fg)((z — f3)2 + f42), Wheref1 > fz, f4 >0 fl + f2 + 2f3 =0.

We obtain

He-&) = [ (62)
e )G— )= P+ 1)
The exact solution and corresponding chirp are given by
vV fady (f1—f2 2
gicn %(f—&)»d + 92
1 3bs
. NeTreD) TR | (63)
gscn {;dldllz(f - 50)761] + 94
VE2fadi (fi—f2) -
4a1 1—J2 _
s glcn{ 2dd, (£ —¢0),d| + g2 3 10+ 1+ 200k — ok
bwrz =5 p2 = Brp VE2fadi (1= 12) ~ 8bs 20102 = 2B (64)
' 7 gsen {42(12112(5 — o), d} + 94 ’ ! '
where
1 1 1 1 fa
g1 = §(f1 + f2)gs — §(f1 = f2)91, 92 = §(f1 + f2)g4 — §(f1 —f2)g3, g9s=Si—[fs— -1
(65)
fi+ (L = f3)(f2 — f3) 2 1
= f1 — f3— fady, D= . dy=D++/D2+1, d&*= .
94 = f1— f3— fady F1(fi — f2) 1 1+d2

Rev. Mex. Fis71011303
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This elliptic function double periodic solution has the stable topology at case 8.1 and 8.2, and the semi-stable at case 8.3.
Case 9 There are two situations, namel9.0) M, < 0, My > 0, and 8.2 M> > 0, M3 < 0, My > 0, thenF(z) =
((z = [1)? 4+ £22)((z = f3)? + f4°), wherefy > f1 > 0, fi + f3 = 0.

We obtain
d
se-a)= | : - (66)
VG = 17+ 122) (= 2 + £47)
The exact solution and corresponding chirp are presented by
o (glsr(@(ggo),d) + gaen(da(€ — o), d) 3b> ©7)
7\ gasn(da(€ — &), d) + gacn(da(§ — &o),d)  8bs)
Sus = —0 (glsn(dQ(ﬁ—fo),d)+ggcn(d2(£—§o),d) B 3b2)‘1 b+ 1+ 200k — Buk (68)
arpi? = Bip \ g3sn(da(§ — &o), d) + gaCn(da(€ — &o),d)  8bs 20 p =26
where
_ 2 2 2
91 = f193 + faga, 92 = f194 — f293, 93 =—f2— %7 ga=fi—fs, D= (s f32)f2—;4f2 i ;
dy=D++/D? -1, d:d%_l’ d2:f4\/(9§+92)(d%9§+92)‘ (69)

di 95 + 93

This elliptic function double periodic solution has the semi-stable topology.

Analyzing the above nine cases, we get thirteen different optical wave patterns. Case 7, Case 8.1 and Case 8.2 have stable
topologies, Case 1 has unstable topology and all others have semi-stable topologies. In fact, when parameters are perturbed,
the equationVl, = M3 = M, = 0 becomes an inequality, and the instability becomes stable. Such as, we compare Case 1
with Case 7, when some parameters change, Case 1 can become Case 7, so there is no stability becomes stable.

5. Typical solutions and their graphs

Example 1 Triangular function solutions.
Takingsg = fo=1,f1 =2,by = —5,0 =k =0,§ = —4,2 = 0 we get

p3 = (—; coth B& + 2} + Z) : , (70)

2 1

bug— — =~
5 coth(t+2) 2

(71)

The 2D graphics op3 anddws are presented in Fig. 5 and 6.

1 2 3 f 3

FIGURE5. ps. FIGURE 6. dws.

Rev. Mex. Fis71011303
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Ps Ows

1.5+ 30+

N S 4 2 4 t

FIGURE 7. ps. FIGURE 8. dws.
Example 2 Rational solutions.
Takinga =sg =& =1,8=-3,bo=35,6 =2,k = -1,z = 0 we have
16 H
pr = (—16(5_1)2_4> , (72)
1
Sws = (t—1)% — T (73)

The 2D illustrations ops anddws are shown in Fig. 7 and 8.
Example 3 Solitary wave solutions:
Takingfs =so=1,fi=-2 fo=3by=—-2,6=2k=—4,& = —V15/15, z = 0 we obtain

2

2
Pe = +3 ) (74)
1+ § tan® |V15¢ — 95|

-1
2

+3
1+ gtan2 [\/1—5t— ‘{—}:5}

(75)

N o

dwe = =+

The 2D diagrams o anddwg are separately portrayed in Fig. 9 and Fig. 10.

(5(1)6

4.84

FIGURE 9. ps. FIGURE 10. dws.

Rev. Mex. Fis71011303
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P10

45}
40
35
3.0

25

20f

: 4

FIGURE 11. p1o. FIGURE 12. §w1o.

-5

Example 4. Jacobi elliptic function double periodic solutions.
Takingf2 =1,s50 = —1/4, f1 =2, f3 = -1, f4 =—-2,by = 8/3, 0= ]./2, k= —1/2, Ny = 2\/5/3, 50 = —2/3, =0
we have

Asr? [g§+1,%ﬂ—6 ?
P10 = o [%ﬁ o m} . 1], (76)
. —osr? (gt +1, %) -3 -

6
The 2D drawings op;y anddw; g are displayed in Fig.11 and 12.

-9 -9
6.5972 10 6.5086 ¢
| |
6.597 A il
i 6.5965
6.5968
2] ]
w ) W 6.5964 :
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6. Chaotic behaviors 7. Conclusion
According to the previous analysis, power system does ngf, this paper, we obtain the phase diagram and equilibrium
exist the chaotic behaviors. However, if we increase the Pefoint of the equation by qualitative analysis. Therefore, we
turbation termG(¢), we obtain the following perturbation prove the existence of soliton solutions and periodic solu-
system [62—-64] tions. We use the complete discrimination system for the
J =, fourth order polynomial to generate a series of chirped so-
(78) lutions, and analyze the parameter stability of various modes.
We find that NLSE has the chaotic behaviors for somes dis-
turbance terms. We choose three types of perturbation terms
wherea = 2¢4, b = he ande = (1/2)h;. and draw the largest Lyapunov exponents and the correspond-
We choose three types of perturbed terms here, nameipng global phase diagrams. Compared with the existing re-
G(€) = cos(6¢), cosh(0.12¢) ande®%%. In addition, we  search, our method is more comprehensive and concise. The
give the largest Lyapunov exponents for each case. Specifiesults of this study are helpful to complement the relevant
examples are shown in Fig. 13-15. physical systems and provide a new direction for the study of

1
Y' =2¢42% + hoz + §h1 + G(9),

From Fig. 13-15, We can find that Eq. (78) has the chaotighe equation.

behaviors. The largest Lyapunov exponent of parameter
largest. We conclude that parameigs more influential than
parameteb and parameter. Moreover, parameter, param-
eterb and parameter are all greater than zero, so they all
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