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We studied the quantum mechanics problem of certain one-dimensional potential functions using Laskin fractional quantum mechanics. We
used different representations to describe the kinetic energy operator, including the conformable and Riemann-Liouville-Caputo fractional
differential operators. We then compared each approach’s energy states and wave function outcomes for single and double rectangular
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1. Introduction

Fractional calculus is a fascinating and relatively unexplored
branch of mathematics that extends the concepts of differen-
tiation and integration to non-integer orders. While classical
calculus deals with whole numbers as exponents, fractional
calculus allows to work with real or complex numbers as ex-
ponents in the involved operators, providing a powerful math-
ematical framework to describe and analyze a wide range of
natural phenomena and engineering processes [1]. Through-
out history, fractional calculus has had intermittent periods
of interest and obscurity. Early pioneers such as Leibnitz (on
a question posed to him by L’Ĥopital), Bernoulli, Euler, and
Laplace initially dealt with the subject. However, it was un-
til 19th century that renowned mathematicians like Liouville
and Riemann began to formalize the theory.

Interest in fractional calculus has been resurgent in recent
times due to its relevance in modeling complex systems and
phenomena. For instance, over the past few decades, a unique
approach to exploring the fundamental principles of physics
has emerged: The inception of fractional quantum mechan-
ics. It can be traced back to 2000-2002, when N. Laskin em-
ployed fractional calculus to derive a modified version of the
Schr̈odinger equation [2,3]. This modification arose from his
previous work on the application of fractal principles to the
description of path integrals for Lévy flight trajectories (see
Ref. [4]) which implies a restriction for the values of Lévy’s
index to lie within the interval[1, 2]. As a follow up, Laskin’s

work, incorporating the quantum Riesz fractional derivative,
extended conventional quantum mechanics into a fractional
counterpart. The resulting Schrödinger equation with frac-
tional Hamiltonian is, in general form:

i~∂tΨ(x, t) = ĤαΨ(x, t), (1)

with

Ĥα = DαDα + V (x̂, t). (2)

In Laskin’s formulation, the particular case with Lévy’s
index α = 2, havingD2 = ~/2m, represents the conven-
tional formalism (see Eq. (30) in Ref. [4]). This indicates that
fractional quantum mechanics encompasses conventional one
as the particular situation having the upper limit of Lévy’s
index values. In other words, the nature or explanation of
the presence of a fractional derivative in the Schrödinger
equation lies, precisely, onα-index, and can be interpreted
as leading to a free-particle dispersion relation of the form
E(k) = E0k

α, which becomes a fractional generalization
of the dispersion relationE(k) = E0k

2 corresponding to
D’Broglie waves.

However, there has been a scarcity of methods for the
analytical solution of fractional Schrödinger equation as pro-
posed by Laskin. As a particular example, we can mention
the solutions to space fractional Schrödinger equation using
momentum representation method [5]. Actually, numerical
approaches are more common. A quite recent example is
the report of Medina and coworkers on the application of
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fractional Fourier grid Hamiltonian method to the study of
molecular vibrations in H2 and D2, described with the use of
quantum Riesz fractional momentum operator [6].

Applications of fractional calculus to physics problems
have been put forward, mainly after the introduction ofcon-
formable fractional derivationby Khalil et al. in 2014 [7].
In that sense, fractional Newton mechanics was developed
[8]. With the introduction of a fractional version of the cal-
culus of variations and the construction of fractional Euler-
Lagrange equations, some one-dimensional (1D) mechanical
examples were solved. On the other hand, multivariable con-
formable calculus was applied to modeling physical oceano-
graphic phenomena [9]. Quantum mechanical problems have
also been dealt with. Schrödinger and Dirac 1D harmonic os-
cillator, and their thermal properties, were investigated using
Riesz fractional derivative [10]. Conformable approach was
applied in the case of the formation of quantum-mechanical
operators [11], and to derive a solution for the angular part
fractional Schr̈odinger equation [12].

