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Electromagnetic field induced resonance tunneling in a quantum point contact
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Recently experimental results described electron transport through a quantum point contact irradiated by an electromagnetic wave in the
tunneling regime as a photon-stimulated tunneling. In this work, we study electron tunneling through potential barrier in the presence of an
intense electromagnetic field. Using the time-dependent unitary transformation method, the electron scattering by the laser-dressed potential
barrier is calculated analytically. It is shown that the potential barrier is modified in the presence of the electromagnetic radiation and electron
transmission probability is enhanced with increasing the laser-field strength.
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1. Introduction

Advances in laser physics in the microwave, infrared and op-
tical spectra achieved in recent decades have made possible
the study of the interaction of intense electromagnetic radia-
tion with solids [1] as well as atoms and molecules [2]. It has
been demonstrated that the electromagnetic field can signifi-
cantly modify electronic features of various condensed mat-
ter nanostructures, including semiconductor quantum wells
[3], graphene and related two-dimensional materials [4–6].
Among a great number of nanostructures, the electron tun-
neling devices provide significant faster response times due
to near-instantaneous tunneling that occurs at femtoseconds
timescales, lower power consumption and miniaturization
used in solid state microelectronics [7, 8]. Recently, a va-
riety of novel low-dimensional, commonly quantum point
contacts, nanomaterials, have been used in electron tunnel-
ing devices in the presence of a laser field and have been
seen to provide a platform with significant potential for high-
speed devices [9]. It is widely believed that electron tun-
neling devices, when aligned with the facility of engineered
low-dimensional nanomaterial systems, will allow for the de-
velopment of new and functionally novel nanoelectronics ar-
chitectures capable of concurrent high-speed and low-power
consumption. In Ref. [10,11], the theory of elastic tunneling
through a potential barrier driven by a strong high-frequency
electromagnetic field has been presented. After a numerical
analysis, it is shown that the driven potential barrier becomes
fully transparent for electrons with some incident energies
below the barrier top (the resonant tunneling).

In this work, using the unitary transformation method, the
influence of an intense laser field on the transmission prob-
ability of an electron through a potential barrier is studied.
The radiation field is represented by a classical plane elec-
tromagnetic wave in the dipole approximation and for laser
intensities such that the amplitude of the electron oscillation
in the laser field is much greater than the size of the width of

the potential barrier. Under this approximation, it is shown
that the effect of the intense laser field is to weaken the po-
tential barrier in such a way that the electron transmission
probability increases substantially with the laser field.

2. Theoretical model

A quantum point contact is a narrow constriction between
two-dimensional electron gas by applying a negative bias
to split gate or bridge gate. Experimentally [12], has been
shown that in the tunneling regime the quantum point contact
in the bridged gate becomes very sensitive to the incident irra-
diation laser field perpendicular to the one-dimensional elec-
tron transport across the constriction, Fig. 1.

Consider the problem of an electron moving in the field
of a repulsive potential and simultaneously acted upon by a

FIGURE 1. Schematic representation of the quantum point contact
device irradiated by electromagnetic radiation perpendicular to the
sample.
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classical oscillating electric field in the dipole approximation.
Accordingly, we can neglect the spatial dependence of the
electric field and vector potential fields as well as the mag-
netic terms.

The corresponding Schrödinger equation is

HΨ = i~
∂Ψ
∂t

, (1)

where

H =
1

2m

[
p +

e

c
A(t)

]2

+ V (r), (2)

here,A(t) = A(cos ωt, sin ωt) is the vector potential for
circularly polarized laser beam of frequencyω propagating
in the z-direction andV (r) the scattering potential barrier.
To solve Eq. (1), we perform the time-dependent unitary
transformation method in the strong-field with the Kramers-
Henneberger picture [12,13] namely

Ψ(r, t) = eiρ(t)p/~eiγ(t)/~Φ(r, t), (3)

where

ρ(t) = − e

mc

∫
A(t)dt, γ(t) = − e2

2mc2

∫
A(t)2dt. (4)

Under a unitary transformation Eq. (3), the Schr̈odinger
equation is changed into

[
p2

2m
+ V (|r − ρ|)

]
Φ = i~

∂Φ
∂t

, (5)

Eq. (5) shows that the effect of a classical electromagnetic
field, in the dipole approximation, the electronic wave func-
tion is given by the solution of the Schrödinger equation for
an electron scattered by a potential oscillating with frequency
ω and amplitude|ρ(t)| = a, wherea = eA/mcω. That is, in
the presence of a laser field, the electron sees a laser-dressed
potential,V (|r − ρ(t)|). Equation (5) was solved numeri-
cally in Refs. [10, 11] in the high-frequency limit when the
electron motion is dominated by its oscillation in the electro-
magnetic field. That is, in the high optical-frequency range
the electron executes many oscillations in the laser field be-
tween collisions, so that the actual potential barrier seen by
the electron corresponds the time-averaged dressed potential.
In this work, we follow the approximation used in Ref. [14].
Expanding|r − ρ(t)| as

|r − ρ(t)| = (r2 + a2)1/2

[
1− r · ρ

r2 + a2
+ . . .

]
, (6)

and observing that the term
[
r · ρ/(r2 + a2)

]n
will be

smaller than(1/2)n we can safely assume that term|r−ρ(t)|
is adequately described by the first termi.e., |r − ρ(t)| =
(r2 + a2)1/2. Then, in zero order approximation in the
Schr̈odinger equation (5) the potential barrier is satisfactorily
defined by the expressionV = V [(r2 + a2)1/2]. Therefore,
the effect of an intense laser-field on the electron scattering

can be effectively considered by the Schrödinger equation in
the laser-dressed potential under either an intense or weak
incident electromagnetic radiation. Boevet al. [11], approx-
imated the potential barrier by the Eckart potential

V (x) =
U0

cosh2(x/d)
, (7)

where U0 and d are the effective heigh and characteristic
length of the barrier, respectively. This potential model has
been used to describe the experimental electron transport in
the quantum point contacts, see Ref. [9]. According to the
above argument, our problem is then reduced to the discus-
sion of electron tunneling through the laser-dressed potential

V =
U0

cosh2
√

(x/d)2 + (a/d)2
. (8)

Figure 2 depicts the potential barrier modified by the field
(laser-dressed barrier), which is responsible for the elastic
electron tunneling. Here, we have introduced the dimension-
less variableU = V/U0, measuring the laser-dressed poten-
tial in units of the heigh potential barrier,z = x/d, measuring
the coordinatex in units ofd, and the dimensionless param-
eterβ = a/d, as a measure of the amplitude of the electron
oscillation in the laser field in units ofd. As can be observed,
the effective heigh of the potential barrier decreases with the
laser field strength as a function of the normalized coordi-
nate. In the absence of electromagnetic radiation,β = 0, the
dressed barrier in Eq. (8), turns into the bare Eckart barrier as
expected. The electron transport through the quantum point
contact device showed in Fig. 1, can be described by experi-
ments on the electric current density in the tunneling regime
excited by terahertz radiation [9]. The electric current across
the quantum point contact is proportional to the transmission
coefficient describing the probability of electron tunneling
through the dressed potential barrier. Therefore, it follows
that dependence of the transmission coefficient on the laser
field, see Eq. (8), should be found to investigate the electron
transport through the laser dressed potential. According to

FIGURE 2. Laser-dressed potential barrier for different applied
laser-field strengths.
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FIGURE 3. Electron transmission probabilityD(ε) as a function to
the electron energy for different strengthsβ.

theoretical model, the effects of photon-stimulated transport
are determinated by solving the problem of one-dimensional
electron scattering within the time dependent Schrödinger
equation [5]. The algorithm of solving the time-dependent
Schr̈odinger equation within the used model is based on the
approximation of the potential by piecewise-constant func-
tions Ref. [15] or WKB approximation Ref. [11]. Therefore,
in order to study the photon-assisted electron transmission
through the quantum point contact, we use a simple confin-
ing potential for describe the electron transmission through
the laser-dressed potential barrieri.e., Eq. (8) is substituted
in the time-dependent Schrödinger equation by the following
potential barrier

V =
U0

cosh2 β cosh2 y
. (9)

This one-dimensional smooth barrier is in agreement with
Fig. 1 given by the laser-dressed potential represented by
Eq. (8), the effects of the intense electromagnetic radiation
on the electron scattering by the potential barrier is implicit
in the parameterβ. The choice of this particular effective
quantum well potential allows us to obtain the solution of the
Schr̈odinger equation in a closed analytical form. Hence, the
values for the electron transmission probability for the one-
dimensional barrier potential in Eq. (9) are well known and
are given as, see Ref. [16]

D(ε)=
sinh2

√
ε/ε0

sinh2
√

ε/ε0+ cosh2
√

(U0/ε0) cosh2 β−π2/4
,

cosh β <
2
π

√
U0

ε0
, (10)

D(ε)=
sinh2

√
ε/ε0

sinh2
√

ε/ε0+cosh2
√

π2/4−(U0/ε0) cosh2 β
,

cosh β >
2
π

√
U0

ε0
, (11)

whereε0 = ~2/2mπ2 is the characteristic energy of an elec-
tron in the Eckart potential. It is worth to note that in the
caseD(ε) = 1 if for a fixed value of the incident energy
ε, there exists a critical valueβc of the laser-field strength,
above which the transmission probability is one. This is ob-
tained from the conditionπ2/4 − (U0/ε0) cosh2 β = (2n +
1)2(π2/4) thus, for certain values of the heigh of the poten-
tial barrier, particles passing over it are not reflected. In Fig. 3
we present the results of the transmission probability, as a
function of the dimensionless parametert = ε/ε0 measur-
ing the electron incident energy in units of the characteristic
energyε0, for different values of the laser-field strengthβ
and the fixed heigh potential barrier in units ofε0. These re-
sults confirm the expectation that the main effect of the laser
irradiation is to enhance the transmission probability with in-
creasing the laser-field strength. Physically, these features
of the barrier transparency originate from the decreasing of
the potential barrier in the presence of the strong electromag-
netic field, see Fig. 2. This entails that for each value of the
electron incident energy, the laser-dressed field can be made
almost transparent provided the laser field strength is near the
corresponding critical valueβc.