The 1D quantum wells (1DQWs) are one of the most
studied quantum mechanical problems. They are obliga-
tory problems to solve in elementary quantum mechanical
courses because they offer not only the possibility of study-
ing the Schr̈odinger equation analytically but the efficient im-
plementation of numerical solutions. Beyond this, 1DQW
models are employed to study the physical properties of sys-
tems where quasi-two-dimensional carrier confining struc-
tures can be formed when two large band gap semiconduc-
tor layers sandwich another semiconductor layer with smaller
band gap; thus making possible to fabricate optoelectronic
devices such as photo-detectors, lasers, sensors, and quan-
tum modulators [13]. These semiconductor layers could be
assembled by modern crystal growth means like molecular
beam epitaxy (MBE) [14]. In addition, quantum wells with
one-dimensional confinement are extensively used in modern
electronic devices.

In this work, we are aimed at presenting the solution of
some of the simplest 1D problems of quantum mechanics, de-
scribed by the time-independent Schrödinger fractional oper-
ator. Some of these solutions will be determined via a numer-
ical treatment based on suitable generalized Fourier expan-
sions. The Riemann-Liouville (RLC) and the conformable
representations are used to describe the fractional kinetic en-
ergy operator, and the outcomes from both approaches are
compared in each case. These solutions could open the
way to explaining phenomenological effects as compressive
strains or effective crystalline potential that regularly are ex-
plained employing the effective mass approximation. The ar-
ticle is organized as follows: In Sec. 2 we briefly define the
fractional derivatives considered. Next, the quantum equa-
tion of work is introduced and the method for its approxi-
mate solution is presented. Section 4 contains the results for
the considered problems and, finally, conclusions are given.

2. Defining fractional derivative

Fractional calculus is a branch of Mathematics which gen-
eralizes the traditional concept on function derivation. As
mentioned, since its beginnings several definitions of frac-
tional derivatives have been formulated. Here, we are going
to deal with two examples.

2.1. Riemann-Liouville-Caputo

This definition was separately given by J. Liouville and B.
Riemann in the first half of 19th. century. It is provided on
the basis of an integral operator,J :
Definition 1. Let n ∈ R+, be the operatorJn

α defined in the
spaceL1[a, b] by:

Jn
(a)f(x) =

1
Γ(n)

∫ x

a

(x− t)n−1
f(t)dt, (3)

for a ≤ x ≤ b, it is called the Riemann-Liouville integral
operator of ordern.

Then, the fractional Riemann-Liouville definition of
derivation has the form:Dαf(t) = DmJm−αf(t), where
m − 1 < α < m, andm ∈ Z+. Then for a continuous
funtion one finds,

Dαf(t) =
1

Γ(m− α)
dm

dtm

[∫ t

0

f(τ)
(t− τ)α+1−m

dτ

]
. (4)

It is relevant commenting that, in 1967, Italian mathe-
matician M. Caputo proposed an alternative definition (from
hereon labeled as RLC) of Riemann-Liuoville fractional
derivation which, among other things, produces the zero
value whenf is a constant. In terms of the -non-commutable-
differential and integral operators, we haveDαf(t) =
Jm−αDmf(t), wherem − 1 < α < m, andm ∈ Z+,
leading to

Dα
Cf(t) =

1
Γ(m− α)

∫ t

0

f (m)(τ)
(t− τ)α+1−m

dτ. (5)

The latter, RLC, expression is the one we shall employ in
the present work.

2.2. Conformable

Much more recently, in 2014, Khalil and collaborators in-
troduced what seems to be a more “natural” definition of
fractional derivation, in the sense that no integral operator
is involved. They named it as “conformable” [7] and, for
0 ≤ α < 1, it coincides with -up to a constant- the classical
definitions over polynomials. Letf : [0,∞] −→ R. Then,
its conformable fractional derivative ofα-th order is obtained
from,

Tα(f)(t) = lim
ε→0

f(t + εt1−α)− f(t)
ε

, (6)

for all t > 0, α ∈ (0, 1). If f is differentiable in some
(0, a), a > 0 and limt→0+ f (α)(t) exists, then it is defined:
f (α)(0) = limt→0+ f (α)(t). It holds the following

Rev. Mex. Fis.71020703



APPLICATION OF LASKIN FRACTIONAL QUANTUM MECHANICS WITH A CHANGED FRACTIONAL DIFFERENTIAL OPERATOR. . . 3

Theorem 1.Letα ∈ (0, 1] andf , α−differentiable in a point
t > 0, then Tα(f)(t) = t1−α(df/dt)(t).

3. Fractional Schrödinger equation. The ex-
pansion method

Now, we assume that the fractional Hamiltonian operator in
Eq. (2) is time-independent. In consequence, it is only needed
to solve the corresponding stationary Schrödinger equation

−DαD2αψ(x) + Ṽ (x)ψ(x) = Ẽψ(x), (7)

whereDα = (~2α/2m)(mc)2−2α, with 0 < α ≤ 1, is the
diffusion coefficient [15]. Herec is the speed of light in vac-
uum. Equation (7) can be put in a dimensionless form by
using fractional Rydberg,Ryα, as energy unit and fractional
Bohr radius,a0, as unit of length (for the definition of frac-
tional atomic units see Appendix A):

− 1
2α− 1

D2αψ(x) + Ṽ (x)ψ(x) = Ẽψ(x). (8)

It is worth commenting at this point that the process of
transforming the fractional Schrödinger equation into a di-
mensionless expression, using fractional atomic units, trans-
forms the potential energy term into a fractional one as well;
since it becomes dependent onα through the effective Ryd-
berg:Ṽ = V/Ryα.

3.1. The example of a single one-dimensional quantum
well

As a first example, we shall present the analytical solution of
the fractional quantum mechanical problem of a finite barrier
one-dimensional potential well of effective widthl:

Ṽ (x) =

{
0, if x ∈ [0, l],
ṽo, if x /∈ [0, l].

(9)

This is one of the simplest situations discussed in quan-
tum mechanics textbooks. It is worth commenting at this
point that the model potentials used here are not intended
to reflect specific real situations, but only to serve as exam-
ples for numerical comparisons. So, by taking advantage of
the simpler algebraic structure of conformable derivative, it
is possible to reach analytical solutions. Within the formu-
lation put forward by Khalilet al. the definition of con-
formable derivative assumes positive values of the coordinate
[7]. However, Chunget al. extend the definition to include
negative values through the incorporation of the factor|x|1−α

instead of solelyx1−α, keeping the same general proper-
ties of the conformable approach [11]. In that sense, we are
choosing the active region of the quantum well in Eq. (9) to
be in the real semi-axis. Accordingly, the general solution for
the wavefunctions can be written as:

ψ(x) =





Ce−
k2
α |x|α , x < 0,

A sin(k1
α xα) + B cos(k1

α xα) x ∈ [0, l],
De−

k2
α xα

, x > l,

(10)

wherek1 =
√

(2α− 1)Ẽ andk2 =
√

(2α− 1)(ṽo − Ẽ),
andẼ is the effective energy. The corresponding transcen-
dent equation for the allowed energy levels results from
equating to zero the determinant of the system of equations
for A , B ,C ,D arising from imposing continuity ofψ(x)
andDαψ(x) atx = 0 andx = l:

tan
(

k1l
α

α

)
=

2k1k2

k2
1 − k2

2

. (11)

Clearly, Eq. (11) needs to be solved numerically in order
to obtain the energies of bound states in the problem. How-
ever, in what follows, we shall proceed in a different way.
Since we are interested in making a comparison between con-
formable and RLC formalisms, the numerical solving will be
carried out for both formulations by means of the expansion
method. In what follows, we give a more detailed explanation
of this approach.

3.1.1. Diagonalization method

This scheme of calculation, also named as diagonalization
method, relies on proposing the solution of the fractional
Schr̈odinger problem in the form of a Fourier-type expan-
sion over a suitable normalized basis,{φn(x)}, in the Hilbert
space:

ψ(x) =
N∑

n=0

Cnφn(x). (12)

Then, with the substitution of (12) in the equation of mo-
tion (8), a Hamiltonian matrix is constructed. Its diagonal-
ization, leads to the system energy eigenvalues. In our case,
for the sake of simplicity, the building of an expansion ba-
sis uses the corresponding solutions of an infinite rectangular
quantum well within each of the considered formulations. To
guarantee compliance with original conformable formulation
of Ref. [7], the finite barrier quantum well as well as the in-
finite barrier one are assumed to lie well within the positive
real axis. For the sake of brevity in main text of this article,
full details of the procedure are presented in Appendix B.

Numerical solution for the 1D finite barrier single quan-
tum well using this approach produces the results presented
in Fig. 1 for the allowed energy levels. In the calculation,
well width is set asl = 2 nm and the potential well depth
is v0 = 30 eV. Moreover, the outer infinite barrier used to
construct the basis isL = 10l, and the total number of terms
in the expansion -chosen to guarantee proper convergence- is
N = 150. Variation in the fractional indexα occurs within
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FIGURE 1. Representation of ten first energy states corresponding
to 1D finite barrier single quantum well withl = 2 nm,v0 = 30 eV,
N = 150, andL = 10l. Results are for Riemann-Liouville (blue
dots) and conformable (red lines) formulations, considering four
different values ofα.

the range from1 to 0.985. It can be noticed that, even such a
small change leads to significant variations in the energies of
the states, compared to the non-fractional situation. In fact,
the further decrease in this index causes the number of con-
fined states within the well to diminish. On the other hand,
both formulations give quite close values for the ground and
first excited states, but energy values obtained from RLC and
conformable approaches deviate in a noticeable way for the
upper confined states as the fractional index value decreases.
Reducingα ultimately leads to the expulsion of levels from
the potential well, as can be noticed by observing the Fig. 1.
This effect is equivalent to the progressive narrowing of the
potential well -with fixed depth- in the non-fractional case. It
resembles that occurring in regular 1D Schrödinger problem
due to narrowing the well width while keeping its depth.

From the corresponding wavefunction, one may observe
that -normalized- ground and first-excited state wavefunc-
tions keep their form independently of the fractional index,

FIGURE 2. Probability densities corresponding to the three low-
est confined states of 1D finite barrier single quantum well with
l = 2 nm, vo = 30 eV, N = 300, b = l, andL = 6l. Results
are for Riemann-Liouville (blue dots) and conformable (red lines)
formulations. All wave functions are normalized.

α. In Fig. 2 the corresponding probability densities are
shown. Actually, it is apparent that, as long asα dimin-
ishes, the states become -slightly- less localized within the
well region, which is more apparent for the conformable for-
mulation. It is important to note that the wave function is
always square-integrable. This points at the possibility of
still interpreting squared wavefunction module as the spa-
tial probability of finding a particle, just as in the regular
Schr̈odinger formulation. It is worth bringing attention to
the fact that basis functionsφn(x) ∼ sin (nπ/Lαx), chosen
for the expansion in conformable case, are orthogonal with a
weightxα−1 for different values ofn-index [11]. So, expan-
sion (15) remains justified within the particular linear space
associated to the fractional Hamiltonian operator.

3.2. Finite barrier double quantum well

Let us now analyze the features of the spectrum of confined
states in a symmetric, finite barrier, double quantum well.
The potential energy profile, having a central barrier of width
b, is described as:

V (x) =





0, if − l
2− b

2≤x− d ≤− b
2 and

b
2 ≤x− d ≤ l

2 + b
2 ,

vo, if |x− d| < b
2 and|x− d| < l

2 + b
2 .

(13)

Solutions, in this case, have been determined numerically
through the diagonalization process previously commented.
The center of the well is chosen to be placed atx = d, suffi-
ciently inside the positive real interval, in order to ensure the
applicability of the original conformable formulation during
the diagonalization process. It is well known that this kind of
shifting does not affect at all the results for the energy spec-
trum. The analysis considers two different widths of the inner
central barrier: In Fig. 3 we show a representation of the cal-
culated lowest confined states in a structure with the follow-
ing configuration:l = 2 nm,v0 = 30 eV, N = 150, b = l/2,
andL = 10(2l+b). Results are plotted for both the RLC and

FIGURE 3. Representation of twenty first energy states corre-
sponding to 1D finite barrier double quantum well withl = 2 nm,
b = l/2, v0 = 30 eV, N = 150, andL = 10(2l + b). Results
are for Riemann-Liouville (blue dots) and conformable (red lines)
formulations, considering four different values ofα.
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FIGURE 4. Representation of twenty first energy states corre-
sponding to 1D finite barrier double quantum well withl = 2 nm,
b = l/200, v0 = 30 eV, N = 150, andL = 10(2l + b). Results
are for Riemann-Liouville (blue dots) and conformable (red lines)
formulations, considering four different values ofα. Bottom plot
shows a zooming of the lower energy region.

conformable formulations of the fractional kinetic operator in
the Schr̈odinger equation. On the other hand, energy values
depicted in Fig. 4 correspond to the setup that only differs
from the previous one in a more thinner width of inner bar-
rier, b = l/200. The lower plot in this figure contains a zoom
of the interval of energies between0 and 5 eV. It allows to
better notice the influence of changing the fractional index,α
over the spectrum of confined states in the system.

Once again, coincidence of energy state results calculated
from both formulations starts to fade away quite quickly even
for very small deviations from the non-fractional case. This
can be observed even for the ground energy level, but starts
being more apparent for the first and second excited ones.
Such differences are bigger than in the situation of a single
quantum well, discussed above, and enhance as the thickness
of central barrier augments. Accordingly, it is possible to no-
tice a real difference between the formulations when effective
spatial dimensions of the system are larger. As a curious ef-
fect, in double well systems, states located almost at the bar-
rier edge are kept, independently of theα-values considered.

With regard to the probability densities (see Figs. 5 and
6), the most remarkable feature -mainly for the excited states-
is the interchange of the maximums of probability with re-

FIGURE 5. Probability densities corresponding to the lowest con-
fined states in a structure withl = 2 nm, b = l/200, v0 = 30 eV,
N = 150, andL = 10(2l + b). Results are for Riemann-Liouville
(blue-dotted) and conformable (red-solid) formulations.

FIGURE 6. Probability densities corresponding to the lowest con-
fined states in a structure withl = 2 nm, b = l/2, v0 = 30 eV,
N = 150, andL = 10(2l + b). Results are for Riemann-Liouville
(blue-dotted) and conformable (red-solid) formulations.

spect to the center of the confining structure. This phe-
nomenon is significantly more notorious in the case of a
wider inner barrier. This contrasts with the non-fractional
situation, for which all distributions are symmetric. With re-
spect to this feature, it is not difficult to determine that the
conformable fractional derivative of any function of real vari-
able lacks of spatial symmetry, provided the presence of the
multiplicative termt1−α (see Theorem II.1 above), which
readily introduces a complex factor under -for instance- spa-
tial inversion, which not necessarily has unit modulus.

Another notorious fact has to do with the exchange of
amplitudes in fractional results. That is, when maximum val-
ues of the wavefunctions appear at the right well region in
one of the fractional formulations, they localize within the
left well region in the other. This is clearly observed in the
configuration with a thicker inner barrier. This situation af-
fects the non-symmetric probability density distribution in
the problem when it is described within one formulation or
the other. Again, the increasing separation between results of
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FIGURE 7. Schematic view of fractional quantum harmonic oscil-
lator potential and the corresponding calculated energy values for
different values of the fractional index,α. Dots correspond to levels
obtained with the Riemann-Liouville-Caputo description and lines
correspond to the conformable one.

conformable and RLC descriptions, as long asα increases,
are highlighted.

3.3. Fractional harmonic oscillator

The potential energy function in the case of a fractional quan-
tum harmonic oscillator is given by the following expres-
sion [3]:

V (x) =
1
2
mω2 ~2

2mDα
|x|2α. (14)

Figure 8 contains a view of the potential profile for a num-
ber of values of the fractional indexα. It is possible to notice
that the symmetric character ofV (x), in this case, is kept all
the time. The main difference associated with reducingα is
the opening of the potential well width.

In previous works, the energy spectrum of the fractional
quantum harmonic oscillator has been analytically deter-
mined, within the RLC formulation, using the WKB method
[3,16]. The obtained expression is the following,

En =
(

n +
1
2

)β

πβ/2


β

Γ
(

1+β
2β

)

Γ
(

1
2β

)



β

, (15)

with n = 0, 1, 2, ... and2β = α.

FIGURE 8. Probability densities corresponding to fractional de-
scription of a quantum harmonic oscillator potential for different
values of the fractional index,α. Results are for Riemann-Liouville
(blue-dotted) and conformable (red-solid) formulations.

By setting~ω = 30 eV, the values of lowest three allowed
quantum states in the oscillator problem are presented in Ta-
ble I. There, together with the RLC-WKB results obtained
with Eq. (15), we include the exact non-fractional value
(α = 1) from the well-known expressionEn = ~ω(n+1/2),
together with the output of the diagonalization scheme under
conformable formulation, with500 elements in the expansion
base.

In this case, one may also appreciate a difference in the
energy values of first and second excited states, obtained from
WKB approximation and the diagonalization method. The
accuracy of both calculation schemes is favorably tested in
the non-fractional case, mostly if one takes into account the
larger size of the expansion base. Such a difference remains
when the RLC problem is solved via diagonalization method,
as observed from Fig. 7.

It is noteworthy the fact that, for this problem, fractional
descriptions do not seem to largely destroy the symmetry of
wavefunctions, when compared to the non-fractional situa-
tion. At least, this is true for the lowest allowed states, as
seen in Fig. 8. What one may observe in this case is a spa-
tial shift of the entire RLC function profile with respect to
conformable one, with further separation when fractionality
is greater.

TABLE I. Calculated energy levels (in eV) for the quantum harmonic oscillator with~ω = 30 eV. Results include the exact values for the
non-fractional problem, together with the outcome of the analytical WKB solution within Riemann-Liouville formulation and the numerical
output of the diagonalization approach (withN = 500) to the conformable problem.

Level Exact RLC-WKB Conformable

2α 2α 2α

2.0 2.0 1.99 1.98 2.0 1.99 1.98

0 15.0 15.000 15.1479 15.2973 14.9978 15.4276 15.8256

1 45.0 45.000 44.2924 45.5862 44.9954 46.2054 47.315

2 75.0 75.000 75.2861 75.5721 74.9573 76.9060 78.6510

Rev. Mex. Fis.71020703
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FIGURE 9. The same as in Fig. 7 but for the double parabolic quan-
tum well.

The relevance of the double quantum well problem in
quantum mechanics has been widely discussed. Among the
related reports one may refer the work in Ref. [17]. The use
of this potential function with a parabolic shape in the inves-
tigation of semiconductor nanostructures finds recent publi-
cation in Refs. [18,19].

In our case, the potential of the double parabolic
well is described via the function V (x) =
v0

[
(x− L/2)2 − b2

]
/b4. We use the following values

for the involved parameters:v0 = 30 eV; b = 2.5 nm;
L = 10 nm. Figure 9 contains calculated energy levels, eval-
uated via the diagonalization process withN = 300. Results
appear for both conformable and RLC fractional formalisms.
The progressive departure between the level values arising
from each of the formulations is also noticed. At the same
time, the already commented absence of a defined parity and
the switch of probability density local maxima -in excited
levels- for the corresponding wavefunctions manifests quite
strongly in this problem, as observed from Fig. 10.

At this point, it is worth commenting on some general as-
pects related to the solution of fractional 1D quantum prob-
lems discussed in this work. One of the more prominent

FIGURE 10. The same as in Fig. 8 but for the double parabolic
quantum well.

FIGURE 11. Visual representation of the central part of the Hamil-
tonian matrix for both representation of the fractional differen-
tial operator Riemann-Liouville-Caputo (RL) and (C) conformable.
Three values ofα are considered.

features that distinguish fractional and regular Schrödinger
formalisms is the lifting of allowed energy levels in the frac-
tional case, compared to the non-fractional one. As com-
mented, this resembles the effect of narrowing the quantum
well width, keeping its depth; but without actual modification
of the potential profile geometry. This kind of phenomenon,
associated to fractionality, could be of interest in modeling
regular quantum phenomena by suitable fitting of an equiva-
lent fractional kinetic energy operator, just as it was made in
Ref. [6].

On the other hand, the quantitative differences high-
lighted throughout this work between results on quantum
states in 1D problems, obtained using two distinct fractional
formalisms, do not seem to be -only- a consequence of nu-
merical inaccuracies. In fact, the very definition of fractional
derivation may have a non negligible influence. This is some-
thing that can be better noticed by observing the very ele-
ments of both expansion bases, as detailed in the Appendices
B and C. Figure 11 displays a visual representation of the
near-diagonal part of the Hamiltonian matrix for both rep-
resentations of the fractional differential operator considered
in this work. Again, three values ofα are taken, including
unity. As noticed, results for both representations have the
same form. However, asα decreases, the quantitative weight
of Hamiltonian matrix elements around the diagonal changes,
as indicated by the behavior of off-diagonal shades of gray.
To clarify this issue, Fig. 12 contains a visual matrix form
of
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FIGURE 12. Visual representation of theHRLS−1
RL−HCS−1

C con-
sidering three values ofα.
the differenceHRLS−1

RL −HCS−1
C , for three values ofα. In

the latter expression,SRL (SC) represents the diagonal ma-
trix containing the inner products between basis wavefunc-
tions for the Riemann-Liouville-Caputo (conformable) for-
mulation. In the case ofα = 1, we observe that all diagonal
elements and their respective off-diagonal near ones are in
white, which means there are no differences between the two
representations, as expected. However, asα decreases, the
last diagonal elements of the defined matrix difference take
a black shade, suggesting a considerable quantitative separa-
tion between these them, which generally contributed to the
highest energies, confirming our observation that both repre-
sentations have differences for high values of energies.

4. Conclusions

We have made a comparison of energy spectra in some one-
dimensional quantum mechanical problems addressed within
the framework of fractional calculus. In the Schrödinger
equation, the kinetic energy operator has been written us-
ing fractional derivatives in two different formulations: Con-
formable and Riemann-Liouville ones.

Illustrative examples chosen are: the single -finite-
barrier- quantum well, the double quantum well of finite
depth, and the single and double quantum harmonic oscil-
lators. For the first one, besides numerical treatments, based
on diagonalization method, analytic solution is provided.

It has been shown that even small deviations -by few
percent)-away from integer (non-fractional) formalism would
lead to noticeable variations in the values of allowed energy
levels. These differences are also noticed when comparing
the outcome from both fractional formulations. Besides, in
the case of finite barrier systems, the increase in fractionality
implies a strong reduction in the number of confined quantum
states in the system.

This work has had the main purpose of illustrating on the
particularities of fractional quantum mechanics through some
of the simplest examples.

Appendix

A. Fractional Rydberg and Bohr radius

Atomic units are often used to convert the quantum equations
of motion into dimensionless structures. As initially defined,
Rydberg energy is that of an electron in the lowest orbit of
Hydrogen atom, whereas the Bohr radius is, precisely, the
distance between the nucleus and that very first orbit. In the
fractional description, Laskin provides the following defini-
tions [4], respectively:

Ryα = (2α− 1)

(
(e2)2α

(2α)2αDα

) 1
2α−1

, (A.1)

whereDα = (~2α/2m)(mc)2−2α, with 0 < α ≤ 1

a0 =
(

2αDα

e2

) 1
2α−1

. (A.2)

Clearly, defining fractional atomic units for each value of
α leads to different energy and length scales. For instance, in
the case of finite barrier quantum wells, this implies a change
in both the spectrum of energy levels and their associated
wavefunctions, as noticed from Figs. 1 and 2 in the main text.

B. Diagonalization method: Conformable rep-
resentation

Let φn(x) = sin([nπ/Lα]xα) to be the elements of an or-
thogonal base. They are solutions of the fractional problem
corresponding to an infinite barrier quantum well of width
equal to2L, with L being sufficiently larger than the width
of the active finite barrier quantum well region (which is as-
sumed to be placed within). Orthogonality is ensured thanks
to the Hermitian nature of the operator [15,20]. So that, the
wavefunction of the system can be written as the following
expansion:

ψ(x) =
N∑

n=0

Cn sin
(

nπ

Lα
xα

)
. (B.1)

Then, it is inserted into Eq. (8) to produce

− 1
2α− 1

N∑
n=0

D2α
x Cn sin

(
nπ

Lα
xα

)

+ Ṽ (x)
N∑

n=0

Cn sin
(

nπ

Lα
xα

)

= Ẽ

N∑
n=0

Cn sin
(

nπ

Lα
xα

)
. (B.2)

We take into account the fundamental definition
Tα(f)(t) = t1−α(df/dt)(t). Accordingly,

Tα

(
sin

[nπ

Lα
xα

])
= x1−α d

(
sin

[
nπ
Lα xα

])

dx
, (B.3)

Tα

(
sin

[nπ

Lα
xα

])
= α

nπ

Lα

(
cos

(nπ

Lα
xα

])
. (B.4)

Now,

Tα(Tα(φn)(x)) = Tα

(
α

nπ

Lα

[
cos

{nπ

Lα
xα

}])
, (B.5)

and, therefore

Tα(Tαα(φn)(x)) = −
(
α

nπ

Lα

)2 (
sin

[nπ

Lα
xα

])
. (B.6)

As usual, after substitution, the resulting expression is
multiplied on both sides by them-th element of the base.
Then, integrating with normalizing weight equal toxα−1

[11], one obtains a matrix equation of the form:
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1
2α− 1

N∑
n=0

(
nπ

Lα

)2

Cn

∫ 2L

0

sin
(

mπ

Lα
xα

)
sin

(
nπ

Lα
xα

)
xα−1dx

+
N∑

n=0

Cn

∫ 2L

0

Ṽ (x) sin
(

nπ

Lα
xα

)
sin

(
mπ

Lα
xα

)
xα−1dx = Ẽ

N∑
n=0

Cn

∫ 2L

0

sin
(

nπ

Lα
xα

)
sin

(
mπ

Lα
xα

)
xα−1dx, (B.7)

that, following a diagonalization process, leads to the energy eigenvalues and corresponding wave functions for the one-
dimensional quantum problem considered. Unfortunately, regular integration including base functionsφn(x) can not be ana-
lytically performed, and numerical integration is needed in any case.

C. Diagonalization method: Riemann-Liouville representation

Following Laskin, the orthogonal base in this case can be taken to be:φn(x) = sin(nπ/Lx) [2]. In this case, the formulation
allows forx to run over the whole real line. So, the enclosing infinite quantum well profile can be extended within[−L, L]
(and, also, the active region can be taken to be symmetric with respect to the origin). Besides, the definition of the inner product
includes a weight equal to unity. Under these conditions, the expansion for the wavefunction will be:

ψ(x) =
N∑

n=0

Cn sin
(

nπ

L
x

)
. (C.1)

By substituting this solution in Eq. (8), one gets

− 1
2α− 1

N∑
n=0

D2α
x Cn sin

(
nπ

L
x

)
+Ṽ (x)

N∑
n=0

Cn sin
(

nπ

L
x

)
= Ẽ

N∑
n=0

Cn sin
(

nπ

L
x

)
. (C.2)

Now, multiplying by another element of the same base, say,sin([mπ/L]x) and integrating, one finds;

− 1
2α− 1

N∑
n=0

Cn

∫ L

−L

sin
(

mπ

L
x

)
D2α

x sin
(

nπ

L
x

)
dx

+
N∑

n=0

Cn

∫ L

−L

Ṽ (x) sin
(

mπ

L
x

)
sin

(
nπ

L
x

)
dx = Ẽ

N∑
n=0

Cn

∫ L

−L

sin
(

mπ

L
x

)
sin

(
nπ

L
x

)
dx. (C.3)

With the use of the RLC formulation of the fractional derivative:

∞Dα
RLC sin(λr) = λα sin

(
λr +

απ

2

)
. (C.4)

That is;

D2α
x sin

(
nπ

L
x

)
=

(
nπ

L

)2α

sin
(

nπ

L
x + πα

)
, (C.5)

finally obtaining:

− 1
2α− 1

N∑
n=0

Cn

(
nπ

L

)2α∫ L

−L

sin
(

mπ

L
x

)
sin

(
nπ

L
x + πα

)
dx

+
N∑

n=0

Cn

∫ L

−L

Ṽ (x) sin
(

mπ

L
x

)
sin

(
nπ

L
x

)
dx = Ẽ

N∑
n=0

Cn

∫ L

−L

sin
(

mπ

L
x

)
sin

(
nπ

L
x

)
dx. (C.6)
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1. I. Podlubny, Fractional Differential Equations: An Introduc-
tion to Fractional Derivatives, Fractional Differential Equa-
tions, to Methods of their Solution and some of their Appli-
cations (Mathematics in Science and Engineering, Academic
Press, San Diego, USA, 1998).

2. N. Laskin, Fractals and quantum mechanics,Chaos: An In-
terdisciplinary Journal of Nonlinear Science10 (2000) 780,
https://doi.org/10.1063/1.1050284 .

3. N. Laskin, Fractional Schrödinger equation, Phys. Rev.
E 66 (2002) 056108, https://doi.org/10.1103/
PhysRevE.66.056108 .

4. N. Laskin, Fractional quantum mechanics,Phys. Rev. E62
(2000) 3135,https://doi.org/10.1103/PhysRevE.
62.3135 .

5. J. Dong and M. Xu, Some solutions to the space fractional
Schr̈odinger equation using momentum representation method,
J. Math. Phys.48 (2007) 072105,https://doi.org/10.
1063/1.2749172 .
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