3. Conclusions

In conclusion, we have studied in this work the electron trans-
mission through a potential barrier driven by a circular polar-
ized electromagnetic field in the dipole approximation. We
have shown that for electron tunneling problem, the main
conclusion is that, with increasing driven-field strength, the
potential-barrier is modified (dressed by the oscillating field)
and consequently the electron-tunneling current should ini-
tially increase until the barrier becomes fully transparent for
the electron transmissioni.e., D(ε) = 1.
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normal incidence of electromagnetic radiation,Phys. Rev.
B 102 (2020) 165301, https://doi.org/10.1103/
PhysRevB.102.165301 .

7. M. Buttiker and R. Landauer, Traversal Time for Tunneling,
Phys. Rev. Lett.49 (1982) 1739,https://doi.org/10.
1103/PhysRevLett.49.1739 .

8. S. Zhou et al., Ultrafast Electron Tunneling Devices-From
Electric-Field Driven to Optical-Field Driven,Adv. Materi-
als 33 (2021) 2101449,https://doi.org/10.1002/
adma.202101449 .

9. V. A. Tkachenkoaet al., Photon-Stimulated Transport in
a Quantum Point Contact (Brief Review),JETP Let-
ters 113 (2021) 331, https://doi.org/10.1134/
S0021364021050106 .

10. I. L. Mayer, L. C. M. Miranda and R. M. O. Galvao, Elec-
tron transmission through a potential barrier in the presence of
an electromagnetic field: unitary transformation method,Can.
J. Phys.63 (1985) 1083,https://doi.org/10.1139/
p85-176 .

11. M. V. Boev, V. M. Kovalev and O. V. Kibis, Optically in-
duced resonant tunneling of electrons in nanostructures,Sci.
Rep. 13 (2023) 19625, https://doi.org/10.1038/
s41598-023-46998-w .

12. R. M. Galvao and L. C. M. Miranda, Quantum theory of an
electron in external fields using unitary transformations,Am.
J. Phys51 (1983) 729,https://doi.org/10.1119/1.
13156 .

13. J. H. Mun, H. Sakai and D. E. Kim, Time-dependent
unitary transformation method in the strong-field-ionization
regime with the Kramers-Henneberger picture,Int. J. Mol.
Sci. 22 (2021) 8514, https://doi.org/10.3390/
ijms22168514 .

14. C. A. S. Lima and L. C. M. Miranda, Atoms in superintense
laser fields,Phys. Rev. A23 (1981) 3335,https://doi.
org/10.1103/PhysRevA.23.3335 .

15. O. A. Tkachenkoa, V. A. Tkachenkoa, D. G. Baksheevb, and
Z. D. Kvona, Steps of the Giant Terahertz Photoconductance
of a Tunneling Point Contact,JETP. Lett.108 (2018) 396,
https://doi.org/10.1134/S0021364018180133 .

16. L. D. Landau and E. M. Lifshitz,Quantum Mechanics (Non-
relativistic theory), (Pergamon Press 1965).

Rev. Mex. Fis.71010503

https://doi.org/10.1016/j.physrep.2004.01.004�
https://doi.org/10.1016/j.physrep.2004.01.004�
https://doi.org/10.1038/srep20082�
https://doi.org/10.1038/srep20082�
https://doi.org/10.1103/PhysRevA.96.013813�
https://doi.org/10.1103/PhysRevA.96.013813�
https://doi.org/10.1103/PhysRevB.102.165301�
https://doi.org/10.1103/PhysRevB.102.165301�
https://doi.org/10.1103/PhysRevLett.49.1739�
https://doi.org/10.1103/PhysRevLett.49.1739�
https://doi.org/10.1002/adma.202101449�
https://doi.org/10.1002/adma.202101449�
https://doi.org/10.1134/S0021364021050106�
https://doi.org/10.1134/S0021364021050106�
https://doi.org/10.1139/p85-176�
https://doi.org/10.1139/p85-176�
https://doi.org/10.1038/s41598-023-46998-w�
https://doi.org/10.1038/s41598-023-46998-w�
https://doi.org/10.1119/1.13156�
https://doi.org/10.1119/1.13156�
https://doi.org/10.3390/ijms22168514�
https://doi.org/10.3390/ijms22168514�
https://doi.org/10.1103/PhysRevA.23.3335�
https://doi.org/10.1103/PhysRevA.23.3335�
https://doi.org/10.1134/S0021364018180133�

